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Abstract. Object detection and tracking in videos represent essential
and computationally demanding building blocks for current and future
visual perception systems. In order to reduce the efficiency gap be-
tween available methods and computational requirements of real-world
applications, we propose to re-think one of the most successful meth-
ods for image object detection, Faster R-CNN, and extend it to the
video domain. Specifically, we extend the detection framework to learn
instance-level embeddings which prove beneficial for data association and
re-identification purposes. Focusing on the computational aspects of de-
tection and tracking, our proposed method reaches a very high computa-
tional efficiency necessary for relevant applications, while still managing
to compete with recent and state-of-the-art methods as shown in the
experiments we conduct on standard object tracking benchmarks3.

Keywords: Multiple-Object Tracking · Joint Detection and Tracking

1 Introduction

Detecting and tracking multiple objects in video sequences is a core building
block for several applications. Recently, deep learning based methods achieved
unprecedented success in detecting objects in both general-purpose and application-
oriented settings [19,18,36]. Utilizing such methods in the video domain remain
challenging due to the inefficiency of per-frame processing and the lack of a
temporally consistent understanding of objects trajectories.

Multiple-object tracking deals with the task of tracking several targets lo-
cations across video frames and is able to derive trajectories across time by
associating tracks and detected objects. Multiple-object tracking, however, is
usually handled in the tracking-by-detection framework, which assumes that ob-
jects in each frame are detected using a separate algorithm and only addresses
association [28,33]. This separation causes an additional computational cost, and
prohibits the sharing of representations and information between the two tasks.

Recently, it has been noted that joint architectures reduce the computational
overhead by deriving the outputs of multiple tasks simultaneously, proving in the

3 Code available at https://github.com/Malga-Vision/fastervideo
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same time the performance benefits of this holistic processing where computation
and hidden representations are shared among tasks [34,25,6].

Building on this line of research, we address detection and tracking jointly,
relying on a state of the art image object detector, Faster R-CNN [19], which
we extend to the video domain.

Fig. 1: Overview of our proposed method for joint detection and tracking

The modular structure of two-stages detectors, allows us to control the com-
putational cost of the detector, while exploiting additional information provided
by the video input: we control the complexity of Faster R-CNN Region Pro-
posal Network (RPN) by reducing of the number of image-based proposals, while
adding proposals originated by the previous video frames. Also, the two-stage
design can be extended to learn appropriate embeddings which are effective to
improve the tracking association step —see Figure 1.

In summary, the contributions of our paper can be summarized as follows:

– We provide a modular extension of a 2-stage image-based object detector to
address jointly video object detection and tracking.

– We re-use the detector learned representations to simplify the tracking task
by learning embeddings which are then employed to boost the data associ-
ation accuracy across frames.

– We use temporal prior of objects location to both guide the detector and
reduce its computational cost

– Our pipeline achieves accuracy results comparable to state-of-the-art meth-
ods, while consistently delivering several fold efficiency improvement , high-
lighting under-explored accuracy-speed trade-off points.

The rest of this paper is organized as follows: first, we review related works
tackling detection and tracking tasks either separately or jointly. Next, we de-
scribe in details our proposed pipeline targeted at joint detection and tracking.
Finally, we conduct experiments using KITTI [7] and MOT [16,5] datasets and
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we compare with other similar methods in terms of both MOT metrics and
inference time to highlight speed performance trade-offs.

2 Related Work

2.1 Video Object Detection

Unlike image-based methods which can be applied in video settings on separate
frames independently, several works try to rely on additional video prior to guide
video object detection. This direction is gaining interest due to the challenges
posed by videos to image-based detectors such as motion blur and focus loss.

In the work of [37], optical flow is used as to warp features from consecutive
frames, while a recurrent neural network is used in [31] to aggregate frames and
learn to detect objects across time. These methods, however, do not construct
trajectories of detected objects.

2.2 Multi-object Tracking

Due to the high accuracy achieved by recent object detectors, many works in
the literature follow the tracking-by-detection approach. Such approach assumes
that detections are obtained for each frame separately, and focuses on associa-
tion. Association between detections and tracks is often formulated as a bipartite
graph and an association cost is identified for each possible match. The problem
is usually solved using the Hungarian algorithm [12]. In addition to intersection
over union (IoU) metric, several approaches propose the use of appearance-based
similarity for matching, obtained using optical flow, low-level feature descriptors,
or motion-based features [11,9,3]. While other methods try to learn similarity
metrics from data using contrastive learning [17] or triplet losses [1,4] Different
data representation is additionally explored in recent works [33,28,29] allowing
end-to-end learning of MOT methods.

2.3 Joint Object Detection and Tracking

This research direction focuses, instead, jointly on both detection and tracking
tasks. These methods, in particular, promise to simplify perception tasks and
yield more efficient pipelines. In [15], the authors propose a scheduler network
which is used to alternate between running a full detector or simply locating
already-seen objects. Another direction aims to transform typical object detec-
tors to perform jointly detection and tracking. Some of these methods extend a
two-stage detector (mainly Faster R-CNN) [1,26], while others focus on single-
stage detectors [35,14]. Most of these methods, however, introduce additional
modules which reduce efficiency of the joint pipeline, even below that of the
baseline detector.
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3 Proposed Method

In this section we present our architecture based on the well established Faster R-
CNN object detector, which we extend to address detection and tracking jointly
and efficiently. By reducing the number of proposals and relying on tracked
objects as an additional source of proposals, we improve the speed-accuracy
trade-off. Additionally, we introduce an embedding network branch that allows
us to learn an appropriate and descriptive appearance representation for tracked
instances boosting data association accuracy. Figure 1 shows the building blocks
of the proposed method.

3.1 Video Object Detection

We adopt as an image-based object detector Faster R-CNN with a FPN-50 back-
bone and pyramid layers [13]. To optimize it for the video-based object detection,
we propose two modifications.

Sparser RPN Proposals. Sparser proposals allow us to control the computa-
tional cost of the detector. Figures 2 and 3 provide an experimental evidence:
Figure 2, reports the accuracy (measured in both mAP and AP) on COCO2017
validation set using different number of proposals compared with the original 1k
proposals [19]. Comparable accuracies are obtained with 1/10 of the proposals.
Figure 3 shows a slow yet consistent decrease in the inference time incurred by
decreasing the number of proposals. To maintain a high accuracy, we exploit

Fig. 2: Accuracy obtained with
different number of proposals
(COCO2017 validation set).

Fig. 3: Inference speed with different
number of proposals reoprted on Quadro
P-5000

space-time continuity of objects instances in subsequent frames, as we detail in
the following.
Tracks Proposals. In order to compensate for the reduced number of proposals,
and address occlusions and illumination changes, we provide a reverse feedback
from the tracker to the detector. We perform a Kalman prediction step on tracks
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from the frame t − 1 (with two opposing bounding box corners in the Kalman
state) and add these predicted bounding boxes as proposals for the frame at time
t. This provides an attention mechanism for the detector to focus on important
parts of the image where previously seen objects are expected to be found.

3.2 Embeddings Learning

Deep features associated with the entire image or a specific instance provide a
robust descriptor which withstands a certain viewpoint or illumination change
[20]. For this, we add an embedding learning branch to the classical Faster R-
CNN RoI Heads, extracting a representation for any object instance which we
will employ for data association and re-identification. Re-identification plays an
important role in object tracking systems [10] but it is typically addressed as a
separate task [1]. We, instead, integrate the embedding module within our joint
detection and tracking framework. This allows the network to robustly handle
occlusions and fuzzy associations relying on objects encoding learned specifically
to be viewpoint and illumination invariant.

The new embedding learning branch is placed on top of the RoI-pooled fea-
tures using two fully connected layers separated by a ReLU non-linearity and
batch normalization.

The resulting network is trained jointly for both detection and embedding
learning tasks and final loss is composed of three losses: the original RPN and
Fast R-CNN losses [19], plus the embedding loss for which we use the triplet loss
[21]. While RPN and detection losses are calculated as usual for all the ground
truth objects present in the images, in the case of the triplet loss we need to
select meaningful triplets to keep convergence under control [21].

An instance xai of a specific object i (an anchor), should be closer to the
positive example xpi (another instance of the same object) than to a negative
one xni (an instance of another object), by a margin α:∥∥E(xai ) − E(xpi )

∥∥2
2

+ α<
∥∥E(xai ) − E(xni )

∥∥2
2
. (1)

Then the triplet loss seeks to maximize the distance between the encoding of
the anchor example xai and the negative example xni , while, at the same time,
minimizing the distance between the anchor example and the positive example
xpi , as depicted in Figure 4.

The choice of the triplets is crucial as it is infeasible to consider all combi-
nations of the whole training set. We apply a batch-wise hard example mining.
First, we choose a batch of B = 8 images at random from a consecutive D = 16
frames, considering only batches where at least P = 8 objects are present at least
K = 4 times. This allows for a robust calculation of the triplet loss; the intuition
behind sampling the batch at random from neighborhood of frames is to mimic
missed detections and increase the robustness of the learned embeddings against
severe appearance changes. Then, for each anchor example, we pick the hardest
positive and negative examples within the batch B such that:

xp = arg max
xp
i∈B

∥∥E(xai ) − E(xpi )
∥∥2
2

and xn = arg min
xn
i ∈B

∥∥E(xai ) − E(xni )
∥∥2
2

(2)
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Fig. 4: The distance of the learned embeddings is smaller for instances of the
same object (anchor and positive) and larger for different objects (anchor and
negative)

Finally, the loss is formulated using triplets (xai , x
p
i , x

n
i ) for all the P objects:

Lembedding =
1

n

P∑
i=1

[
∥∥E(xai ) − E(xpi )

∥∥2
2
−
∥∥E(xai ) − E(xni )

∥∥2
2

+ α]+ (3)

3.3 Data Association and Tracking

During inference, RoI-pooling is performed as the original Faster R-CNN using
the proposals generated by RPN to extract instance-level features which are
fed to the two heads (the Fast R-CNN one and the proposed embedding head
depicted in Figure 1). Usual class and box predictions are calculated as in [8],
while the final boxes are used to pool features which are fed to the embedding
head. In order to assign identifiers to detected object, we formulate a data as-
sociation step which matches the detections at time t with the tracklets from
t− 1. We define, inspired by [23], a matching cost between detections and track-
lets as the linear combination of two distances: the Jaccard or IoU Distance to
capture position or spatial proximity between bounding boxes and the cosine
distance (defined as 1−cosine similarity) between the two objects embeddings
which captures appearance similarity:

Cost = α ∗ distposition + β ∗ distappearance (4)

(α and β are weighting factors, we both set to 0.5). Next, we rely on the Hun-
garian algorithm [12] to perform a minimal-cost matching between the detector
output and the tracks leading to matches and possibly mismatches. In order to
avoid forced one-to-one weak matches, we set a maximum cost for any match
which we discard if violated.

In Figure 5, we show some examples of re-identification events accomplished
utilizing objects embeddings. We report on the figure the embedding distance
between pair of objects across different frames showing the ability of the em-
bedding head to generate similar embeddings for the same object even across a
wide time frame and for challenging appearance shifts and occlusions.
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Fig. 5: Examples of occluded object re-identification using object embeddings
and cosine distance (best seen in color), # indicate frame number

4 Experimental Analysis

4.1 KITTI Benchmark

Object Detector Initial Training: We focus in our experiments on car objects
for both detection and tracking. We use Faster R-CNN official implementation
Detectron2 [30] with weights of FPN trained on COCOtrain2017. Next, we fine-
tune the model on KITTI’s object detection benchmark focusing only on the
car class. After discarding images common to the tracking benchmark, we are
left with 4k images we split to 3k images for training the object detector for 5
epochs and 1k images for validation. We keep the original number of proposals
during training, but reduce it during evaluation to 20 proposals on KITTI.
Joint Detection and Tracking: We attach the embedding head and we finetune
the pipeline using a multi-task loss (formed by the original detection loss [8],
and the embedding loss from Equation (3)) on a split of the tracking training
set (as defined in [27]) using a batch size of 8 images for 5k iterations.
Oracle Detections: We conduct a series of experiments to highlight the perfor-
mance of the tracking branch and the embedding head. To this end, we use
ground truth boxes as detections source (oracle detections) and we compare the
resulting tracking results using different combinations of matching costs. Table
1 shows that the association based on position provides superior performance
with respect to the learnt appearance. Combining the two, however, boosts this
performance further which indicates that the learned embeddings help simplify
the association even with accurate boxes.
Ablation Study: We use the validation set to tune hyper-parameters and study
the pipeline ablations measured by the tracking accuracy and inference time4 and

4 For Detection, an NVIDIA Quadro P5000 GPU has been used to obtain the time
measurements
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Table 1: Data association cost assessment - KITTI Benchmark on a held-out set
using Oracle detections (reporting Multiple Object Tracking Accuracy - MOTA;
MOT Precision - MOTP; False Positives - FP; False Negatives - FN; IDentity
switches - ID)

Matching method MOTA↑ MOTP↑ FP↓ FN↓ IDs↓
Position (IoU distance) 96.0 90.5 169 71 26

Appearance (embedding distance) 94.9 90.8 214 88 38

Both 97.2 90.8 151 31 2

report the results in Table 2. The table highlights the effect of each design choice
on both FPS (frames-per-second FPS)and IDs (identity switches), where using
specifically-learned features and temporal prior help to recover many identity
switches with the best trade-off achieved using the proposed method.

Table 2: KITTI Benchmark ablation study: the proposed method (first row);
without tracks proposals (second row); alternative data association: position-
based association (third row), position plus appearance based on raw Faster
R-CNN features (fourth row)

Ablations MOTA↑ MOTP↑ P %↑ R %↑ IDs↓ FPS↑
Proposed method 81.2 80.0 93.0 91.1 16 13.5

Proposals
No track proposals 80.0 79.9 92.8 90.5 35 13.4

Data association
Position only 79.4 80.0 91.9 91.9 46 13.9
Raw ROI-pooled feat. 80.1 80.3 93.3 89.6 12 10.5

Comparative Analysis: To provide a fair comparison with the state of the art, we
mainly focus on published methods which have access to comparable data and
annotation. Thus, we omit monocular 3D tracking methods and methods which
use LiDAR point clouds.

For evaluation, we use KITTI test set and submit results to the evaluation
server. Table 3 provides a general overview on how our proposed method com-
pares to other vision based methods published in the literature. For all methods
not incorporating detection time in their performance evaluation we added the
cost of Faster R-CNN. Results show that our proposed method is able to com-
pete with other well performing methods, while, at the same time, achieving near
real-time inference for both detection and tracking, highlighting the advantage
of addressing the tasks jointly. Our method, additionally, is fully online, and
requires no additional labels.
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Table 3: KITTI Tracking benchmark from KITTI evaluation server after sub-
mitting the results on the test set for the proposed method

Method MOTA%↑ MOTP%↑ MT%↑ IDs↓ 3D GT Online FPS↑
Our method 81.6 80.1 68.3 401 X 15

SMAT[9] 83.6 85.9 62.8 198 X 5
TuSimple [3] 86.3 84.1 71.1 292 5
QD [17] 84.9 84.9 69.5 313 X 5.8
MASS[11] 84.6 85.4 74.0 353 X 10
MOTBP[22] 82.7 85.5 72.6 934 X X 2.5

4.2 MOT Benchmark

Joint Detection and Tracking. We use MOT challenge [16] benchmarks which
are the de facto standard in object tracking literature. We focus on MOT17 and
MOT20 which offer different levels of difficulty and crowded scenes. We use the
base detector trained on COCOtrain2017 and fine-tune it on MOT17Det, for
MOT17 and fine-tune it again on MOT20 training set for MOT20. Similarly to
the above experiment, we attach the embedding head and fine-tune on tracking
ground-truth in both cases. In order to account for the crowded scenes, we set
the number of proposals to 50 in MOT17 and 100 for MOT20 experiments.
Comparative Analysis: in Table 4, to provide a fair comparison, we report our
results on the test set alongside results achieved by Tracktor++ and SORT
[2] after accounting for the detection time. Results of MOT17 benchmark sug-
gest that our proposed method is able to achieve a responsive performance for
both tasks jointly while maintaining a speed-accuracy trade-off. While results on
MOT20, albeit consistent in terms of comparative analysis, demonstrate a clear
degradation in the inference time for all methods, caused by the high resolution
video frames and the large number of objects (31 in MOT17 vs 170 in MOT20).
Tackling such dense scenes is the aim of our future work efforts.

Table 4: MOT17 and MOT20 Tracking benchmarks obtained from MOT CHAL-
LENGE server after submitting the results on the test set for the proposed
method

Method MOTA↑ IDF1↑ MOTP↑ P %↑ R %↑ IDs ↓ FPS ↑
MOT17

Ours 49.4 45.1 77 88.3 58.1 5589 5.37

T.++[1] 53.3 52.3 78 96.3 56 2072 1.25
SORT[2] 43.1 39.8 77.8 90.7 49 4852 7.1

MOT20

Ours 44.7 39.1 76.2 92.5 49.5 4171 2.3

T++[1] 50.8 52.1 76.8 84.7 62.7 2751 0.19
SORT[2] 42.7 45.1 78.5 90.2 48.8 4470 6.6
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4.3 Inference Time Analysis

In order to better understand the computational cost breakdown across differ-
ent datasets, we provide a finer-level analysis of the inference time of the joint
framework to highlight detection time and tracking time and other parameters
which have an influence on the overall time (see Table 5). While detection time
d time relies solely on the image dimensions and the number of proposals used,
tracking time t time is also affected by the average number of objects. Tracking
time is dominated by building the distance matrix, and calculating the cosine
distance between high-dimensional vectors (the embeddings), while solving the
linear assignment using the Hungarian algorithm adds only a marginal cost.

Table 5: Average inference time breakdown and other average indicators mea-
sured on the test sets of each of the experimented dataset

Dataset Resolution
(average)

# tracks # proposals d time (ms) t time (ms) FPS

KITTI 1242× 375 7.4 27.4 60.2 5.2 15
MOT17 1737× 994 22.2 72.2 94 50 5.3
MOT20 1394× 907 64.9 164 84 315 2.3

5 Conclusion and Future Work

In this work, we have proposed a novel and efficient joint object detection and
tracking algorithm and discussed the importance of multi-task learning in solving
similar visual tasks. Such joint processing is being increasingly adopted in the
recent literature with additional inspirations coming from learning using priv-
ileged information framework [32]. New large scale datasets[24] provide multi-
task annotations to fuel these methods with unprecedented amount of data in
the autonomous driving domain.

Our obtained results demonstrate the benefit of using a simple method with
a modular internal structure such as Faster R-CNN in striking a reasonable
speed-accuracy trade off, and thus, achieving efficient inference (consistently
several-fold faster than other methods) while in the same time delivering com-
petitive accuracy. Future work will tackle specifically real-world scenarios, in
the autonomous navigation field. This will allow us to fully appreciate the com-
putational benefits of our approach, compared with competing methods. Addi-
tionally, wider object categories will introduce additional clutter in the scene, for
which efficiency aspects need to be pushed further to account for such real-world
scenarios.
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