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Abstract. We present a simple, yet general method to detect fake videos
displaying human subjects, generated via Deep Learning techniques. The
method relies on gauging the complexity of heart rate dynamics as de-
rived from the facial video streams through remote photoplethysmogra-
phy (rPPG). Features analyzed have a clear semantics as to such physio-
logical behaviour. The approach is thus explainable both in terms of the
underlying context model and the entailed computational steps. Most
important, when compared to more complex state-of-the-art detection
methods, results so far achieved give evidence of its capability to cope
with datasets produced by different deep fake models.

Keywords: DeepFake detection, rPPG, image forensics, biological sig-
nals

1 Introduction

The term “DeepFake” (DF, a portmanteau of “deep learning” and “fake”) refers
to videos created by deep learning techniques, especially generative models such
as variational auto-encoders and generative adversarial networks, aiming at pro-
ducing a believable media [1]. Concerning human faces, four DF categories can
be identified: re-enactment [2-4], swapping [5], editing [6, 7], and synthesis [8].
DF techniques date back to 2017 (a celebrated synthesized version of Obama
[9]). Since then, impressive improvements have been achieved, in terms both of
realism [10], accessibility and reduction of source data required to realize DF
[11]. Yet, very realistic DFs have fostered unethical and malicious applications,
posing a series of threats for individuals (e.g. fake porn), organizations (black-
mail to managers to stop sharing their compromising DFs), politicians (e.g fake
news to sabotage government leaders) [12]. Thus, efforts have been devoted to
DF detection methods allowing to discriminate between real and forged videos
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[13, 14]. Based on the artifacts such methods look for, [12] seven categories can be
drawn up: Blending, spatial artifacts that appear when the generated content is
blended back to the frame; Environment, spatial artifacts that emerge comparing
the fake face with the context of the rest of the frame; Forensics, artifacts cor-
responding to subtle features or patterns introduced in the video by the model;
Behaviour, anomalies in mannerisms or other human behaviours introduced by
the model; Physiology, physiological signals (e.g. heart beat, blood flow, breath-
ing) disrupted by DF methods; Synchronization, temporal inconsistencies (e.g.,
between visemes and phonemes) introduced in fake videos; Coherence, disrupted
temporal coherence.

Markedly, behavioural and physiological signals allow to characterize the
original videos, resulting in general detectors, independent of the DF genera-
tive model, or the dataset adopted for training [15]. Behavioural artifacts in-
volve inconsistencies in physical attributes. The main features investigated are
facial attributes [16], head pose [17], facial expression [18], emotions [19, 20], gaze
tracking [21, 22], and blink detection [23].

Physiological artifacts relate to the corruption of physiological signals, such as
respiratory pattern [24,25] and heart rate variability [26,27], latently conveyed
by original human videos. In particular, several methods have proven their effec-
tiveness as fake detectors using heart rate estimation. In [28] the virtual heart
rate is not explicitly computed, while motion-magnified spatial-temporal maps
are derived to highlight the chrominance spatio-temporal signal. A dual-spatial-
temporal attention network is adopted to alleviate the influence of various inter-
ferences such as head movement or illumination variations. In [29] a two stage
network is proposed based on the conjecture that in DFs the real PPG signal
is lost, while a rhythmic pattern persists, which is a mixture of PPG signals,
depending on the adopted generative method. DeepFakesonPhys [30] consists of
a convolutional attention network composed of two parallel CNNs to extract and
combine spatio-temporal information from the video.

Overall, these approaches prove their effectiveness in the intra-method and
inter-method experiments, yet we argue that they suffer from two cogent issues.
The first is related to the lack of explicit assessment of the physiological infor-
mation; indeed, adopting end-to-end approaches brings to consider a broader
set of factors (e.g. appearance, texture, behaviour) besides the physiology itself.
Clearly, this would potentially allow to reach higher levels of accuracy at the cost
of hiding the actual contribution of the information coming from physiological
signals alone, if not framed in a principled framework. Second, in this concern-
ing realm, explainability of the method and results achieved should be a serious
issue. To the best of our knowledge, the FakeCatcher method [31] is the only
proposal in such direction. To characterize interconsistency, such method trains
an SVM on 126-dimensional feature vectors computed from the rPPG-derived
signal, extracted from three face regions of interest by two rPPG methods. To
improve performance, a CNN classifier is trained on PPG maps. However, this
way, the explainability is lost, though the system is still based on biological
signals.
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2 Proposed method

Background and rationale. Consider a video of a talking agent involved in
some kind of interaction (dyadic, small group, giving a speech). This can be con-
ceived as the observable measurement of the behaviour of the agent according
to an agent-in-context (AIC) model [32]. In brief (cfr. Fig. 1), over time, the
agent is influenced at the conceptual level by the social and environmental con-
text, beliefs, memories and learning. At the perceptual level the agent takes into
account, both exteroceptive sensations from the world and interoceptive sensa-
tions from the body. Accordingly, the agent regulates his/her body’s visceral
physiology and behavioural outflow.

It is out of the scope of this note to discuss in detail the AIC model. It
will suffice to remark that level coordination over time stands on a principled
generative/predictive framework [33,32], where forward (bottom-up, from pe-
riphery to cortex) and backward (top-down, feedback) signalling is synchronized
and enforced to support embodied simulation [33]. Indeed, the measurable be-
havioural /physiological outflow - e.g, facial behaviour or heart rate variability
(HRV) that are cogent for the work presented here - is the result of such simu-
lation loop [34, 33, 32].

Clearly, our research hypothesis here is that out-of-context manipulation of
(faking) one of the observable variables (markedly, the face) the overall coordi-
nation is disrupted.
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Fig. 1: Agent-in-context model. Right: over time, the agent exhibits a dynamics
which involves coordination at different levels: conceptual, perceptual, and cor-
poreal (behavioural/physiological) responses. Left: faking interventions on the
observable face dynamics might disrupt (iconized by scissors) observable con-
text/behaviour and behaviour/physiology coordination.
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Gauging context/behaviour disruption (cfr. left-most side of Fig. 1), e.g, such
as addressed in Synchronization and Behaviour approaches, is intriguing though
complex. Thus, in this work we address behaviour/physiology disruption.

To such end, rPPG [35-38] analysis is a promising approach since HR be-
haviour and related vascular control can be straightforwardly assessed from the
video signal itself. Indeed, rPPG is a suitable mean to sense capillary dilation
and constriction related to heart beats. Dilation and constriction modulate the
transmission or reflection of visible (or infra-red) light emitted to and detected
from the skin. The amount of reflected light changes according to the blood
volume and cardiac-synchronous variations (but see [39]).

Fake detection via rPPG. The hidden physiological information is firstly
estimated from RGB videos. To this end, the face of the (possibly) manipulated
subject is detected and a set of 100 patches is automatically tracked on it.

The pixels color intensities within the i-th patch at time ¢ {p] (t)};\f;1 are
averaged, thus resulting in 100 RGB traces. Denote ¢;(t) the RGB trace obtained

from the i-th patch:

1 .
(== pl), i =1,...,100. 1
qi(t) Nijﬂpl() i (1)

The trace is then split into K overlapping time-windows, ¢ (t) = ¢;(t)w (t — kTF}),
k=0,...,K — 1, where Fs represents the video frame rate, 7 is the amount of
overlap and w is the rectangular window. The Blood Volume Pulse (BVP) sig-
nal is then estimated for each patch, at each time frame, using the POS rPPG
method [39],

25(t) = POS [q(1)] . (2)

This procedure is carried out by resorting to the pyVHR Python framework [26],
which is suitable to scrutinize and interpret the processing steps outlined above.

Cogently, our goal here is to address signal features that have a clear seman-
tics as to the physiological behavior. The proposed approach employs two sets
of features as predictors of the presence of faking interventions. According to
the AIC model, we would expect the BVP signals estimated from each patch to
be disrupted. Disruption is here gauged in terms of complexity of the estimated
BVP signals. Signal complexity can be addressed in many different ways; we
refer to the ensemble of predictors as to Intra-Patch BVP Complezity Measures.

Further, it is reasonable to assume that a genuine face video would yield BVP
estimates with a certain amount of coherence across the tracked patches, while
exhibiting manifold behaviours in forged ones. Hence, besides individual patch-
based BVP complexity, we quantify the amount of coherence between patches
by means of Inter-Patch BVP Coherence Measures.

Intra-Patch BVP Complexity Measures A simple and widely used measure
of complexity of a time series is represented by the number of Zero-Crossings of



DeepFakes Have no Heart 5

the signal; that is the rate at which a time-series changes from positive to nega-
tive, or vice-versa. Additionally, the Hjorth Mobility and Complexity parameters
[40] are computed as indicators of the statistical properties of the signal in the
time domain. In the frequency domain, the Shannon entropy of the Power Spec-
tral Density of the estimated BVP is computed. Another common approach is
to measure the entropy of a time series; more precisely, a BVP signal x can be
defined as a family of time-indexed random variables {x(¢)}1c7. The Entropy
Rate of a sequence of N random variables,

H(z) = lim %H (x(1),2(2),...2(N)) (3)

describes the rate of growth of the entropy of the sequence with N. The ana-
lytical computation of the Entropy Rate of a time-series requires knowing the
joint distribution of the random variables composing it; however, many efficient
algorithms for its approximation from a data sample have been proposed, e.g,
Approximate Entropy [41], Sample Entropy, Permutation Entropy [42], SVD
Entropy [43].

Another powerful statistical index of complexity, is the fractal dimension
(FD) of the waveform. A variety of algorithms are available for the computation
of the FD. Here we consider four approaches that have been widely adopted for
the analysis of biological signals [44], namely Detrended Fluctuation Analysis
(DFA), Katz FD, Petrosian FD and Higuchi FD. All such quantities are averaged
across the 100 patches in each time frame in order to yield a 12-D feature vector
of Intra-Patch Complexity Measures.

Inter-Patch BVP Coherence Measures The degree of consistency between
the BVP estimates across the patches is quantified for a given time window both
in the time and frequency domain.

The level of spectral concordance between the BVP signals estimated from
the i-th and j-th patches in the k-th time frame, can be computed as their
magnitude-squared Coherence function,

|G f, 25)

G(zk, ! )G(a: a:é“)7

C(If, Z‘?) =
where G(avi~C , xf) is the cross-spectral density between the BVP estimates from
the i-th and j-th patches, respectively; G(zF,z}) and G(z%,2%) are the Power
Spectral Densities of the signals. The magmtude-squared Coherence function
denotes the amount of similarity between the two signals at each frequency.
Here we consider the average of the magnitude-squared Coherence function over
frequencies as a scalar measure of spectral similarity between BVP estimates.

We also evaluate the similarity of the signals in the time domain by measuring
the Mutual Information between the BVPs:
)> dmg; dxﬁ_-,
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Such quantities are computed for each possible pair (¢, j) of patches and for
each time frame k. The 8-D Inter-Patch BVP Coherence feature vector for the
k-th time window is then obtained by computing the first four moments of the
resulting distributions (mean, standard deviation, skewness, kurtosis) for both
spectral similarity and Mutual Information.

Feature Selection and Classification The procedure described above, yields
two sets of measures that when joined produce a 20-D vector of features for every
frame k of a given video. Sequential floating forward selection (SFFS) [45] is thus
employed in order to select the best subset of features without sensible loss of
information. According to SFFS, the following 6 features result to be the most
informative for DF classification via rPPG signals: Zero Crossing Rate, Petrosian
FD, SVD Entropy, Higuchi FD, Average Spectral similarity and Standard De-
viation of Mutual Information. Remarkably, 4 features are Complexity related
quantities on BVP signals, while 2 are between-patches coherence measures.

A Support Vector Machine (SVM) is eventually adopted for classification
(real vs. fake). Training and classification are carried out at the time-frame level;
video level predictions are obtained by picking the most frequently predicted
label.

3 Results

We test the effectiveness of the proposed approach on the FaceForensics++
dataset [46] consisting of 1000 original video sequences that have been manip-
ulated with five methods, namely DeepFakes [47], Face2Face [48], FaceShifter
[49], FaceSwap [50] and NeuralTextures [51]. Figure 2 shows one example (via
FaceShifter) of swapping faces from a source to a target subject. The proposed

JusuIE

Fig. 2: Face swapping. Source (left), target (center) and swapped (right) example
from the FaceForensics++ dataset

approach is tested on each DF algorithm outcome separately. Table 1 reports the
5-fold Nested Cross-Validation Accuracy results. As can be observed, regardless
of the swapping method, we are able to discriminate real from fake videos with
remarkable accuracy. The table shows the results obtained by a recent approach
[31]; reported accuracy scores are comparable. Most important, we test the abil-
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| [DeepFakes|Face2Face [FaceShifter| FaceSwap [NeuralText.| Avg |

Our|90.68 £+ 0.61|94.46 £ 0.03| 98.88 + 0.13 |95.39 £ 0.07| 87.57 £ 0.35 | 93.40%
[31]| 94.87% 96.37% - 95.75% 89.12% |94.02%

Table 1: 5-fold Nested Cross Validation Accuracy for the video-level classification
of Real vs. Fake videos for each face swapping algorithm

ity of our method to generalize across different face swapping algorithms. To
this end, the original videos belonging to the “Real” class are partitioned into
train/test sets with 80/20 percentage, while the “Fake” class is built by joining
all the data from every swap algorithm except one. We train our SVM on this
dataset and test the model on the left out data. As a consequence, the “Fake”
class contains about 5 times the number of examples if compared to the “Real”
one. In Table 2, the results of the cross-method evaluation are reported. Due
to the class imbalance, besides accuracy scores we also report the F1 and AUC
scores, too. Notably, the proposed approach outperforms the results obtained by

l [Metric[DeepFakes[Face2Face[FaceSh.[FaceSwap[NeuralText.[ Avg ‘

AUC | 89.82% | 8897% |[91.52% | 88.59% 89.76%  [89.75%
Our| F1 96.72% | 96.70% | 98.21% | 97.44% 94.14% | 96.64%
Acc. | 94.53% | 94.48% |96.98% | 95.66% 90.61% |94.45%
3] Acc. | 9375% | 95.25% | - [ 96.25% | 81.25% [91.62% |

Table 2: Cross-method results: testing on a swap algorithm while training on the
others

[31], thus exhibiting better generalization abilities despite representing a much
simpler and straightforward method.

4 Conclusions

We have presented a simple method for DF detection. The features extracted
from the rPPG-based signal have a clear semantics as to the heart rate physiolog-
ical behaviour. The approach is thus explainable both in terms of the underlying
context model and the entailed computational steps. Most important, when com-
pared to more complex state-of-the-art detection methods, present results give
evidence of its capability to cope with datasets produced by different DF mod-
els. Beyond the reported results, the agent-in-context model, which frames our
approach, is suitable for paving the way to a seamless integration of analyses ad-
dressing different levels of the faked agent’s behavior. The present investigation
is to be intended as a proof of concept, hence further experiments on larger and
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more challenging datasets (e.g. [52,53]) are planned to be carried out in future
works.
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