Skip to main content

Is Multitask Learning Always Better?

  • Conference paper
  • First Online:
Document Analysis Systems (DAS 2022)

Abstract

Multitask learning has been a common technique for improving representations learned by artificial neural networks for decades. However, the actual effects and trade-offs are not much explored, especially in the context of document analysis. We demonstrate a simple and realistic scenario on real-world datasets that produces noticeably inferior results in a multitask learning setting than in a single-task setting. We hypothesize that slight data-manifold and task semantic shifts are sufficient to lead to adversarial competition of tasks inside networks and demonstrate this experimentally in two different multitask learning formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We consider the tasks 1a and 1b as independent, as they feature different datasets and labels.

References

  1. Bronstein, M.M., Bruna, J., Cohen, T., Velivckovi’c, P.: Geometric deep learning: grids, groups, graphs, geodesics, and gauges. ArXiv abs/2104.13478 (2021)

    Google Scholar 

  2. Brown, T.B., et al.: Language models are few-shot learners. ArXiv abs/2005.14165 (2020)

    Google Scholar 

  3. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  4. Cloppet, F., Eglin, V., Stutzmann, D., Vincent, N., et al.: ICFHR 2016 competition on the classification of medieval handwritings in latin script. In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 590–595. IEEE (2016)

    Google Scholar 

  5. Cloppet, F., Eglin, V., Helias-Baron, M., Kieu, C., Vincent, N., Stutzmann, D.: ICDAR 2017 competition on the classification of medieval handwritings in latin script. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 1371–1376 (2017)

    Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. ArXiv abs/2010.11929 (2021)

    Google Scholar 

  7. Farahani, A., Voghoei, S., Rasheed, K.M., Arabnia, H.R.: A brief review of domain adaptation. ArXiv abs/2010.03978 (2021)

    Google Scholar 

  8. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. (2016)

    Google Scholar 

  9. Greenland, S., Pearl, J., Robins, J.M.: Confounding and collapsibility in causal inference. Stat. Sci. 14(1), 29–46 (1999)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. ArXiv abs/1502.03167 (2015)

    Google Scholar 

  12. Jaegle, A., et al.: Perceiver IO: a general architecture for structured inputs & outputs. ArXiv abs/2107.14795 (2021)

    Google Scholar 

  13. Jaegle, A., Gimeno, F., Brock, A., Zisserman, A., Vinyals, O., Carreira, J.: Perceiver: general perception with iterative attention. In: ICML (2021)

    Google Scholar 

  14. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  15. Lin, B., Ye, F., Zhang, Y.: A closer look at loss weighting in multi-task learning. ArXiv abs/2111.10603 (2021)

    Google Scholar 

  16. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1871–1880 (2019)

    Google Scholar 

  17. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  18. Ponti, A.: Multi-task learning on networks. ArXiv abs/2112.04891 (2021)

    Google Scholar 

  19. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  20. Schlag, I., Irie, K., Schmidhuber, J.: Linear transformers are secretly fast weight programmers. In: ICML (2021)

    Google Scholar 

  21. Schmidhuber, J.: Learning to control fast-weight memories: an alternative to dynamic recurrent networks. Neural Comput. 4(1), 131–139 (1992)

    Article  Google Scholar 

  22. Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. In: NeurIPS (2018)

    Google Scholar 

  23. Seuret, M., Limbach, S., Weichselbaumer, N., Maier, A., Christlein, V.: Dataset of pages from early printed books with multiple font groups, August 2019

    Google Scholar 

  24. Seuret, M., et al.: ICDAR 2021 competition on historical document classification. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 618–634. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86337-1_41

    Chapter  Google Scholar 

  25. Stein, C.: Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 197–206 (1956)

    Google Scholar 

  26. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  27. Vaswani, A., et al.: Attention is all you need. ArXiv abs/1706.03762 (2017)

    Google Scholar 

  28. Yang, Z., Dai, Z., Yang, Y., Carbonell, J.G., Salakhutdinov, R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: NeurIPS (2019)

    Google Scholar 

  29. Zhang, Y., Yang, Q.: A survey on multi-task learning. ArXiv abs/1707.08114 (2017)

    Google Scholar 

  30. Zhang, Z., Huang, X., Huang, Q., Zhang, X., Li, Y.: Joint learning of neural networks via iterative reweighted least squares. ArXiv abs/1905.06526 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mattick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mattick, A., Mayr, M., Maier, A., Christlein, V. (2022). Is Multitask Learning Always Better?. In: Uchida, S., Barney, E., Eglin, V. (eds) Document Analysis Systems. DAS 2022. Lecture Notes in Computer Science, vol 13237. Springer, Cham. https://doi.org/10.1007/978-3-031-06555-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06555-2_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06554-5

  • Online ISBN: 978-3-031-06555-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics