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Abstract

Quantum computers can solve specific complex tasks for which no reasonable-time classical algorithm is known. Quantum

computers do however also offer inherent security of data, as measurements destroy quantum states. Using shared entangled

states, multiple parties can collaborate and securely compute quantum algorithms. In this paper we propose an approach for

distributed quantum machine learning, which allows multiple parties to securely perform computations, without having to

reveal their data. We will consider a distributed adder and a distributed distance-based classifier.
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I. Introduction

Quantum computers are in rapid development and the first classically intractable problems are already solved using

quantum computers [1]. Even though these problems are artificial, specifically designed to show the power of quantum

computers, it is expected that in the next few years, similar results will be achieved for practical problems.

Apart from quantum computers, also in quantum internet there are rapid developments and the first small-scale networks

are already realized [2]. A quantum network allows for many new applications, including new forms of encryption [3] and

enhanced clock synchronization [4, 5].

Quantum networks also allow for another application: distributed quantum computing, where different quantum

computers are linked via a quantum network. We typically identify two types of distributed quantum computing. In

the first, a single algorithm which is too large to be run on a quantum device, is subdivided in smaller parts, each of which

can be run on a quantum device. In the second, multiple parties have access to local quantum computers which are linked

via a quantum network. �e parties can collaboratively perform quantum computations on their inputs without having to

explicitly share it.

�e first type is a resource-problem. As hardware develops, larger problems can be run and the need to distribute the

algorithms vanishes. �e second type is the more interesting one as it opens up the way to completely new applications.

In this work we will therefore focus on the second type of distributed quantum computing.

Distributed quantum computing naturally extends classical multi-party computation, which allows multiple parties to

collaborate securely [6]. We consider two applications of distributed quantum computing. �e first being distributed

arithmetic, the second being distributed distance-based classification. We show how both approaches work in a distributed

setting and argue why information remains secure during the protocol execution. For both applications, multiple parties

provide input and together perform the algorithm in such a way that the output is only revealed to one specific party

without leaking information on individual parties input.

In the next section, we give a brief introduction to quantum computing and some basic concepts of distributed quantum

computing. In Section III and Section IV we discuss a distributed quantum adder and a distributed distance-based classifier,

respectively. In Section V we provide a resource count of the distributed approaches. We conclude with some conclusions

and an outlook.

II. Methods

A. Brief Introduction to Quantum Computing
Classical computers and quantum computers work similarly: Both operate on elementary units of computation and by

performing the correct operations in the right order, problems can be solved. Classical computers operate on bits, zeros

and ones, using classical gates, such as AND, OR and NOT gates. Quantum computers operate on qubits, superpositions

of zeros and ones, using quantum operations, such as single qubit rotations and controlled-NOT (CNOT) gates. �e CNOT

gate is a two-qubit gate that flips the state of the second qubit, if the first qubit is in the one state.

A key difference between classical and quantum computers is that qubits do not have to be in one definite computational

basis state |0〉 or |1〉. A qubit |ψ〉 can be in a superposition, a complex linear combination, of these basis states, which we
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|φ〉 • H •

•
GHZ2

Z |φ〉

Figure 1. A quantum circuit that teleports a state |φ〉 to a third qubit. Double lines indicate classical information.

|φ〉 • Z

•
GHZ2

• H •

|ψ〉
Figure 2. A quantum circuit for the non-local CNOT-gate between |φ〉 and |ψ〉. �e top and bottom qubit might belong to different quantum devices

that share a GHZ-state. Double lines represent classical information.

can write as |ψ〉 = α |0〉+ β |1〉 for α, β ∈ C with |α|2 + |β|2 = 1. �e computational basis states for multi-qubit states

are given by |x〉 = |xn−1〉 ⊗ . . .⊗ |x0〉 for xi ∈ {0, 1}. Upon observing a quantum state, only one of the definite states is

found. �e probability to observe a given state equals the sum of the squared of the corresponding amplitudes.

Another aspect in which quantum computers differ from classical ones is entanglement. Two or more quantum states

can be correlated beyond what is possible classically. One of the most well-known entangled states is the GHZ-state given

by

1√
2
(|00〉+ |11〉), (II.1)

which is obtained by bringing the first qubit in a uniform superposition and then applying a CNOT gate. Upon measuring

one qubit, the state of the other is instantaneously known, even if the entangled qubits are physically far apart. �e GHZ-

state naturally extends to more than two qubits and it has many applications. We will make use of GHZ-states to distribute

gate operations to different quantum computers.

We refer to [7] for a more elaborate introduction to quantum computing.

B. Distributed Quantum Computing
To distributed quantum operations over multiple devices, it might seem natural to physically transport the qubits.

However, as quantum states are fragile, this is likely to introduce errors. Instead, we propose to use shared entangled

states. Two notable examples are quantum teleportation [8] and non-local CNOT gates [9, 10]. �e quantum circuits for

both approaches are similar and both use shared entangled states, for simplicity often assumed to be GHZ-states.

�e shared entangled states can also introduce noise in the computations. However, as they do not hold any information

themselves, we can use techniques such as entanglement purification to minimize the effect of imperfect shared

entanglement [11, 12, 13]. �ese protocols focus the entanglement of multiple partially entangled states in fewer entangled

states of higher quality using only local operations. We can generate these entangled state of high quality before we start

a distributed algorithm, and hence the effect of noise on the data is limited.

�e quantum circuits for quantum teleportation and the non-local CNOT gate are shown in Fig. 1 and Fig. 2, respectively.

Both circuits extend naturally to more parties. �e two circuits show similarities, however their effect is different. �e first

circuit teleports a quantum state from one qubit to another. �ese qubits can be hosted on different devices. �e first

qubit is measured and hence destroyed. Distributed computations can be performed by teleporting the quantum state from

one device to another and then perform all operations locally on the second device. �e second circuit applies a two-qubit

CNOT operation between one qubit and another that can, again, be hosted on another device. Both qubits remain coherent

and further operatoins can be applied to them.

It is known that single qubit rotations and a multi-qubit gate, such as the CNOT gate are universal for quantum

computing [14]. �is means that any quantum operation can be broken down in a sequence of single qubit gates and

two-qubit gates. We can hence distribute quantum algorithms once we can distribute the two-qubit operations. In this

work, we used non-local CNOT gates to implement distributed algorithms. �is way, the qubit remains intact on the first

device and we do not require a second step of teleportation to get the qubit back to the first device again.

Note that a non-local CNOT gate does not create an independent copy of a state. Instead, it creates an entangled state,

i.e., given a state |φ〉 = α |0〉+ β |1〉 the non-local CNOT gate implements the map

|φ〉 |0〉 7→ α |00〉+ β |11〉 . (II.2)
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A property that we will use later is that phases applied to any qubit of a GHZ-state have a global effect: A phase applied

to the first qubit of a GHZ-state results in the same state as when that phase was applied to any of the other qubits of the

GHZ-state. �is is independent of the physical location of the qubits: �e qubits might even be hosted on different devices.

We will use this property together with the non-local CNOT-gate to distribute operations among various parties. in the

next two sections, we will show how to do this for two quantum machine learning applications.

III. Distributed Adder

We first consider how to perform arithmetics with multiple parties. �is simple yet relevant topic provides a first insight

in the value of distributed quantum computing. It is also a relevant topic, as arithmetics form an important pillar in many

algorithms, for instance to compute the mean of a set of number [15].

In this section we will solely focus on adding numbers. More complex arithmetics such as multiplication follow naturally

by repeated addition. Given two basis states |a〉 and |b〉, a quantum adder implements |a〉 |b〉 7→ |a〉 |a+ b〉. �e addition

is modulo 2N by definition, with N the number of qubits per register. By linearity of quantum computing, a quantum

adder also works on arbitrary superpositions.

We can implement a quantum adder in multiple ways. Most approaches do however require gates that are not directly

supported by underlying hardware. Draper [16] presented an approach that only uses single qubit gates and controlled-phase

gates. Later this work was extended to multiplication and modular arithmetic [16, 17, 18]. �is applies a quantum Fourier

transform on a quantum state |b〉 to obtain |φ(b)〉. On this transformed state, we can now apply controlled phase-gates

with predetermined phases, targets and controls, to add integers. An inverse quantum Fourier transform then gives the

desired quantum state.

�e quantum circuit for addition is shown in Fig. 3. �e blocks represent RZ-gates, with the argument shown inside
the block. �e matrix representation of these gates is

RZ(θ) =

(
1 0
0 e2iθ

)
. (III.1)

As we use controlled operations, they are only applied if the controlling qubit is in the |1〉 state. �e state |φ(b)j〉 represents
the j-th qubit of the quantum Fourier transformed state |φ(b)〉, given by |φ(b)j〉 = 1√

2

(
|0〉+ exp(2πi · b/2j+1) |1〉

)
. Note

that for the j-th qubit of the quantum Fourier transformed state, only the first j bits of a and b are relevant. All other
bits will contribute an integer value to the fraction b/2j and hence will have no physical effect. After the phase-gates are
applied, the state of the j-th qubit is given by

1√
2

(
|0〉+ eπi·(b+a)/2

j

|1〉
)
= |φ(b+ a)j〉 . (III.2)

An inverse quantum Fourier transform indeed gives the j-th bit of the sum b+ a.

|a0〉 • • • |a0〉
|a1〉 • • |a1〉
|a2〉 • |a2〉

|φ(b)0〉 π/2 |φ(b+ a)0〉

|φ(b)1〉 π/4 π/2 |φ(b+ a)1〉

|φ(b)2〉 π/8 π/4 π/2 |φ(b+ a)2〉

Figure 3. �e addition part of a quantum Fourier transform-based adder. |φ(b)j〉 represents the j-th bit of the Fourier transform of b. �e gates represent

controlled-RZ gates, where the argument shown is the argument of the RZ -gate. A quantum Fourier transform is needed to retrieve the quantum state

|a〉 |b+ a〉.

Even though the shown circuit only concerns computational basis states, it works equally well for superpositions as input.

For our application, computational basis states are sufficient and this also allows us to apply the phase-gates controlled by

classical bits instead of by qubits. �is method extends naturally to adding multiple numbers in parallel by using larger

GHZ-states and distributing the quantum state to more parties.

Suppose we have K parties, each with N qubits. Additionally, we have one server party that prepares and distributes

the initial quantum state using GHZ-states and non-local CNOT gates. After distribution, each party applies the phases to

their part of the shared entangled state. �e server party then again uses GHZ-states and non-local CNOT gates to assure

that an inverse quantum Fourier transform indeed gives the correct sum. �e distributing operation of the server party

thus implements the following map for each of the N bits:

|φ(b)j〉 |0〉⊗K 7→
1√
2

(
|0〉⊗K+1

+ eπi·b/2
j

|1〉⊗K+1
)
. (III.3)
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After each party has locally applied the phase gates corresponding to their input, we are left with the quantum state

1√
2

(
|0〉⊗K+1

+ eπi·(b+
∑

k x
k)/2j |1〉⊗K+1

)
, (III.4)

where xk is the input of party k. �e server party uses GHZ-states and non-local CNOT gates to obtain

1√
2

(
|0〉+ eπi·(b+

∑
k x

k)/2j |1〉
)
|0〉⊗K . (III.5)

An inverse quantum Fourier transform now indeed gives the sum b+
∑
k x

k
, as desired.

If we would omit this operation, the remaining entanglement would stop states from cancelling out under the inverse

quantum Fourier transform and we would be left with the wrong final state.

�e server can follow two approaches to distribute the operations and allow multiple parties to add their input. In the

first approach, shown in Fig. 4, non-local CNOT gates with more targets are used. In the second approach, shown in Fig. 5,

more non-local CNOT gates with only one target are used.

s : |0〉
QFT

• •
QFT−1s : |0〉 • •

s : |0〉 • •
p1 : |0〉

Add x1
|0〉

p1 : |0〉 |0〉
p1 : |0〉 |0〉
p2 : |0〉

Add x2
|0〉

p2 : |0〉 |0〉
p2 : |0〉 |0〉

Figure 4. Addition of integers by two parties, using one server party. We use CNOT gates with multiple targets. �e blocks Add xk stand for the

phase-gates needed to add integer xk, similar to Fig. 3. �e final quantum state in the first register is

∣∣x1 + x2
〉
.

s : |0〉
QFT

• • • •
QFT−1s : |0〉 • • • •

s : |0〉 • • • •
p1 : |0〉

Add x1
|0〉

p1 : |0〉 |0〉
p1 : |0〉 |0〉
p2 : |0〉

Add x2
|0〉

p2 : |0〉 |0〉
p2 : |0〉 |0〉

Figure 5. Addition of integers by two parties, using one server party. We use CNOT gates with a single target and as such require the parties to add

their input sequentially. �e blocks Add xk stand for the phase-gates needed to add integer xk, similar to Fig. 3. �e final quantum state in the first

register is

∣∣x1 + x2
〉
.

�e difference between both approaches becomes clear when we replace the CNOT-gates by non-local variants. In the

first approach shown in Fig. 4, we require larger GHZ-states, but less in total. In the second approach shown in Fig. 5, we

require smaller GHZ-states, which are easier to create, however, we require more of them.

Note that in the shown circuits we used a single designated server party to create and distribute the initial state. It is

also this server party that learns the sum of the inputs, whereas the other players will measure only the zero-state. We can

allow the server party to also provide input for the summation, which, in some use-cases, might be practical. �e analysis

remains the same.

None of the parties can learn the input of other parties, including the server party. �is follows as the information is

encoded in the phases of the quantum states. Only after we have the state of (III.5) and apply an inverse quantum Fourier

transformation on it, can we access the sum of the inputs. Otherwise, measurements will return no useful information.

Finally, note that only the server can have a non-zero measurement outcome if the procedure is performed correctly. �e

server party learns only the sum of all inputs, but learns no information on the input of individual parties.
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n0 : |0〉 H • • X • • •

n1 : |0〉 H • X • • X •

a : |0〉 H • X • • • •

m0 : |0〉
x̃ x0 x1 x2 x3

m1 : |0〉
y : |0〉

Figure 6. Initial state preparation for the distance-based classifier for four data points, each having four features. Each (multi-)controlled block represents

amplitude encoding of a normalised data point x.

RY (α1) •

RY (α2,0) RY (α2,1)

Figure 7. Generic circuit for amplitude encoding of a normalised data point x with four features. Using trigonometry the angles α can be calculated [22].

IV. Distributed Distance-Based Classifier

�e second distributed machine learning approach is a distributed classifier. We consider a distance-based classifier [19].

Given N normalised data points xi, each having M features, and labels yi ∈ {−1, 1}, this classifier computes a label ỹ for
a new data point x̃ by evaluating the function

ỹ = sgn

(∑
i

yi

[
1− 1

4N
|x̃− xi|2

])
. (IV.1)

We can evaluate this function and determine the new label by manipulating the initial quantum state

|ψ〉 = 1√
2N

N−1∑
n=0

|n〉
(
|0〉 |ψx̃〉+ |1〉 |ψxn

〉
)
|yn〉 . (IV.2)

Here |ψx〉 is the amplitude encoding of a normalised data point x: |ψx〉 =
∑
i xi |i〉. �is state requires n = log2N qubits

for the data point counter and m = log2M qubits for the representation of a data point. In total n + m + 2 qubits

are required. To evaluate the kernel function, we first apply a Hadamard gate on the second register and then measure

the second and fourth register. If the measurement of the second register equals zero, the probability distribution of the

measurement of the last register corresponds precisely to the sum of the magnitude of the positive and negative terms

of (IV.1).

�e power of this algorithm is especially clear if the initial quantum state is given as starting point. Otherwise we have

to explicitly prepare it. Multiple extensions of this distance-based classifier have since been proposed [20, 21] extending

the number of data points, the number of features and removing the need for a label qubit. An example how the state can

be prepared is shown in Fig. 6 for the case of four data points each having four features.

An important aspect of creating this initial state is the amplitude encoding of data points. Amplitude encoding of arbitrary

data points can be obtained using only RY - and controlled RY -gates, as was shown by [22]. An example of such a circuit
for a data point with four features is shown in Fig. 7.

We now consider the case where multiple parties wish to evaluate this distance-based classifier using their input data.

�e input data from these parties can either be horizontally or vertically separated. Horizontally separated data means

that each party has some of the different data points, while for those data points having access to all features. Vertically

separated data means that parties have information for the same data points but each party now has access to different

features of that data point. We only consider the case of horizontally separated data, however, extensions to vertically

separated data are possible.

Consider the following setting: One computing server party wishes to classify a data point x̃ based on input data that is

provided by K different parties. We assume that each of these K parties provides N data points each having M features.

�eir goal remains to create the state of (IV.2) on the device of the server party, where the only difference is that now the data

encoding is performed in a distributed manner. From the amplitude encoding circuit we can see that this can be done if it

is possible to perform controlled-RY operations in a distributed manner. To do so, we use that rotations around the Y -axis
can be replaced by rotations around the Z-axis given a suitable basis transformation: RY (θ) = RX(− 1

2π)RZ(θ)RX( 12π).
A circuit for controlled RY -operation using RZ gates is shown in Fig. 8.

Suppose that the first two qubits belong to the device of the server party and the third qubit belongs to a device of

one of the K parties. We can distribute a controlled RY -operation using the shown circuit and by then replacing the
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• • •
Rx(

π
2 ) Rz(α) Rx(−π2 ) ≡ Rx(

π
2 ) • • Rx(−π2 )

|0〉 |0〉 Rz(α)

Figure 8. Circuit identity for a controlled-RY rotation.

Figure 9. Initial state preparation for distributed distance-based classifier. Each party provides two data points each with two features. �e first five

qubits are hosted on the server, qubit six and seven are controlled by party one and party two respectively.

controlled-gates by distributed controlled-gates, as introduced in Subsection II-B. It is then straightforward to use this

circuit as a building block to implement amplitude encoding in a distributed manner. Note that each party requires only

their share of a GHZ-state and one additional qubit, independent of the number of features.

An example of the final circuit used to obtain the initial state from two data providing parties is shown in Fig. 9. In

this figure we have not explicitly drawn the needed GHZ qubits needed to perform the distributed data encoding. Only the

qubits that are numbered in the multi-qubit gates are involved in the encoding operation.

V. Results

To show the potential of the distributed quantum adder from Section III and the distributed distance-based classifier

from Section IV, we implemented them and compared the results to those of a simulation with all computations performed

on a single device. For the final result is should not matter whether computations are performed distributed or whether

they are run on a single larger quantum computer. We simulated both distributed machine learning algorithms using

Qiskit [23] and found that the final quantum states and the measurements thereof were identical for both the distributed

versions and the local versions.

We considered multiple ways to distribute operations, for instance using bigger GHZ-states and applying a non-local

CNOT gate with multiple targets at once, or using multiple 2-party GHZ-states and apply multiple smaller non-local CNOT

gates sequentially. Below we consider the resource requirements for both approaches.

A. Distributed Adder

For the distributed quantum adder, we consider the case with a server party and K different parties, each inputting an

integer. Let N be the maximum bit size of integers. �e total number of qubits that are needed to represent the output and

input from the K parties is N · (K + 1) qubits. �e circuit contains 2N ·K CNOT operations. We consider four different

methods to implement the distributed circuit:

1) Use local CNOT gates. �is is not a distributed implementation and is used as benchmark case;

2) Use 2-party GHZ-states and apply multiple sequential non-local CNOT gates with a single target. �is method increases

the total number of qubits by 4N ·K ;
3) Use K+1-party GHZ-states and apply non-local CNOT gates with K targets, one for each party. �is method increases

the total number of qubits by 2N · (K + 1);
4) Use K + 1-party GHZ-states and apply non-local CNOT gates with K targets. Qubits used for the GHZ-states are

reused. �is method increases the total number of qubits by K + 1.

�e latter method is especially useful for simulation purposes. In practice it might be challenging to reuse qubits. �e

resource requirements for these different methods are summarized in Table I.
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Table I

Required number of qubits and GHZ-states to implement the (distributed) quantum adder using different methods to distribute operations.

Method Total number of qubits Number of GHZ states

1 N · (K + 1) 0
2 N · (5K + 1) 2N ·K GHZ2

3 N · (3K + 3) 2N ·N GHZK+1

4 (N + 1) · (K + 1) 2N ·N GHZK+1

Table II

Required number of qubits and GHZ-states to implement the (distributed) distance-based-classifier using different methods to distribute

operations.

Method Total number of qubits Number of GHZ states

1 log2(K ·N) + log2(M) + 2 0
2 log2(K ·N) + log2(M) + 2 + 2N ·K · (M − 1) N ·K · (M − 1) GHZ2
3 log2(K ·N) + log2(M) + 4 N ·K · (M − 1) GHZ2

B. Distributed Distance-Based Classifier
For the distributed distance-based classifier, we consider the case where the initial state (IV.2) has to be prepared

explicitly on a server parties quantum device. We consider K parties with each N horizontally separated data points

having M features each. �e server needs log2(K ·N) + 1 + log2(M) + 1 qubits. �e K different parties only need one

qubit each and the additional qubits for the GHZ states. �e total number of (distributed) CNOT operations that are needed

can be calculated by the number of data point that need to be encoded, K ·N , and multiply it by twice the number of RY
gates that are needed to encode a data point with M features: M − 1.
Similar to the distributed adder, we consider two methods of implementing CNOT operations

1) Use local CNOT gates. �is is not a distributed implementation and is used as benchmark case;

2) Use 2-party GHZ-states and apply multiple non-local CNOT gates with a single target. �is method increases the total

number of qubits with 2N ·K · (M − 1);
3) Use 2-party GHZ-states and apply multiple non-local CNOT gates with a single target. Qubits used for the GHZ-states

are reused. �is method increases the total number of qubits by 2.

�e results for these different methods are summarized in Table II.

VI. Conclusion

In this work we considered two applications of distributed quantum computing: distributed arithmetics and distributed

distance-based classifiers. We showed how GHZ-states can allow multiple parties to simultaneously perform computations

without having to directly share their data. Instead of physically having to share (encrypted) data, parties can apply local

phase-gates and in that way share their data. �ese individual phases are immeasurable and only after all parties inputted

their data and a suitable transformation is applied, will we learn the outcome.

Our simulations showed that the distributed approaches indeed give the same answer as when the computations would

be run locally. More research on the practical implementation of these methods is however needed, as then other aspects,

including decoherence will play a more prominent role.

A final important aspect of great importance is the security of the data encoded by the different parties. Each party

adds a phase to their part of the entangled state. �ese phases are however immeasurable in its current form. Only after

a suitable operation can we learn this information. Intermediate adverserial measurements destroy the quantum state and

information encoded in the phases is lost.

Our work showed the potential of distributed quantum machine learning. More interesting application exist, such as

federated quantum machine learning. Another future research direction is incorporating physical effects in the simulations.

We already briefly discussed this topic in Sectionion II on why shared entangled states are better than actually transporting

data qubits. It is important to know the cost of creating shared entangled states of sufficient quality and their effect on

the quality of the algorithm.
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