Skip to main content

Accelerating Video Object Detection by Exploiting Prior Object Locations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13232))

Abstract

We provide a set of generic modifications to improve the execution efficiency of single-shot object detectors by exploiting prior object locations in video sequences. We propose a crop-based method to accelerate object detection tasks. It dynamically generates crop regions based on prior information and exploits scene sparsity enabling focused use of computational resources. In contrast to prior work, smaller input resolutions for processing crop regions are used to further reduce computational load. The execution efficiency is increased by avoiding multiple executions of the detector in full resolution. Data augmentations are used to successfully train these lower-resolution networks and maintain their accuracy at the baseline level while reducing inference time. Experiments with two public datasets, UA-DETRAC [13] and UAVDT [2], using the SSD-ML [19] object detection architecture with \(128\times 128\), \(64\times 64\) and \(32\times 32\) input resolutions show that we can achieve a maximum speedup by a factor of 1.7 on the UA-DETRAC dataset, and 1.6 on the UAVDT dataset while delivering the same level of accuracy as the base method. An extensive set of experiments demonstrates the speed-accuracy trade-off and shows that our method can achieve accuracy comparable to state-of-the-art methods at lower execution time.

This work is funded by the NWO Perspectief program ZERO.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Experiments performed with PyTorch v1.8, CUDA and cuDNN 10.2.

References

  1. Abdulla, W.: Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow (2017). https://github.com/matterport/Mask_RCNN

  2. Du, D., et al.: The unmanned aerial vehicle benchmark: object detection and tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 370–386 (2018)

    Google Scholar 

  3. Li, C., Yang, T., Zhu, S., Chen, C., Guan, S.: Density map guided object detection in aerial images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 190–191 (2020)

    Google Scholar 

  4. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  5. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  6. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  7. Ozge Unel, F., Ozkalayci, B.O., Cigla, C.: The power of tiling for small object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  8. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  9. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  10. Rŭžička, V., Franchetti, F.: Fast and accurate object detection in high resolution 4K and 8K video using GPUs. In: 2018 IEEE High Performance extreme Computing Conference (HPEC), pp. 1–7. IEEE (2018)

    Google Scholar 

  11. Sun, X., Wu, P., Hoi, S.C.: Face detection using deep learning: an improved faster RCNN approach. Neurocomputing 299, 42–50 (2018)

    Article  Google Scholar 

  12. Wang, Y., Mao, K., Chen, T., Yin, Y., He, S., Chen, G.: Accelerating real-time object detection in high-resolution video surveillance. Concurr. Comput. Pract. Exp., e6307 (2021)

    Google Scholar 

  13. Wen, L., et al.: UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. Comput. Vis. Image Underst. 193, 102907 (2020)

    Article  Google Scholar 

  14. Xu, J., Li, Y., Wang, S.: AdaZoom: adaptive zoom network for multi-scale object detection in large scenes. arXiv preprint arXiv:2106.10409 (2021)

  15. Yang, F., Fan, H., Chu, P., Blasch, E., Ling, H.: Clustered object detection in aerial images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8311–8320 (2019)

    Google Scholar 

  16. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. (CSUR) 38(4), 13-es (2006)

    Google Scholar 

  17. Zhang, J., Huang, J., Chen, X., Zhang, D.: How to fully exploit the abilities of aerial image detectors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  18. Zhang, X., Izquierdo, E., Chandramouli, K.: Dense and small object detection in UAV vision based on cascade network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  19. Zwemer, M., Wijnhoven, R.G., et al.: SSD-ML: hierarchical object classification for traffic surveillance. In: 15th International Conference on Computer Vision. Imaging and Computer Graphics Theory and Applications (VISAPP2020), pp. 250–259. SCITEPRESS-Science and Technology Publications, LDA (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berk Ulker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ulker, B., Stuijk, S., Corporaal, H., Wijnhoven, R. (2022). Accelerating Video Object Detection by Exploiting Prior Object Locations. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06430-2_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06429-6

  • Online ISBN: 978-3-031-06430-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics