Skip to main content

Test-Time Adaptation for Egocentric Action Recognition

  • Conference paper
  • First Online:
Book cover Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Abstract

Egocentric action recognition is becoming an increasingly researched topic thanks to the rising popularity of wearable cameras. Despite the numerous publications in the field, the learned representations still suffers from an intrinsic “environmental bias”. To address this issue, domain adaptation and generalization approaches have been proposed, which operate by either adapting the model to target data during training or by learning a model able to generalize to unseen videos by exploiting the knowledge from multiple source domains. In this work, we propose to adapt a model trained on source data to novel environments at test time, making adaptation practical to real-world scenarios where target data are not available at training time. On the popular EPIC-Kitchens dataset, we present a new benchmark for Test-Time Adaptation (TTA) in egocentric action recognition. Moreover, we propose a new multi-modal TTA approach, which we call RNA\(^{++}\), and combine it with a new set of losses aiming at reducing classifier’s uncertainty, showing remarkable results w.r.t. existing TTA methods inherited from image classification. Code available: https://github.com/EgocentricVision/RNA-TTA.

M. Plananamente and C. Plizzari—Equally contributed to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\alpha , \beta , \gamma , \delta , \epsilon \) are the weights of RNA\(^{++}\), MCC, ENT, IM and CENT losses respectively.

References

  1. Azimi, F., Palacio, S., Raue, F., Hees, J., Bertinetto, L., Dengel, A.: Self-supervised test-time adaptation on video data. In: WACV, pp. 3439–3448 (2022)

    Google Scholar 

  2. Bucci, S., D’Innocente, A., Liao, Y., Carlucci, F.M., Caputo, B., Tommasi, T.: Self-supervised learning across domains. TPAMI (2021)

    Google Scholar 

  3. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR. pp. 6299–6308 (2017)

    Google Scholar 

  4. Chen, H.Y., et al.: Complement objective training. arXiv:1903.01182 (2019)

  5. Chen, M.H., Kira, Z., AlRegib, G., Yoo, J., Chen, R., Zheng, J.: Temporal attentive alignment for large-scale video domain adaptation. In: CVPR, pp. 6321–6330 (2019)

    Google Scholar 

  6. Choi, J., Sharma, G., Schulter, S., Huang, J.-B.: Shuffle and attend: video domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XII. LNCS, vol. 12357, pp. 678–695. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_40

    Chapter  Google Scholar 

  7. Crasto, N., Weinzaepfel, P., Alahari, K., Schmid, C.: Mars: motion-augmented RGB stream for action recognition. In: CVPR, June 2019

    Google Scholar 

  8. Damen, D., et al.: Scaling egocentric vision: The epic-kitchens dataset. In: ECCV, pp. 720–736 (2018)

    Google Scholar 

  9. Dou, Q., Coelho de Castro, D., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. NIPS 32, 6450–6461 (2019)

    Google Scholar 

  10. Furnari, A., Farinella, G.: Rolling-unrolling LSTMs for action anticipation from first-person video. TPAMI 43(11), 4021–4036 (2020)

    Article  Google Scholar 

  11. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)

    Google Scholar 

  12. Gomes, R., Krause, A., Perona, P.: Discriminative clustering by regularized information maximization. In: NIPS (2010)

    Google Scholar 

  13. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: NIPS. vol. 367, pp. 281–296, January 2004

    Google Scholar 

  14. Hu, W., Miyato, T., Tokui, S., Matsumoto, E., Sugiyama, M.: Learning discrete representations via information maximizing self-augmented training. In: ICML, pp. 1558–1567 (2017)

    Google Scholar 

  15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456 (2015)

    Google Scholar 

  16. Iwasawa, Y., Matsuo, Y.: Test-time classifier adjustment module for model-agnostic domain generalization. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) NIPS (2021)

    Google Scholar 

  17. Jamal, A., Namboodiri, V.P., Deodhare, D., Venkatesh, K.: Deep domain adaptation in action space. In: BMVC (2018)

    Google Scholar 

  18. Jin, Y., Wang, X., Long, M., Wang, J.: Minimum class confusion for versatile domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XXI. LNCS, vol. 12366, pp. 464–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_28

    Chapter  Google Scholar 

  19. Kazakos, E., Nagrani, A., Zisserman, A., Damen, D.: Epic-fusion: audio-visual temporal binding for egocentric action recognition. In: ICCV, October 2019

    Google Scholar 

  20. Kazakos, E., Nagrani, A., Zisserman, A., Damen, D.: Slow-fast auditory streams for audio recognition. In: ICASSP, pp. 855–859 (2021)

    Google Scholar 

  21. Kim, D., et al.: Learning cross-modal contrastive features for video domain adaptation. In: ICCV, pp. 13618–13627 (2021)

    Google Scholar 

  22. Li, Y., Wang, N., Shi, J., Hou, X., Liu, J.: Adaptive batch normalization for practical domain adaptation. Pattern Recognit. 80, 109–117 (2018)

    Article  Google Scholar 

  23. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: ICCV, pp. 7083–7093 (2019)

    Google Scholar 

  24. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: ICML, pp. 97–105 (2015)

    Google Scholar 

  25. Munro, J., Damen, D.: Multi-modal domain adaptation for fine-grained action recognition. In: CVPR, June 2020

    Google Scholar 

  26. Nado, Z., Padhy, S., Sculley, D., D’Amour, A., Lakshminarayanan, B., Snoek, J.: Evaluating prediction-time batch normalization for robustness under covariate shift. arXiv preprint arXiv:2006.10963 (2020)

  27. Pan, B., Cao, Z., Adeli, E., Niebles, J.C.: Adversarial cross-domain action recognition with co-attention. In: AAAI, vol. 34, pp. 11815–11822 (2020)

    Google Scholar 

  28. Planamente, M., Bottino, A., Caputo, B.: Self-supervised joint encoding of motion and appearance for first person action recognition. In: ICPR, pp. 8751–8758 (2021)

    Google Scholar 

  29. Planamente, M., Plizzari, C., Alberti, E., Caputo, B.: Domain generalization through audio-visual relative norm alignment in first person action recognition. In: WACV, pp. 1807–1818, January 2022

    Google Scholar 

  30. Plizzari, C., Planamente, M., Alberti, E., Caputo, B.: PoliTO-IIT submission to the epic-kitchens-100 unsupervised domain adaptation challenge for action recognition. arXiv preprint arXiv:2107.00337 (2021)

  31. Plizzari, C., et al.: E\(^2\)(go) motion: Motion augmented event stream for egocentric action recognition. arXiv preprint arXiv:2112.03596 (2021)

  32. Rodin, I., Furnari, A., Mavroedis, D., Farinella, G.M.: Predicting the future from first person (egocentric) vision: a survey. CVIU 211, 103252 (2021)

    Google Scholar 

  33. Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., Bethge, M.: Improving robustness against common corruptions by covariate shift adaptation. arXiv preprint arXiv:2006.16971 (2020)

  34. Shi, Y., Sha, F.: Information-theoretical learning of discriminative clusters for unsupervised domain adaptation. arXiv preprint arXiv:1206.6438 (2012)

  35. Song, X., et al.: Spatio-temporal contrastive domain adaptation for action recognition. In: CVPR, pp. 9787–9795, June 2021

    Google Scholar 

  36. Sudhakaran, S., Escalera, S., Lanz, O.: LSTA: long short-term attention for egocentric action recognition. In: CVPR, pp. 9954–9963 (2019)

    Google Scholar 

  37. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training with self-supervision for generalization under distribution shifts. In: ICML, pp. 9229–9248. PMLR (2020)

    Google Scholar 

  38. Thapar, D., Nigam, A., Arora, C.: Anonymizing egocentric videos. In: ICCV, pp. 2320–2329 (2021)

    Google Scholar 

  39. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR 2011, pp. 1521–1528. IEEE (2011)

    Google Scholar 

  40. Volpi, R., Namkoong, H., Sener, O., Duchi, J.C., Murino, V., Savarese, S.: Generalizing to unseen domains via adversarial data augmentation. In: NIPS, pp. 5334–5344 (2018)

    Google Scholar 

  41. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007). https://doi.org/10.1007/s11222-007-9033-z

  42. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: Fully test-time adaptation by entropy minimization. arXiv preprint arXiv:2006.10726 (2020)

  43. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part VIII. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

  44. Wang, W., Tran, D., Feiszli, M.: What makes training multi-modal classification networks hard? In: CVPR, pp. 12695–12705 (2020)

    Google Scholar 

  45. Wu, X., Zhou, Q., Yang, Z., Zhao, C., Latecki, L.J., et al.: Entropy minimization vs. diversity maximization for domain adaptation. arXiv:2002.01690 (2020)

  46. Yao, Z., Wang, Y., Wang, J., Yu, P., Long, M.: VideoDG: generalizing temporal relations in videos to novel domains. TPAMI (2021)

    Google Scholar 

  47. Ye, J., Lu, X., Lin, Z., Wang, J.Z.: Rethinking the smaller-norm-less-informative assumption in channel pruning of convolution layers. In: ICLR (2018)

    Google Scholar 

  48. You, F., Li, J., Zhao, Z.: Test-time batch statistics calibration for covariate shift. arXiv preprint arXiv:2110.04065 (2021)

  49. Zhao, J., Snoek, C.G.: Dance with flow: two-in-one stream action detection. In: CVPR, pp. 9935–9944 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the CINI Consortium through the VIDESEC project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Plizzari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Plananamente, M., Plizzari, C., Caputo, B. (2022). Test-Time Adaptation for Egocentric Action Recognition. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13233. Springer, Cham. https://doi.org/10.1007/978-3-031-06433-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06433-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06432-6

  • Online ISBN: 978-3-031-06433-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics