Quantum Key Distribution Networks

Miralem Mehic • Stefan Rass • Peppino Fazio • Miroslav Voznak

Quantum Key Distribution Networks

A Quality of Service Perspective

Miralem Mehic Department of Telecommunications, Faculty of Electrical Engineering University of Sarajevo Sarajevo, Bosnia and Herzegovina

Peppino Fazio Department of Telecommunications VSB-Technical University of Ostrava Ostrava, Czech Republic Stefan Rass Secure Systems Group, LIT Secure and Correct Systems Lab Johannes Kepler University Linz, Austria

Miroslav Voznak Department of Telecommunications VSB-Technical University of Ostrava Ostrava, Czech Republic

ISBN 978-3-031-06607-8 ISBN 978-3-031-06608-5 (eBook) https://doi.org/10.1007/978-3-031-06608-5

© Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Miralem: to Lejla and my family Stefan: dedicated to my loving family Peppino: to my lovely family, mom, dad, and Francesco

Miroslav: to my beloved family

Acknowledgments

The research leading to the published results was supported by the Ministry of the Interior of the Czech Republic under grant ID VJ01010008 within the project Network Cybersecurity in Post-Quantum Era.

We would like to thank Oliver Maurhart, Marcin Niemiec, and Emir Dervisevic for helpful discussions and comments on the manuscript.

Contents

1	Fun	damentals of Quantum Key Distribution	1
	1.1	Information-Theoretic Secrecy	4
	1.2	QKD Protocols	6
		1.2.1 BB84 Protocol	7
		1.2.2 B92 Protocol	20
		1.2.3 CV-QKD	21
	1.3	Key Length	23
	1.4	Summary	24
	Refe	erences	24
2	Qua	ality of Service Requirements	29
	2.1	Quality of Service	30
	2.2	Quality of Service Constraints	30
	2.3		33
	2.4	QKD Networking	35
			37
		2.4.2 QKD Virtual Private Networking	42
		2.4.3 IPsec	45
		2.4.4 IPsec and QKD	53
		2.4.5 Passive and Active Eavesdropping	61
		2.4.6 QoS Constraints in QKD Network	62
	2.5	Similarities Between QKD and Ad Hoc Networking	63
	2.6	Summary	65
	Refe	erences	65
3	Qua	ality of Service Architectures of Quantum Key Distribution	
	Netv	works	73
	3.1	Integrated Services	74
		3.1.1 RSVP Protocol	78
		3.1.2 ETSI 004: QKD Application Interface	84
	3.2		89
		3.2.1 DiffServ Components	90

x Contents

		3.2.2 The Per Hop Behavior (PHB) Classes	91
		3.2.3 Per-Domain Behavior (PDB) Metrics	92
		3.2.4 ETSI 014: Protocol and Data Format of REST-Based	
		Key Delivery API	93
	3.3	MultiProtocol Label Switching	95
		3.3.1 MPLS Operation and Architecture Basics	96
		3.3.2 MPLS and QKD	100
	3.4	Flexible Quality of Service Model	102
	3.5	Summary	104
		erences	105
4			
4		ality of Service Media Access Control of Quantum Key	100
		tribution Networks	109
	4.1	Post-Processing Applications.	110
		4.1.1 Improving Error Reconciliation	115
	4.0	· · · · · · · · · · · · · · · · · · ·	119
	4.2		123
	4.3		126
	4.4	•	131
	Refe	erences	131
5	Qua	ality of Service Signaling Protocols in Quantum Key	
		tribution Networks	135
	5.1	In-Band signaling and QKD	137
		5.1.1 QSIP: A Quantum Key Distribution Signaling Protocol	137
	5.2	Out-of-Band Signaling and QKD	139
		5.2.1 Q3P: Quantum Point-to-Point Protocol	140
		5.2.2 RSVP	144
	5.3	Summary	147
		erences	147
_			
6		ality of Service Routing in Quantum Key Distribution Networks	151
	6.1	Routing in General	152
			152
		6.1.2 Routing Architecture	153
	6.2	Routing Requirements in QKD Networks	154
	6.3	Addressing in QKD Networks	158
	6.4	Routing Protocols	159
		6.4.1 Distance Vector Routing Protocols	160
		6.4.2 Link State Routing Protocols	164
		6.4.3 QKD Routing Based on Link-States	167
	6.5	Greedy Perimeter Stateless Routing for QKD Networks	169
		6.5.1 QKD Link Metric	172
		6.5.2 Greedy Forwarding	176
		6.5.3 Recovery-Mode Forwarding	178

Contents xi

	6.6 Refe	Summary	180 180
7	Fro	m Point-to-Point to End-to-End Security in Quantum Key	
	Dist	ribution Networks	183
	7.1	Single-Path Transmission: Trusted Relay	183
	7.2	Relaxing the Trust Assumption: Multipath Transmission	186
		7.2.1 Quantifying the Probability of Eavesdropping	187
		7.2.2 Quantifying the Probability for a DoS	199
		7.2.3 Quantifying Multiple Security Goals	200
	7.3	Weaponizing the Detection of Eavesdropping	204
	7.4	Summary	206
	Refe	erences	206
8	Mod	lern Trends in Quantum Key Distribution Networks	209
	8.1	QKD in 5G Networks	209
	8.2	Measurement-Device Independent QKD	215
	8.3	Quantum Repeater	219
	8.4	Summary	219
	Refe	prences	220

Acronyms

5G The fifth generation of cellular networks

AAU Active Antenna Unit

AES Advanced Encryption Standard
AIT Austrian Institute of Technology
API Application Programmers Interface
ASMT Arbitrarily Secure Message Transmission

ATM Asynchronous Transfer Mode BBN Bolt Beranek and Newman

BBU Base Band Unit BF Bellman-Ford

BGP Border Gateway Protocol CAC Call Admission Control

CC Common Criteria

CIA Confidentiality-Integrity-Availability

CLI Command Line Interface

CO Central Office

CV-QKD Continuous-Variable QKD

CVSS Common Vulnerability Scoring System

DDoS Distributed Denial-of-Service

DH Diffie-Hellman key agreement primitive
DHE Ephemeral Diffie-Hellman (DHE)

DiffServ Differentiated Services

DIQKD Device-Independent Quantum Key Distribution

DoS Denial-of-Service

DSCP Differentiated Services Code Point
DSDV Destination-Sequenced Distance-Vector

DU Digital Unit
DV Distance Vector

DV-QKD Discrete Variables QKD

E2E End-to-End

ECN Explicit Congestion Notification

xiv Acronyms

eCPRI Enhanced Common Public Radio Interface

ERO Explicit Route Object

ESP Encapsulating Security Payload FEC Forwarding Equivalence Class

Fi-Wi Fiber/Wireless

FQKD Flexible QoS model for QKD Networks

FR Frame Relay

GMPLS Generalized Multi-Protocol Label Switching

GPL GNU Public License

GPSR Greedy Perimeter Stateless Routing in Wireless Networks

GPSRQ Greedy Perimeter Stateless Routing Protocol for QKD Networks

GUI Graphical User Interface

HARQ Hybrid Automatic Retransmit reQuest HMAC Hash Message Authentication Code

HOM Hong-Ou-Mandel

IETF Internet Engineering Task Force

IKE Internet Key Exchange IntServ Integrated Services IoT Internet of Things

IPComp IP payload compression protocol

IPsec Internet Protocol security

ISAKMP Internet Security Association and Key Management Protocol

IS-IS Intermediate System to Intermediate System

ISP Internet Service Provider
ITS Information-Thoeretic Security

IV Initialization Vector KMS Key Manager System KSID Key Stream ID

LDPC Low Density Parity Check LER Label Edge Routers

LKMS Local Key Manager System

LP Linear Program
LS Link-State

LSA Link-State Advertisement

LSP Label Switch Path LSU Link-State Update

MAC Message Authentication Code
MACsec Media Access Control security
MANET Mobile Ad Hoc Network

MANO Management and Orchestration

MDI-QKD Measurement Device Independent Quantum Key Distribution

MGSS Multi-Goal Security Strategy
MPLS Multi-Protocol Label Switching

MPT Multipath Transmission
MSS Maximum Segment Size

Acronyms xv

MTU Maximum Transmission Unit
NAT Network Address Translation
NFV Network Function Virtualization

NIST National Institute of Standards and Technology

NR New Radio

NVD National Vulnerability Database OLA Operational Level Agreement

OS Operating System

OSPF Open Shortest Path First

OTP One-Time Pad
P2MP Point-to-MultiPoint
P2P Point-to-Point

PCE Path Computation Element

PCEP Path Computation Element Protocol

PER Provider Edge Router
PFS Perfect Forward Secrecy
PITM Person-in-the-Middle
PKI Public Key Infrastructure
PON Passive Optical Network
PPP Point-to-Point Protocol

PSMT Perfectly Secure Message Transmission

Q3P Quantum Point-to-Point Protocol

QBER Quantum Bit Error Rate
QKD Quantum Key Distribution
QKDNetSim QKD Network Simulator

QKRA Quantum Key Reservation Approach

QoS Quality of Service

QPFS Quantum Perfect Forward Secrecy
QRNG Quantum Random Number Generator

QSIP QKD Signaling Protocol

QUANTUM5 Quantum Cybersecurity in 5G Networks

RAN Radio Access Network
RAT Radio Access Technology
REST REpresentational State Transfer
RIP Routing Information Protocol

RRH Remote Radio Head RRU Remote Radio Unit

RSVP Resource Reservation Protocol

RTT Round-Trip Time RU Radio Unit

SAD Security Association Database SAE Secure Application Entity SDN Software Defined Networking

SECOQC Secure Communication based on Quantum Cryptography

SeQKEIP Secure Quantum Key Exchange Internet Protocol

xvi Acronyms

SIP Session Initiation Protocol

SKEYID Session Key ID

SLA Service Level Agreement

SPAD Single-Photon Avalanche Diodes

SPD Security Policy Database
SPD Single-Photon Detector
SPI Security Parameter Index
TCP Transmission Control Protocol
TLS Transport Layer Security

TTL Time to Live

TVA Topological Vulnerability Analysis

UDP User Datagram Protocol

UE User Equipment

URI Uniform Resource Identifier VANET Vehicular Ad Hoc Network

vCPE Virtual Customer Premise Equipment

vEPC Virtual Evolved Packet Core

VoIP Voice over IP

VPN Virtual Private Network

vRAN Virtual Radio Access Network VSB Technical University of Ostrava WDM Wavelength Division Multiplexing

List of Symbols

```
\{0, 1\}^n
           Set of bitstrings of length n
           Set of bitstrings of any length (= \bigcup_{n \in \mathbb{N}} \{0, 1\}^n)
\{0, 1\}^*
|m|
           Length of bitstring m \in \{0, 1\}^*
\oplus
           Bitwise XOR between two strings
           Path, represented as ordered subset \pi \subseteq E of edges in a graph G = (V, E)
\pi
V(\pi)
           Nodes along a path \pi
|\pi|
           Length of a path \pi as number of edges (hops)
\mathscr{A}
           Adversary structure; a family (set) of sets
\mathscr{P}(X)
           Power-set of the set X
\mathbb{Z}_p
           Finite field of prime order p, with modulo arithmetic
```