
An Efficient Algorithm for the Proximity Connected Two
Center Problem

Binay Bhattacharya, Amirhossein Mozafari? and Thomas C. Shermer

School of Computing Science
Simon Fraser University

{binay,amozafar,shermer}@sfu.ca

Abstract. Given a set P of n points in the plane, the k-center problem is to find k
congruent disks of minimum possible radius such that their union covers all the points in
P . The 2-center problem is a special case of the k-center problem that has been extensively
studied in the recent past [8,27,29]. In this paper, we consider a generalized version of the
2-center problem called proximity connected 2-center (PCTC) problem. In this problem,
we are also given a parameter δ ≥ 0 and we have the additional constraint that the
distance between the centers of the disks should be at most δ. Note that when δ = 0, the
PCTC problem is reduced to the 1-center(minimum enclosing disk) problem and when δ
tends to infinity, it is reduced to the 2-center problem. The PCTC problem first appeared
in the context of wireless networks in 1992 [16], but obtaining a nontrivial deterministic
algorithm for the problem remained open. In this paper, we resolve this open problem by
providing a deterministic O(n2 logn) time algorithm for the problem.

1 Introduction

The k-center problem in the plane is a fundamental facility-location problem in which we are
given a set of n demand points P and we are going to find a set S of k center points such that
cost(S) := maxp∈P mins∈S dist(p, s) is minimized (dist(p, s) is the Euclidean distance between
p and s). The k-center problem is known to be NP-hard [3]. However, there is a simple greedy
2-approximation algorithm for the problem which can not be improved unless P = NP [3].
So, the studies on the problem went in the direction of obtaining polynomial-time algorithms
where k is not considered as a part of the problem input. As an example, in 2002, Agarwal and

Procopiuc [1] gave a nO(
√
k) time algorithm to solve the k-center problem. Solving the problem

for specific values of k like k = 1 and k = 2 received attention due to the geometric properties
that can be applied to solve these problems efficiently. The 1-center problem is indeed equivalent
to the problem of covering P with a disk with minimum area. This problem is also called the
minimum enclosing disk (MED) problem. In 1983, Megiddo [24] used the prune and search
technique to give an optimal linear time algorithm to solve the MED problem.

For k = 2, Drenzer [10] gave the first nontrivial algorithm for the problem with O(n3) time
complexity. Later in 1994, Agarwal and Sharir [2] improved the time complexity for the prob-
lem to O(n2 log3 n). In 1996, Eppstein [11] gave a randomized algorithm for the problem with
O(n log2 n) expected running time. In 1997, Katz and Sharir [20] proposed the novel expander-
based parametric search technique and showed that applying it to the 2-center problem using
the O(n2) time feasibility test of Hershberger [13], gives an O(n2 log3 n) time algorithm for the
problem. Later in the year, Sharir [27] designed an O(n log3 n) time algorithm for the decision
version of the 2-center problem using the breakthrough observation of breaking the problem into
three separate cases(far distant, distant and nearby cases). Next, he parallelized the decision

? Corresponding author

ar
X

iv
:2

20
4.

08
75

4v
1

 [
cs

.C
G

]
 1

9
A

pr
 2

02
2

algorithm and put it into the Megiddo’s parametric search schema [25] to obtain an O(n log9 n)
time algorithm. Soon, it turned out that solving the problem in the nearby case is the bottle-
neck to reduce the time complexity. Later, Sharir’s running time was improved by Chan [5] and
Wang [29] to O(n log2 n log2 log n) and O(n log2 n) respectively. Very recently, Choi and Ahn [8]
(independently Cho and Oh [7]) obtained an O(n log n) time algorithm for the nearby case which
led to an optimal O(n log n) time algorithm for the 2-center problem.

We say that a set S of k center points in the plane satisfies the proximity connectedness
condition (PCC) with respect to a parameter δ if the δ-distance graph of S (the graph with
vertex set S such that there is an edge between two vertices if and only if the distance between
them is at most δ) is connected. The proximity connected k-center problem is defined as a
generalized version of the k-center problem for which, in addition to P , a parameter δ ≥ 0
is also given. The objective is to find k center points S such that S satisfies the PCC and
cost(S) ≤ cost(S′) for any k center points S′ that satisfies PCC (cost(S) is the same cost as
in the k-center problem). Note that when δ tends to zero (resp. infinity), the problem reduces
to the 1-center (resp. k-center) problem. Also, when δ tends to zero and k tends to infinity the
problem becomes the Euclidean Steiner tree problem (connecting the points of P by lines of
minimum total length in such a way that any two points can be connected by the lines). This
is because in this configuration, the centers should be placed along the lines of the minimum
Steiner tree in order to minimize the cost. The Euclidean Steiner tree problem is also NP-hard
but it has a PTAS approximation algorithm [4].

In practice, the parameter δ usually specifies the range for which one center can communicate
with other centers. So, when S satisfies the PCC, any pair of centers can communicate with each
other via the other centers. The proximity connected 2-center (PCTC) problem first emerged
in the works of Huang [16] in 1992 while he was studying packet radio networks. In the network
terminology, the PCTC problem is the problem of locating two wireless devices as close as
possible to the demand points P such that they can send/receive messages between each other.
He originally gave an O(n5) time algorithm for the 2-center problem having proximity constraints
between their centers. Later in 2003, Huang et al. [18] studied a very close problem to the
PCTC problem called α-connected 2-center problem. In this problem, instead of δ, a parameter
0 ≤ α ≤ 1 is given and the distance between the center of the disks should be at most 2(1−α)r
where r is the radius of the disks. They gave an O(n2 log2 n) time algorithm for the decision
version (given an r whether it is possible to cover the points with two disks of radius r satisfying
the desired conditions) of the problem. Note that this problem is a special case of the PCTC
decision problem where δ = 2(1−α)r. Later in 2006, they gave a randomized algorithm with the
same O(n2 log2 n) expected running time to solve the α-connected 2-center problem [17]. In this
paper, we consider the PCTC problem and propose a deterministic O(n2 log n) time algorithm
for it.

Here, we need to mention that although we use Sharir’s observation [27] of breaking the
problem into three different cases(far distant, distant and nearby), the reason we can’t get a
sub-quadratic algorithm like [27,5,29,8] is that the PCTC problem is structurally different from
the 2-center problem. In the 2-center problem, the optimal cost is determined by at most three
points of P [27] while in the PCTC problem the cost may be determined by more than three
points because of the PCC. This means that our search space has a higher dimension than
the search space of the 2-center problem. Also, all the sub-quadratic algorithms for the 2-center
problem use Megiddo’s [25] or Cole’s [9] parametric search schema to reduce the time complexity
which makes the resulting algorithm impractical [2] while our algorithm exploits the geometric
properties of the problem which make it straightforward to be implemented using standard data
structures in computational geometry.

2

A solution for a given PCTC problem instance is defined as a pair of disks whose centers
satisfy the PCC and their union covers P . We call a disk with the larger (or equal) radius the
determining disk of the solution and its radius the cost of the solution. An optimal solution is
a solution with minimum cost among the set of all solutions for the problem. Note that there
might be an infinite number of optimal solutions with different pairs of radii because we have
freedom on the smaller disk. So, we try to find an optimal solution such that the radius of its
smaller disk is minimum among all optimal solutions. We call such a solution a best optimal
solution (BOS) for the problem. Therefore, if the problem has more than one BOS, they would
have the same pair of radii. We can also compare two solutions S1 and S2 as follows: we say
that S1 is a better solution than S2 if cost(S1) < cost(S2) and if cost(S1) = cost(S2), the radius
of the non-determining disk of S1 is smaller than the radius of the non-determining disk of S2.
In this paper, our algorithm not only gives us an optimal solution but it computes a BOS for
the problem.

2 Preliminaries and Definitions

Let (P, δ) be the given PCTC problem instance where P is a set of n demand points in the
plane and δ is a given non-negative number. We assume that the points are in general position,
by which we mean no four points of P lie on a circle. Let (P1, P2) be a partition of P obtained
by dividing the plane by a line or two half-lines from a point (henceforth, when we use the
term partition of the plane, we mean a partition that satisfies this condition). We say that
a pair of disks (D1, D2) with centers (c1, c2) respectively is a solution for the partition if D1

covers P1, D2 covers P2 and dist(c1, c2) ≤ δ. Optimal and best optimal solutions (BOSs) for
the partition are defined similarly. Let (D∗1 , D

∗
2) be a BOS for the partition with centers (c∗1, c

∗
2)

respectively. We say that a point p ∈ P1 is a dominating point of D∗1 if (D∗1 , D
∗
2) is not a BOS

for the partition (P1 \ p, P2). The dominating points of D∗2 are defined similarly. Note that the
dominating points of D∗1 and D∗2 are on their boundaries. By assuming that the points are in
general position, if D∗1(resp. D∗2) is the MED of P1(resp. P2), its dominating points are either
three points on the boundary such that their induced triangle contains c∗1(resp. c∗2) or two points
on the boundary such that their connecting segment passes through c∗1(resp. c∗2). In order to
simplify the presentation of our algorithm, in the latter case, we consider one of the dominating
points as two infinitely close points and so, if D∗1 or D∗2 is the MED of their corresponding
points, we assume that it has exactly three dominating points. Similarly, if D∗1(resp. D∗2) is not
the MED of P1(resp. P2), in the case that it only has one dominating point, we can consider it
as two infinitely close points. But, if it has three points on its boundary such that their induced
triangle does not contain c∗1, we might have no dominating point for D∗1 . We can assume that
such a situation never happens by slightly perturbing the points. So, henceforth, if D∗1(resp. D∗2)
is not a MED, we assume that it has exactly two dominating points.

We call the problem of computing a BOS for a given partition (P1, P2) the restricted PCTC
problem. In the next section, we show that how we can solve the restricted PCTC using the
intersection hulls and the farthest-point Voronoi diagrams of P1 and P2 (the intersection hull of
a set of points with respect to some radius r is defined as the intersection of all disks of radius r
around the points of the set). See Appendix A for a review on farthest-point Voronoi diagrams
and intersection hulls and their properties.

3 Computing a BOS for a Partition

Let (P1, P2) be a given partition. First, we compute the minimum enclosing disks D∗∗1 and D∗∗2
for P1 and P2 respectively. This can be done in linear time due to Megiddo’s algorithm [24]. Also

3

let c∗∗1 and c∗∗2 be the centers of D∗∗1 and D∗∗2 respectively. Now, if dist(c∗∗1 , c
∗∗
2)(the distance

between c∗∗1 and c∗∗2) is at most D, then we are done and (D∗∗1 , D∗∗2) is a BOS for the partition.
Otherwise, we have the following proposition:

Proposition 1 If dist(c∗∗1 , c
∗∗
2) > δ then for any BOS (D∗1 , D

∗
2) for the partition, we have

dist(c∗1, c
∗
2) = δ.

Proof. We proceed by contradiction. Suppose that for an optimal solution (D∗1 , D
∗
2), dist(c∗1, c

∗
2) <

δ. So, at least one of the centers for example c∗1 should be different from c∗∗1 and lies inside the
region between the two perpendicular lines from c∗∗1 and c∗∗2 on line(c∗∗1 , c

∗∗
2) (the line passing

c∗∗1 and c∗∗2). This is because if both c∗1 and c∗2 are outside this region, the distance between them
can’t be less than δ. If c∗1 is not on ∂F(P1), then we can slightly move c∗1 toward its farthest
point, reducing the radius of D∗1 while not violating the PCC which contradicts best optimality.
If c∗1 is on ∂F(P1), by Proposition 7, any point on the interior of the path from c∗∗1 to c∗1 on
∂F(P1), covers P1 with radius smaller than r(D∗1). Since dist(c∗1, c

∗
2) < δ, any point on this path

sufficiently close to c∗1 will not violate the PCC. This contradicts the fact that (D∗1 , D
∗
2) is a

BOS. �

Let H1(r) and H2(r) be the intersection hulls of P1 and P2 with radius r. Note that the smallest
radii for which the intersection hulls of P1 and P2 are nonempty are r(D∗∗1) and r(D∗∗2) respec-
tively. Let’s denote them by r0

1 and r0
2 (in fact H1(r0

1) = c∗∗1 and H2(r0
2) = c∗∗2). If r ≥ r0

1, for
any point q ∈ H1(r), disk(q, r)(the disk with center q and radius r) covers P1 (we have a similar
statement for P2 and r0

2). Based on this property, the problem turns to find a best optimal pair
of radii (r∗1 , r

∗
2) (the bigger radius is minimum and the smaller radius is minimum among all

such pairs) such that the distance between H1(r∗1) and H2(r∗2) is exactly δ. Also, we call the
maximum radius of optimal pair(s) the optimal cost and denote it by r∗. The idea to find a best
optimal pair is first try to find the optimal cost r∗ and then, fix one of the intersection hulls at
radius r∗ and find minimum possible radius for the other hull. So here, we focus on finding the
optimal cost.

In order to find the optimal cost, we impose the constraint that the disks are congruent
(radii of both hulls should be equal). Imposing this constraint makes the problem easier while
it does not change the optimal cost. In order to solve the problem for congruent disks, we can
grow the intersection hulls of the points at each part of the partition to see when the distance
between them becomes δ. We first build F(P1) and F(P2) which can be done in O(n log n)
time. In order to prevent structural changes when we grow the intersection hulls, we apply a
binary search (repeatedly find the median and discard half of the values) on the set of weights
of the farthest-point Voronoi diagrams of both sides to obtain an interval I∗ = (i0, i1) such that
r∗ ∈ I∗ and for each vertex v of the diagrams, w(v) /∈ I∗ (the weight of a point x in a cell of
farthest-point Voronoi diagram denoted by w(x) is the distance between x and the site of the
cell containing it. See Appendix A for details). At each step of the binary search, when we test
a weight w, we use the algorithm of [6] to compute the distance between the two intersection
hulls at radius w to see whether their distance is smaller, equal or greater than δ. Note that
because the intersection hulls are convex, this step can be done in O(log n) time according to
[6] (we don’t need to explicitely build the intersection hulls because their vertices are along the
edges of the farthest-point Voronoi diagrams).

Observation 1 For any index i and any r ∈ I∗, the endpoints of the ith-element of Seq(H1(r))
and Seq(H1(i0)) (resp. Seq(H2(r)) and Seq(H2(i0))) lie on same arms of H1(i0)(resp. H2(i0)).

In other words, when r varies from i0 to i1, no arc in intersection hulls will be emerged or
vanished. Let’s denote the arms of H1(i0) by A1 and call the partition induced by H1(i0) ∪ A1

4

the A1-partition of the plane. Now, we discuss how to find the optimal cost for the partition.
Suppose that we have not found r∗ during the binary search (otherwise we are done). So,
dist(H1(i0), H2(i0)) > δ and dist(H1(i1), H2(i1)) < δ. Let Seq(H1(i0)) = (X1, . . . , Xu) and
Seq(H2(i0)) = (Y1, . . . , Yu′). We also label each region of the A1-partition bounded by two
neighbour arms by the name of the arc it contains. Each arm in A1 can intersect ∂H2(i0) in
at most two points. Consider an arm in A1 with endpoint a and an intersection point x with
∂H2(i0). We call this intersection point a first intersection point if ax does not intersect the
interior of H2(i0).

Let B be the set of all first intersection points of the arms in A1 and ∂H2(i0). Note that
H2(i0) is convex and the arms around H1(i0) diverges from each other. Also, we already have
the order of the arms around H1(i0) induced by F(P1). In order to compute B, consider the
counter-clockwise order on the arms of A1 starting from the arm with the lowest slope (can be
negative) and compute their first intersection points with H2(i0) in order. An important point
here is that if a vertex of H2(i0) lies on the right side of an arm ~a (the direction is from its
endpoint), it will be on the right side of any arm after ~a. This proprty implies that the cost of
computing B is linear (see Figure 1).

Now, consider the partition induced by B and the vertices of ∂H2(i0) on ∂H2(i0). We call
each region of this partition a mini-arc on ∂H2(i0) (see Figure 1). We assign a label (Xi, Yj) to

Fig. 1. A mini-arc for two intersection hulls

each mini-arc of ∂H2(i0) where Xi is the label of the mini-arc in the A1-partition and Yj is the
label the arc of H2(i0) containing the mini-arc. Note that the number of such (Xi, Yj) labels are
linear (because we have a linear number of mini-arcs).

Proposition 2 The labels of the two arcs containing two closest points between H1(r∗) and
H2(r∗) corresponds to the label of one of the mini-arcs.

Proof. Let p1 and p2 be two points on H1(r∗) and H2(r∗) respectively with distance δ. First,
we observe that the perpendicular lines on line(p1, p2) from p1 and p2 should not intersect the
interior of H1(r∗) and H2(r∗) (otherwise it contradicts the optimallity of r∗). Suppose that p1

and p2 are lie on two arcs Xi and Yj respectively (we consider the names of the arcs in H1(r∗)
and H2(r∗) the same as the label of their corresponding regions in H1(i0) and H2(i0) respec-
tively). If (Xi, Yj) is not a label of a mini-arc, p1p2 should intersect an arm of Xi. But in this
situation, the perpendicular line on line(p1, p2) from p1 should intersect the interior of H1(r∗)
(because of convexity of H1(r∗)) which is contradiction. See Figure 2. �

5

According to Proposition 2, we can compute r∗ as follows: we consider each label (Xi, Yj)

Fig. 2. Connecting line of two points from two arcs which do not make a mini-arc intersects an arm

of the mini-arcs and compute the value ri,j for which the distance between the two arcs Xi and
Yj becomes δ as they propagate between their bounding arms. Note that computing each ri,j
can be done in a constant time. Now, r∗ is the minimum value among all ri,js.

The next step is obtaining a BOS for the partition after computing r∗. As we said earlier, in
order to do this, we first assume that the determining disk covers P1 and obtain the minimum
possible radius r′1 for H2 which makes the distance between H1(r∗) and H2(r′1) exactly δ. This
can be done in a similar way to how we obtained r∗. Then we obtain r′2 similarly by assuming
that the determining disk covers P2. By comparing the results, we pick the one with smaller
non-determining disk which is in fact a BOS for the partition. So, the total time we need to
compute a BOS is O(n log n).

4 Obtaining a BOS for the PCTC Problem

We denote the optimal cost for the PCTC problem by r∗ and a BOS for the problem by (D∗1 , D
∗
2)

with centers (c∗1, c
∗
2) respectively. We can assume that c∗1 and c∗2 lie on the x-axis and c∗1 is on the

left side of c∗2. In [27], Sharir broke the 2-center decision problem (given a parameter r determine
whether it is possible to cover the points with two disks of radius r) into three cases -far distant,
distant and nearby- with respect to the given parameter r. He showed that providing separate
algorithms for these cases will reduce the overall time complexity to solve the decision problem.
Although our problem is an optimization problem and the parameter r∗ is unknown, we will
show that breaking the PCTC problem into the same cases will simplify our algorithm and
reduce the overall time complexity. So, our algorithm separately considers each of the following
three assumptions about (D∗1 , D

∗
2).

1. Nearby: dist(c∗1, c
∗
2) ≤ r∗.

2. Distant: r∗ < dist(c∗1, c
∗
2) ≤ 3r∗.

3. Far distant: dist(c∗1, c
∗
2) > 3r∗.

Denote the smallest cost we can get having the nearby, distant and far distant assumptions by
rNA, rDA and rFA respectively. We also use the same notation for a BOS and their correspond-
ing centers having each assumption. So, we can obtain (D∗1 , D

∗
2) by comparing (DNA

1 , DNA
2),

6

(DDA
1 , DDA

2) and (DFA
1 , DFA

2) (note that these solutions may not exist or satisfy their cor-
responding case conditions. For example, dist(cNA1 , cNA2) might be greater than rNA but if
(D∗1 , D

∗
2) satisfies the nearby case, then rNA = r∗ and (DNA

1 , DNA
2) would be a BOS for the

problem and we have dist(cNA1 , cNA2) ≤ rNA = r∗). Henceforth, while studing each of the cases,
when we say BOS, we mean a best solution we can get having the corresponding case assumption.
Given two points x and y in the plane, we denote the line passing from x and y by line(x, y).
The direction of this line is considered from x to y. Also, we denote the half-line from x passing
y by half -line(x, y) and the line segment with end points x and y by seg(x, y).

5 Computing a BOS in the Nearby Case

First, we can see that if (D∗1 , D
∗
2) ≤ r∗, then there is an optimal partition R∗ (may not be unique)

such that (D∗1 , D
∗
2) is a BOS of R∗. In fact, such a partition can be obtained by considering a

point in D∗1 ∩ D∗2 and two half-lines from it passing the intersection points of ∂D∗1 (boundary
of D∗1) and ∂D∗2 . In this section, when we say the dominating points of (D∗1 , D

∗
2), we mean its

dominating points with respect to R∗. Without loss of generality, we can assume that D∗2 is the
determining disk. We first compute the convex-hull(P) and scale the problem such that it fits
in a unit square (multiple both x and y coordinates of the points by the greatest constant such
that the convex hull remains inside the square). This step can be done in O(n log n) time. Note
that the scaling will not change the solutions.

Proposition 3 If (D∗1 , D
∗
2) ≤ r∗, then the area of D∗1 ∩ D∗2 must be greater than a constant

factor of the area of D∗2 (the determining disk).

Proof. We proceed by contradiction. Suppose that such a factor does not exist. This means
that we can build a problem instance such that it has a BOS (D∗1 , D

∗
2) in which the radius of

the non-determinig disk (D∗1) becomes infinitely small (because of the nearby assumption and
scaling). So, D∗1 should have at least one dominating point that is not covered by D∗2 . Because
the radius of D∗1 is infinitely small, δ should tend to radius(D∗2) (which tends to the radius of
the MED of P). Now, D∗2 should have at least one dominating point (point c in Figure 3) with
the x-coordinate less than or equal to c∗2 (otherwise, we can move both c∗1 and c∗2 to the right
and reduce the radius of D∗2 which determines the cost). In this configuration, we can enlarge
D∗1 by moving c∗1 toward this dominating point of D∗2 while satisfying the PCC in order to cover
it and release it from D∗2 (D∗1 does not lose any of its own points and its radius still remains less
than the radius of D∗2). Now, we can reduce the radius of D∗2 which contradicts the optimallity
of (D∗1 , D

∗
2) (see Figure 3). �

Proposition 4 D∗1 (similarly D∗2) should have a pair of dominating points such that:

1. They lie on different sides of line(c∗1, c
∗
2).

2. Their connecting segment does not intersect seg(c∗1, c
∗
2).

See Appendix B for the proof. Considering the four dominating points in the above proposition,
we can say that D∗1 ∩D∗2 should cover at least a constant factor of the area of convex-hull(P).
Furthermore, D∗1∩D∗2∩convex-hull(P) is convex because it is the intersection of convex objects.
So, we can build a constant size set of points M uniformly distributed on convex-hull(P) such
that (assuming dist(c∗1, c

∗
2) ≤ r∗) for at least one point m̂ ∈M, m̂ ∈ D∗1 ∩D∗2 ∩ convex-hull(P).

Because m̂ is unknown, for each m ∈ M, we build a BOS (Dm
1 , D

m
2) assuming m ∈ D∗1 ∩ D∗2

7

Fig. 3. Enlarging the non-determining disk D∗1 to cover one of the dominating points of D∗2 and get a
better solution.

and finally pick a best solution in {(Dm
1 , D

m
2) : m ∈M} and set it as (DNA

1 , DNA
2). Based on

this idea, we present our algorithm to find (Dm
1 , D

m
2) for a given point m ∈ convex-hull(P).

Let X be a set of 360 directed lines (each line has a positive direction) passing through m
such that the angle between each directed line and its neighbour lines is 1◦. Now, there should be
a directed line in X such that its angel with line(c∗1, c

∗
2) is at most 1◦ and c∗1 lies on the negative

side of c∗2 on the line (note that D∗2 is the determining disk according to our assumption). We
call this directed line the correct directed line which is unknown. So, we assume each line l ∈ X
as the correct directed line and compute a BOS (Dm,l

1 , Dm,l
2) having this assumption and finally

pick the best one as (Dm
1 , D

m
2).

So, assume that a directed line l ∈ X called the m-line is given. Here we explain how to
compute (Dm,l

1 , Dm,l
2). The m-line divides the points of P into two disjoint sets one on the right

side and the other on the left side of the m-line. We sort these sets according to the polar
angles of their points (from m) with respect to the positive direction of the m-line. These angles
should lie between −180◦ and 180◦ and we sort them by increasing magnitude (see Figure 4 for
an illustration). Based on these orders, we denote the two sequences of points on the left and
right side of the m-line by (p1, . . . , pn′) and (q1, . . . , qn′′) respectively. We call a point p-type
(resp. q-type) if it is in the first(resp. second) sequence. We also call a half-line from m that
separates {p1, . . . , pi} from {pi+1, . . . , pn′} an ith-separator of the p-type points. A jth-separator
of q-type points is defined similarly (we assume that the 0th and n′th(resp. n′′th) separators have
the entire p-type(resp. q-type) points in one side). The ith and jth separators of the p-type and
q-type points partition the plane into two parts. We call this partition the (i, j)-partition of the
plane. One part of this partition contains the positive direction of the m-line which we call it
the positive side of the partition and we call the other part the negative side of the partition.

Observation 2 If dist(c∗1, c
∗
2) ≤ r∗, m = m̂ and the m-line is correct, then an (i, j)-partition

can be considered as R∗ and (D∗1 , D
∗
2) is its BOS.

Note that in the above observation, the two separators from m passing the intersection points
of D∗1 and D∗2 give us the desired (i, j)-partition. We denote the set of points in the positive
and negative sides of the partition by P i,j+ and P i,j− respectively. Based on our algorithm for
restricted PCTC problem, a BOS for an (i, j)-partition can be computed in O(n log n) time. Let
(Di,j
− , D

i,j
+) (with centers (ci,j− , c

i,j
+) respectively) be the output of this algorithm for the (i, j)-

partition (see Figure 4 for an example). We refer to the first(resp. second) disk the negative
disk(resp. positive disk) of the partition. A naive approach to obtain (D∗1 , D

∗
2) is to apply our

8

restricted PCTC problem algorithm to each of the (i, j)-partitions and pick the best one. This
will give us an O(n3 log n) time complexity as there are quadratic partitions. In the following

we show how we can get (Dm,l
1 , Dm,l

2) by evaluating a sub-quadratic number of partitions. The
idea is first computing rm,l which is the best cost we can get assuming m and l are correct.
Then, we use it to compute (Dm,l

1 , Dm,l
2).

5.1 Computing rm,l

Let’s define M+ as a (n′+ 1)× (n′′+ 1) matrix whose [i, j]-element (0 ≤ i ≤ n′ and 0 ≤ j ≤ n′′)
is radius(Di,j

+). We call M+[i, j] non-critical if Di,j
+ is the MED of P i,j+ . Otherwise, we call it

critical. We call M+[i, j] a valid element if M+[i, j] ≥ radius(Di,j
−) and we call it non-valid

otherwise. Because we assumed that l is correct, we can assume that positive disks determine
rm,l. This means that rm,l is indeed the minimum valid element of M+.

Fig. 4. An example (i, j)-partition of a set of points and a BOS for the partition.

Proposition 5 For any 0 ≤ i ≤ n′ and 0 ≤ j ≤ n′′, we have:

1. If M+[i, j] is non-critical, then M+[i′, j′] ≥M+[i, j] for all i′ ≥ i and j′ ≥ j.
2. If M+[i, j] > radius(Di,j

−), M+[i, j] is non-critical.

3. If M+[i, j] is valid and critical, then M+[i, j] = radius(Di,j
−) and dist(ci,j− , c

i,j
+) = δ.

Briefly, case 1 is clear and if each of the cases 2 or 3 is not true, by moving the centers we can get
a better solution. See Appendix B for details. We search M+ to find rm,l as follows: we maintain
a set of candidate values. During the search, when we evaluate an element M+[i, j](computing
(Di,j
− , D

i,j
+) and its dominating points), if M+[i, j] is valid, we add it to the candidate values

and finally we set rm,l as the minimum candidate value.
In order to search M+, we maintain two variables I and J where I stores the index of the

current row that we are searching and J stores the column index for which we can discard any
column with index greater than that. Initially, we set I = 0, J = n′′ (n′′ is the number of
columns of M+). We search the Ith-row by evaluating its elements backward starting from its
J th-element (if J = −1, the matrix search is done) toward its first element. Because we are
looking for a minimum valid element of the matrix, we can use Proposition 5 to improve our
search as follows: during the traversal of the row, if M+[I, j] is valid and non-critical, we set

J = j − 1 (because DI,j
+ is the MED of P I,j+ , when we add more points to the positive side we

can’t get a smaller positive disk). We finish traversing the row and increase I by one if either

9

the row is exhausted or we reach an index j such that M+[I, j] becomes non-valid. Note that in

this case, DI,j
− is the MED of P I,j− (similar to Proposition 5 part 3). Here we might have a valid

element on some index j′ < j but, the cost of this solution can not be less than radius(DI,j
−)

(we add points to the negative side as we move left wise on a row). In order to make sure that

we will count such costs in our algorithm, we can add radius(DI,j
−) to the candidate set of the

directed line in X with the opposite direction of the current m-line.
We continue this procedure until no element is left. Note that when none of Di,j

− and Di,j
+ are

a MED, we can’t discard any element from the matrix because it is possible that when we move
a point from one side to the other, the radii of both disks become greater or smaller while they
remain equal (this situation can happen because of the PCC). So the number of evaluations in
the above schema might be still quadratic. Next, we explain how to fix this problem.

Proposition 6 If M+[i, j] is valid-critical and qj is not a dominating point of Di,j
+ , then

M+[i, j − 1] ≥M+[i, j].

Proof. Because Di,j
+ is not a MED, its center can’t get closer to its farthest points in P i,j+

(dominating points of Di,j
+) namely d1 and d2 because of the PCC. Now, by adding qj to P i,j− ,

Di,j−1
− needs to cover more points. If its radius gets bigger, the proposition follows. Otherwise,

according to the fact that qj is not a dominating point of Di,j
+ , it is not possible to put ci,j−1

−
on a place such that allow ci,j−1

+ to get closer to d1 and d2 due to best optimality of (Di,j
− , D

i,j
+).�

Note that in this proposition, if qj does not become a dominating point of Di,j−1
− , then M+[i, j−

1] = M+[i, j]. A similar statement is also correct for two consecutive valid-critical elements in
a column. Based on the above proposition, we can improve our matrix search as follows: while
traversing a row(left wise), when we hit a valid-critical element M+[i, j], if both dominating
points of Di,j

+ are p-type, we discard the rest of the row (because by traversing a row, only
q-type points will move to the other part of the partition) and continue the search on the next
row. Similarly, if both dominating points of Di,j

− are q-type, we can discard the rest of its column.
Otherwise, we jump to the first (largest index) element of the row for which a q-type dominating
point of Di,j

+ moves to the negative side and discard all the elements in between (because of
Proposition 6). Similarly, we discard the portion of the rest of the column of M+[i, j] with row
index smaller than the index of the p-type dominating point(s) of Di,j

− (applying the column
version of Proposition 6).

When we evaluate a valid-critical element M+[i, j], if we didn’t discard the entire rest of its
row or column, we mark the portion of its column that is not discarded after the evaluation of
M+[i, j]. Now, when we traverse the rows, we ignore and jump discarded and marked elements.
Specially, if after evaluating an element M+[i, j], the largest index of the q-type dominating
point of Di,j

+ is j′ and M+[i, j′] is marked, we continue searching from the first(biggest index)
unmarked or undiscarded element of the ith-row after M+[i, j′]. Applying this marking schema
in the matrix search will guarantee that the number of evaluations is linear. The problem of our
matrix search with marking schema is that we may mark the minimum valid element of M+

and so get an incorrect rm,l. In the rest, we will show how to overcome this problem.
We call the above matrix search initial search of M+ from top-right. Another way of searching

M+ is starting the search from M+[n′, 0] (the first element of the last row). But this time, instead
of traversing the rows from right to left, we traverse the columns from bottom to top. The way
we search the matrix is exactly symmetrical to the top-right search but here we mark sub-rows
instead of sub-columns. We call this matrix search the initial search of M+ from bottom-left.
After performing two initial searches on M+ one from the top-right and one from the bottom-
left, still there might be some elements that are marked in both initial searches. We call these
elements as doubly-marked elements. The next theorem enables us to search the doubly-marked

10

elements in an efficient way which leads us to find rm,l. Lets denote the doubly-marked elements
of M+ by Doubly-Marked(M+).

Theorem 1. By evaluating a doubly-marked element M+[i, j], we can discard one of the fol-
lowing sub-rows or sub-columns of M+:

1. Elements above [i, j] (M+[i′, j] with i′ ≤ i).
2. Elements below [i, j] (M+[i′, j] with i′ ≥ i).
3. Elements in front of [i, j] (M+[i, j′] where j′ ≥ j).

Suppose that M+ [̂i, j̄] is a given doubly-marked element which is marked when we evaluate
M+ [̄i, j̄] and M+ [̂i, ĵ] in the initial top-right and bottom-left search respectively. When we

evaluate M+ [̂i, j̄], we get Dî,j̄
+ and Dî,j̄

− and their dominating points. For the sake of simplicity,
let’s denote the first disk by D′+ and the second disk by D′−. If D′− is MED, then either
radius(D′−) ≥ radius(D′+) or radius(D′−) < radius(D′+). In the former, case 1 in Theorem
1 happens and in the latter, D′+ should be MED (otherwise we can reduce its cost and the
solution can’t be optimal) and so cases 2 and 3 of the theorem happen. We have a similar
argument when D′+ is a MED. So, the only left case is when none of the disks is MED. Note
that in this case each of D′+ and D′− has exactly two dominating points. Let h1, h2 be the
dominating points of D′+ and h′1, h

′
2 be the dominating points of D′−. If both h′1 and h′2 are

p-type, case 3 happens (when we traverse the îth-row from left to right, we only add q-type
points to the positive side). Also, if they are both q-type, case 2 happens. The bottleneck of
proving Theorem 1 is when h′1 and h′2 have different types. In order to prove Theorem 1 in this
special case, we use two key properties. First M+ [̂i, j̄] should be doubly-marked and second, m
should be inside the convex hull of the points. We leave this proof Appendix C and in the rest,
we focus on how to use Theorem 1 to search Doubly-Marked(M+) efficiently.

5.2 Searching the Doubly-Marked Elements

For simplicity, we assume that n′ = 2g − 1 for some integer value g > 1 (so the number of
rows is a power of 2). We define the kth-division of M+ as the sub-matrix consisting of the
rows from n′/2k to n′/2k−1 − 1 (we search the first row independently by evaluating all of its
doubly-marked elements). We search the divisions of M+ in order from its first division. Let’s
denote the kth-division sub-matrix by DIVk. Here, we explain how to search DIVk. Let I and
J be the row and column indices (with respect to DIVk) of the element that we are processing
at each time. Initially, we have I = J = 1 (the first row and column of DIVk). We evaluate the
non-discarded elements of the Ith-row from left to right starting from the column index J . If
the result of an evaluation is case 1 or 2 in Theorem 1, we discard the corresponding portion of
M+ (in all divisions) and increase J by one. But if case 3 happens, we go to the next row and
increase I (we always move rightwise). After we proceed with all divisions, some elements might
left unevaluated and undiscarded in each division due to the occurrence of case 1. We recursively
perform the entire above process on these unevaluated elements in each division until all elements
are either discarded or evaluated. So, if only doubly-marked elements remained in M+ (we have
discarded all other elements in the two initial searches), then the procedure SEARCH-DM(M+)
in Algorithm 1 will give us a minimum valid element of M+.

Theorem 2. SEARCH-DM(M+) evaluates O(n log n) elements of M+.

Proof. First, if only cases 2 and 3 happen in the algorithm, then we don’t need the recursion part
and so the total number of evaluations becomes O(n log n) (in each iteration of searching DIVk
either I or J would be increased). Now, suppose that any of the cases 1, 2, or 3 can happen. Note

11

Algorithm 1 SEARCH-DM(M)

1: Let M be a n×m matrix.
2: Split M into logn divisions {DIV1, . . . , DIVlogn} .
3: for k = 1, . . . , logn do // We search the divisions in order.
4: Set I = J = 1.
5: repeat
6: Evaluate DIVk[I, J] and discard the portion of M according to Theorem 1.
7: if (case 1 or 2 happens) and J < m then J = J + 1.
8: else
9: I = I + 1.

10: end if
11: until I > n/2k // number of rows in DIVk.
12: SEARCH-DM(DIVk) if DIVk has unevaluated/undiscarded element.
13: end for
14: Evaluate all non-discarded elements of the first row of M . // Until the case 3 happens.

that the number of case 3s in all divisions of a same recursion level (the original log n divisions has
recursion level zero and the level of the divisions in the recursion part of the algorithm is defined
based on their appearance in the recursion tree) is at most n because two divisions of a same
level has disjoint rows. Because we have O(log n) levels, the total number of case 3 evaluations
is O(n log n). Now, if after the evaluation of some DIVk[i, j], case 1 happens, we can’t discard
any new element from DIVk but all the elements above DIVk[i, j] in M should be discarded.
This means that while searching each of the divisions DIVk+1, . . . , DIVlogn and the first row, we
don’t need to evaluate the jth-column. On the other hand, DIVk has log(n/2k) = log n−k divi-
sions and a row. Each of these divisions can have at most one cases 1 or 2 in the jth-column. So,
we can have a correspondence between the extra cases 1 and 2 evaluations in searching the divi-
sions and the first row of DIVk (not its recursion part) and the matrix elements that we didn’t
evaluate in DIVk+1, . . . , DIVlogn. So, the total number of evaluations would remain O(n log n).�

Note that in a constant time, we can check whether an element is discarded or not. Because
in each recursion level, the divisions are disjoint, at each level we check each element of M
at most once and because we have O(log n) levels, the total cost of matrix element checking
would be O(n2 log n). On the other hand, our algorithm to solve the restricted PCTC problem
costs O(n log n), if we directly use it to evaluate matrix elements, the total time complexity
of SEARCH-DM(M+) becomes O(n2 log2 n). As we mentioned in Section 2, the bottleneck of
solving the restricted PCTC problem is computing the farthest-point Voronoi diagram of each
part of the partition which costs O(n log n). So, if we can reduce this cost by performing a
preprocessing step, we can reduce the overall time complexity of SEARCH-DM(M+). In order
to speed up matrix element evaluation, we use the following lemma from [23]:

Lemma 1. [23] If X and Y are arbitrary sets of points in the plane, then F(X ∪ Y) can be
constructed from F(X) and F(Y) in O(|X| + |Y |) time (F(X) represents the farthest-point
Voronoi diagram of X).

The preprocessing step: Let (X+
i , X

−
i) (resp. (Y +

j , Y
−
j)) be the partition of the p-type (resp.

q-type) points induced by the ith-separator (resp. jth-separator). In the preprocessing phase,
we compute the farthest-point Voronoi diagram of all X+

i , X−i , Y +
j and Y −j for 0 ≤ i ≤ n′

and 0 ≤ j ≤ n′′. This step can be done in O(n2) using Lemma 1 because as i or j increases or
decreases by one, a point from one side would be added to the other side.

12

Now, we can reduce the cost of matrix element evaluation as follows: In order to evaluate
M+[i, j], we construct F(P i,j+)(resp. F(P i,j−)) in O(n) time by applying Lemma 1 to F(X+

i)
and F(Y +

j) (resp. F(X−i) and F(Y −j)). So, the total complexity of matrix evaluation would be

O(n). This reduces the time complexity of SEARCH-DM(M+) and so the cost of finding rm,l

to O(n2 log n).

5.3 Obtaining (Dm,l
− , Dm,l

+) having rm,l

Note that we already have an initial solution that is optimal and its cost is rm,l (from our search
for rm,l). But, there might be another optimal solution with the same cost and a smaller non-
determining disk that we discarded during the search. If this initial solution is not best optimal,
then the non-determining disk of a BOS must be strictly smaller than its determining disk. So,
we can assume that the positive disk of the BOS should be the MED of the points in the positive
side. Consider a matrix M̄ for which its (i, j)th-element is the radius of the MED of the points
on the positive side of the (i, j)-partition. We search M̄ from the last element of its first row
and traverse the rows backwards (similar to the initial top-right search). After evaluating an
element (i, j) of the matrix (which can be done in linear time according to [24]), if it is bigger
than rm,l, we discard all elements (i, j′) of the matrix with j′ ≥ j because they are all greater
than rm,l and if it is less than rm,l, we discard the elements with i′ ≤ i because they are all less
than rm,l. But, when it is exactly rm,l, we compute its non-determining disk using the restricted
PCTC problem algorithm (costs O(n log n)) and store its radius. Here, we can also discard all
elements (i′, j) of the matrix with i′ ≤ i. This is because as we advance more left into the row,
we would have more points on the negative side and so if there is any optimal solution on the
left of (i, j) in the row, its non-determining disk should cover more points and thus can’t give
us a better solution. So, by each evaluation, we discard a row or a column of the matrix which
means that the total number of evaluations is linear. Therefore, the total complexity of finding
a BOS given rm,l would be O(n2 log n). Combining it with the complexity of computing rm,l

gives us the total time complexity O(n2 log n) to obtain (DNA
1 , DNA

2).

6 Computing a BOS in the Far Distant and Distant Cases

For the far distant case, we assume that dist(c∗1, c
∗
2) > 3r∗. In this situation, the approach

of Sharir’s far distant case [27] for the decision 2-center problem still works as follows: set an
arbitrary point in the plane as the origin and build 360 directed lines X passing from the origin
such that the degree between each line and its neighbours is 1◦. Then for one unknown correct
line ~xc ∈ X , the angle between line(c∗1, c

∗
2) and ~xc is at most 1◦. Supose that we set ~xc is the x-

axis and sort the x-coordinates of the points in P as a sequence (x1, . . . , xn). Now, if we consider
the set of lines L~xc

F = {xi⊥xi+1 : 1 ≤ i < n} (xi⊥xi+1 is the vertical line on ~xc at the mid-point

of [xi, xi+1]), at least one l ∈ L~xc

F will separate D∗1 from D∗2 . Because ~xc is unknown, we build
L~xF for all ~x ∈ X and set LF =

⋃
~x∈X L~xF . Note that the number of lines in LF is linear. Here,

each line l ∈ LF induces a partition on P . We apply our algorithm for the restricted PCTC
problem to each of such partitions and set the best one as (DFA

1 , DFA
2). So, the time complexity

of the far distant case would be O(n2 log n).

6.1 Computing a BOS for the Distant Case

In the distant case, we assume that r∗ < dist(c∗1, c
∗
2) ≤ 3r∗. The idea is to first compute rDA

by imposing the condition that the disks should be congruent and then using rDA to build

13

(DDA
1 , DDA

2). So, let (D̂1, D̂2) with centers (ĉ1, ĉ2) be a BOS having the distant assumption
such that the radii of the disks are equal (disks are congruent). So, the cost of this solution
would be rDA. Here, the objective is to compute (D̂1, D̂2). We first apply the algorithm of [20]
to obtain an optimal solution for the 2-center problem on P with minimum distance between
their centers. In order to have this additional proximity property in the solution, we replace
Hershberger’s feasibility test[13] in [20] with Sharir’s un-parallelized feasibility test in [27] (note
that we can’t use Sharir’s algorithm in [27] because it uses simulating parallel feasibility test
which makes the algorithm impractical). If the distance between the centers of this solution is
equal or less than δ, we set rDA as the cost of this solution and try to build (DDA

1 , DDA
2) (will

be discussed later in the paper) based on this cost (if we couldn’t build a solution with this cost
satisfying the distant assumption, we would know that a BOS with this cost exists in the far
distant or the nearby cases and thus, we won’t miss the BOS for the problem). Otherwise, we
can assume that d(ĉ1, ĉ2) = δ .

Similar to the Section 3, we build a set of constant size directed lines X such that for at least
one directed line ~x ∈ X , ĉ1 is on the negative side of ĉ2 and the angle between line(ĉ1, ĉ2) and
~x is at most 1◦. Without loss of generality we can assume that ~x is horizontal and its positive
direction is right wise. Let v1 be the leftmost point of D̂2 not in the interior of D̂1 and v2 be the
rightmost point of D̂1 not in the interior of D̂2. If v1 lies to the right of v2, we already catch the
BOS in the far distant case and we are done. So, assume that v1 is on the left side of v2. The
objective here is to find a vertical line l such that it separates ĉ1 from v1. First, note that the
difference between the x-coordinates of v1 and v2 is at least 0.9r∗/2 and r∗ > ∆x/4 where ∆x
is the difference between the x-coordinates of the leftmost and rightmost points. Having ∆x,
one of the vertical lines at the distance k∆x/9 (for some 1 ≤ k ≤ 9) from the leftmost point will
separate ĉ1 from v1. So, we can build a set LD of lines such that for at least one line l ∈ LD,
there exist an x-axis in X such that with respect to that, l is vertical and separates ĉ1 and v1.

Fig. 5. Separating ĉ1 and v1 by a vertical line

Note that all points of P on the left-side of l should be covered by D̂1 and so, we can assume
that ĉ1 is on the boundary of the intersection hull of these points at radius r∗. According to the
assumption dist(ĉ1, ĉ2) = δ, we can say that at radius r∗, the distance between the intersection
hull of the points covered by D̂1 and the intersection hull of the points not covered by D̂1 is
exactly δ (the distance between two intersection hulls is the minimum possible distance between
their points). In the rest of this section, we discuss how we can use this property to compute
rDA and (D̂1, D̂2).

Suppose that l is a given vertical line in LD. Denote the set of points in P on the left
side(resp. right side) of l by P−(resp. P+). Also, denote the intersection hull of P− with respect
to a radius r > 0 by H−(r). Define rl as the minimum radius for which there exist a point

14

x ∈ ∂H−(rl) such that the distance between x and the intersection hull of the points in P not
covered by Disk(x, rl) (the disk with center x and radius rl) is exactly δ. So, in order to find
rDA it is enough to compute rl for all l ∈ LD and set rDA = min{rl : l ∈ LD}.

In order to find rl, we need a feasibility test to answer the following question: given an r,
determine whether r is greater, equal or smaller than rl. Consider the set of circles A(r) =
{circle(p, r) : p ∈ P+} (circle(p, r) is the circle with center p and radius r) and compute
the intersection points of each circle of A(r) with ∂H−(r). These intersection points and the
vertices of ∂H−(r) induce a partition on ∂H−(r). We denote this partition by π(r) which can
be considered as an alternating sequence of arc interiors and endpoints. We assume that the
order is clockwise starting from its leftmost endpoint. We call each of these arc interiors and
endpoints a field of π(r) (so, if π(r) has k arcs, it would have 2k fields). See Figure 6. We

Fig. 6. The circles of A(r) and its induced partition π(r) on ∂H−(r)

observe that for each field f of π(r), disk(x, r) covers a same set of points for any x ∈ f . For
simplicity, we call the set of points in P covered by disk(x, r), the points covered by f at radius
r. So, π(r) is a sequence of fields each covers a specific set of points. For each field f ∈ π(r),
denote the intersection hull of the points not covered by f with respect to r by H+

f (r). Note
that the difference between the set of points covered by two neighbour fields in π(r) is at most
two(based on our assumption that the points are in general position). Also, we can compute
the sequence of disks that enter or leave H+

f (r) when f varies in π(r) in the clockwise order.

Having this sequence allows us to use the data structure of [15] to compute H+
f ′(r) having H+

f (r)
in O(log n) amortized time where f ′ is a neighbour field of f in π(r). So, to do the feasibility
test, we first compute H+

f0
(r) where f0 is the first field of π(r) and then traverse π(r) in the

clockwise order and at each field f , update the intersection hull of the points not covered by
f and compute dist(f,H+

f (r)). Because both f and H+
f (r) are convex, we can compute the

distance between them in O(log n) time [6]. During the traversal, we stop and return greater
as soon as for a field f , dist(f,H+

f (r)) < δ. If we reach the end of the traversal, return equal

if we’ve seen a field f for which dist(f,H+
f (r)) = δ and we couldn’t find any other field f ′

with dist(f ′, H+
f ′(r)) < δ. Otherwise, we return smaller. So, the feasibility test can be done in

O(n log n) time. The Procedure RL-FTEST(r) in Algorithm 2 represent the pseudocode of our
feasibility test.

15

Algorithm 2 RL-FTEST(r)

1: Compute H−(r) and the sequence π(r) = (f0, . . . , fm) on it.
2: Let f = f0.
3: Compute H+

f (r) and the set of points covered by f at radius r.

4: Let dmin = dist(f,H+
f (r)).

5: Traverse π(r) and at each field store the point(s) (at most two) that leave/enter the coverance.
6: for f = f1, . . . , fm do
7: Compute H+

f (r) by updating from H+
f−1(r).

8: dmin = min{dist(f,H+
f (r)), dmin}.

9: if dmin < δ then
10: Return Greater.
11: end if
12: end for
13: if dmin = δ then Return Equal
14: else
15: Return Smaller
16: end if

Now, we discuss our algorithm to compute rl. We first build F(P−) (farthest-point Voronoi
diagram of P−) and do a binary search on the weights (see Appendix A) of the vertices of
F(P−) using the above feasibility test to obtain an interval I∗ = (i0, i1) such that rl ∈ I∗ and
for each vertex v of the diagram, I∗ does not contain the weight of v. Because we use O(log n)
feasibility tests, the cost of obtaining I∗ would be O(n log2 n). As soon as we found I∗, we can
build H−(i0) and the set of its arms A−.

The idea here is simulating the propagation of π(r) and the circles in A(r) when r varies
from i0 to i1. To do this, we assume that at time t ∈ I∗, the radius of π and the circles in A
is t (if a field is an endpoint, its radius is the radius of an arc containing it). The minimum
time t such that dist(f,H+

f (t)) ≤ δ for a field f in π(t) is actually our rl. Consider t1, t2 ∈ I∗
and let π(t1) = (f1, . . . , fj) and π(t2) = (f ′1, . . . , f

′
j′). We say that π(t1) and π(t2) have a same

structure if j = j′ and for each 1 ≤ i ≤ j, fi and f ′i cover exactly a same set of points. In
this case, we consider fi and f ′i as a same field in different times. Note that if π(t1) and π(t2)
have different structures, for any t ≥ t2, π(t1) has a different structure from π(t). So, we can
consider a sequence of times T = (t0 = i0, t1, . . . , tk = i1) for some integer k such that π has
a same structure between any two consecutive times in the sequence. We call this sequence the
event-sequence and each time in this sequence an event-time. We can see that a time t is an
event-time if one of the following events happens at t:

1. Circle in A(t) collides with H−(t).
2. Two endpoints of π(t− ε) collide at π(t) where π(t− ε) has the structure exactly before the

event for a sufficiently small ε > 0.

At a first type event, new fields emerge and at a second type event a field disappears (new
fields may appear). Note that the number of such events is O(n2) and we can obtain T by
considering the intersection of each pair of circles (or disks) on π and finally sort the times.
So, we can compute T (increasingly sorted) in O(n2 log n) time. Here, we are going to find an
interval T ∗ = (t′, t′′) ⊆ I∗ such that rl ∈ T ∗ and it contains no event-time. To do this, we apply
our feasibility test O(log n) times to perform a binary search on T to get T ∗. So, computing T ∗

again costs O(n log2 n) time.
Next, for each field f ∈ π(t ∈ T ∗), we store the set of points not covered by it denoted by

f+ and compute the farthest-point Voronoi diagram F(f+) of these points. In order to find

16

rl, we need to compute tδf for each field f ∈ π(t ∈ T ∗) where tδf is the earliest time for which

dist(f ∈ π(tδf), H+
f (tδf)) = δ. Finally, we have rl = min{tδf : f ∈ π(t ∈ T ∗)}.

Here, we discuss how to compute tδf for a field f ∈ π(t ∈ T ∗). First, we build F(f+) in

O(n log n) time. Note that having F(f+), for a given t ∈ T ∗, we can compute H+
f (t) with

ordered arcs in linear time. Next, we apply binary search on the weights(times) of the vertices
of F(f+) using the algorithm of [6](which costs O(log n) for computing the distance between
two convex objects) as the feasibility test to check whether the distance between f and H+

f is
smaller, equal or larger than δ. Let T ∗f ⊆ T ∗ be the resulting interval. So, when t varies in T ∗f ,

no arc appears or vanishes in H+
f (t). So, T ∗f can be computed in O(n log n) time. Having T ∗f ,

because we have no structural change in H+
f , we can compute tδf in linear time (by considering

the arms of H+
f). So, the total cost of computing tδf is O(n log n) and thus, rl can be computed

in O(n2 log n) time. The procedure FIND-RL(l) in Algorithm 3 will return rl given a line l.

Algorithm 3 FIND-RL(l)

1: Build F(P−) and its weights.
2: Perform a binary search on the weights using RL-FTEST to get an interval I∗ = [i0, i1].
3: Compute the event-times sequence T when π(t) and A(t) expands as t ∈ I∗.
4: Perform a binary search on T using RL-FTEST to get an interval T ∗.
5: Let f1, . . . , f

′
m be the fields of π(t) when t ∈ T ∗. // The fields are same as t varies in T ∗.

6: for i from 1 to m′ do
7: Let f+ be the set of points not covered by fi.
8: Compute F(f+) and perform a binary search on its weights with the following test:
9: Test(w):

10: Compute H+
fi

(w) and let d = dist(fi, H
+
fi

(w)).
11: if d > δ then Return Smaller.
12: else if d = δ then Return Equal else Return Greater.
13: Let T ∗fi be the final interval. // When t varies in T ∗fi the structure of H+

fi
doesn’t change.

14: Compute the time tδi for which dist(fi, H
+
fi

) = δ.
15: end for
16: Return rl as min{tδi : 1 ≤ i ≤ m′}.

Having rDA, we can obtain a BOS for it as follows: for each l ∈ L2, we consider two assump-
tions: first, the determining disk is on the left side of l and second it is on the right side of l. For
the first case, we consider H−(rDA) and circles in A as fixed objects (not propagating) and for
each field f , we propagate H+

f up to radius RDA based on the method we explained above and

compute the minimum radius(time) for which dist(H−(rDA), H+
f) = δ. Let r′l be the minimum

such radius and infinite if it doesn’t exist. For the second case, we propagate both circles in A
and fields of H−(i0) to obtain event-times but we build all H+

f s according to the fixed radius

rDA and follow the above algorithm to obtain a radius r′′l . Comparing r′l, r
′′
l and their solutions,

we obtain a BOS assuming l is a correct line. Comparing the results for all l ∈ L2 will give us a
BOS (DDA

1 , DDA
2) having the distant assumption with total complexity of O(n2 log n).

17

References

1. Agarwal PK, Procopiuc CM. Exact and approximation algorithms for clustering. Algorithmica. 2002
Jun 1;33(2):201-26

2. Agarwal PK, Sharir M. Planar geometric location problems. Algorithmica. 1994 Feb;11(2):185-95.
3. Agarwal PK, Sharir M. Efficient algorithms for geometric optimization. ACM Computing Surveys

(CSUR). 1998 Dec 1;30(4):412-58.
4. Arora S. Nearly linear time approximation schemes for Euclidean TSP and other geometric problems.

In Proceedings 38th Annual Symposium on Foundations of Computer Science 1997 Oct 20 (pp. 554-
563). IEEE.

5. Chan TM. More planar two-center algorithms. Computational Geometry. 1999 Sep 1;13(3):189-98.
6. Chin F. Optimal algorithms for the intersection and the minimum distance problems between planar

polygons. IEEE Transactions on Computers. 1983 Dec 1(12):1203-7.
7. Cho K, Oh E. Optimal algorithm for the planar two-center problem. arXiv preprint arXiv:2007.08784.

2020 Jul 17
8. Choi J, Ahn HK. Efficient planar two-center algorithms. Computational Geometry. 2021 Apr

2:101768.
9. Cole R. Slowing down sorting networks to obtain faster sorting algorithms. Journal of the ACM

(JACM). 1987 Jan 1;34(1):200-8.
10. Drezner Z. The planar two-center and two-median problems. Transportation Science. 1984

Nov;18(4):351-61.
11. Eppstein D. Faster construction of planar two-centers. In Proc. of the 8th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 131–138, 1997.
12. Gudmundsson J, Haverkort H, Park SM, Shin CS, Wolff A. Facility location and the geometric

minimum-diameter spanning tree. Computational Geometry. 2004 Jan 1;27(1):87-106.
13. Hershberger J. A faster algorithm for the two-center decision problem. Information processing let-

ters. 1993 Aug 9;47(1):23-9.
14. Hershberger J, Suri S. Efficient computation of Euclidean shortest paths in the plane. In Proceedings

of 1993 IEEE 34th Annual Foundations of Computer Science 1993 Nov 3 (pp. 508-517). IEEE.
15. Hershberger J, Suri S. Off-line maintenance of planar configurations. Journal of algorithms. 1996

Nov 1;21(3):453-75.
16. Huang CH. Some problems on radius-weighted model of packet radio network (Doctoral dissertation,

Ph. D. Dissertation, Dept. of Comput. Sci., Tsing Hua Univ., Hsinchu, Taiwan).
17. Huang PH, Tsai YT, Tang CY. A near-quadratic algorithm for the alpha-connected two-center

problem. Journal of information science and engineering. 2006 Nov 1;22(6):1317.
18. Huang PH, Te Tsai Y, Tang CY. A fast algorithm for the alpha-connected two-center decision

problem. Information Processing Letters. 2003 Feb 28;85(4):205-10.
19. Hwang RZ, Lee RC, Chang RC. The slab dividing approach to solve the Euclidean P-Center prob-

lem. Algorithmica. 1993 Jan 1;9(1):1-22. SIAM Journal on Applied Mathematics. 1979 Dec;37(3):513-
38.

20. Katz MJ, Sharir M. An expander-based approach to geometric optimization. SIAM Journal on
Computing. 1997 Oct;26(5):1384-408.

21. Khuller S, Sussmann YJ. The capacitated k-center problem. SIAM Journal on Discrete Mathemat-
ics. 2000;13(3):403-18.

22. Lim A, Rodrigues B, Wang F, Xu Z. k-Center problems with minimum coverage. Theoretical Com-
puter Science. 2005 Feb 28;332(1-3):1-7.

23. Gowda I, Kirkpatrick D, Lee D, Naamad A. Dynamic voronoi diagrams. IEEE Transactions on
Information Theory. 1983 Sep;29(5):724-31.

24. Megiddo N. Linear-time algorithms for linear programming in R3 and related problems. SIAM
journal on computing. 1983 Nov;12(4):759-76.

25. Megiddo N. Applying parallel computation algorithms in the design of serial algorithms. Journal of
the ACM (JACM). 1983 Oct 1;30(4):852-65.

26. Overmars MH, Van Leeuwen J. Maintenance of configurations in the plane. Journal of computer
and System Sciences. 1981 Oct 1;23(2):166-204.

18

http://arxiv.org/abs/2007.08784

27. Sharir M. A near-linear algorithm for the planar 2-center problem. Discrete and Computational
Geometry. 1997 Sep 1;18(2):125-34.

28. Toth CD, O’Rourke J, Goodman JE, editors. Handbook of discrete and computational geometry.
CRC press; 2017 Nov 22.

29. Wang H. On the Planar Two-Center Problem and intersection Hulls. arXiv preprint
arXiv:2002.07945. 2020 Feb 19.

19

http://arxiv.org/abs/2002.07945

Appendix A: A review on the farthest-point Voronoi Diagram of a set
of points and their properties.

For a given set of points A = {ai : 1 ≤ i ≤ m}, the farthest-point Voronoi diagram of A denoted by
F(A) is the partition of the plane into a set of disjoint-interior cells {C(ai) : ai ∈ A} such that C(ai)
is the set of points in the plane for which no point of A is farther from them than ai. We say ai is the
farthest point of C(ai) and call it the site of the cell C(ai). For each point x ∈ C(ai), the weight of x is
defined as its distance to ai and we denote it by w(x). Note that disk(x,w(x)) (the disk with center x
and radius w(x)) covers all the points of A. It is easy to see that ∂F(A) (the set of boundaries between
cells of F(A)) consists of a set of line segments or half-lines, or it is just a line which we call them the
edges of ∂F(A). For each e ∈ ∂F(A), there exists a unique pair (ai, aj) of points of A such that for any
point x on the interior of e, we have dist(x, ai) = dist(x, aj) and no point of A is farther than these
points from x. We call ai and aj the generators of e. Note that e lies on the perpendicular bisector of
the seg(ai, aj) (the line segment connecting ai and aj). If v is an endpoint of e (in this case we call
v a vertex), v has three points in A all farthest from v (and no more because of our assumption that
no four points are on a circle). We also call these points the generators of v. Given a start and an end
point on ∂F(A), its corresponding path on ∂F(A) is the portion of ∂F(A) between two points directed
from the start point toward the end point. Note that such a path is unique otherwise a cell of the F(A)
would be bounded which is not possible [28].

Observation 3 The center of the minimum enclosing disk of A is the minimum weight point on ∂F(A).

We call the center of the minimum enclosing disk of A the root of ∂F(A) and it is unique.

Proposition 7 Let p = [r, b] be a path on ∂F(A) where r is its root. Then, the weight of the points on
p change monotonically increasing from r to b.

Proof. First, note that the root is unique. So, for each edge e in the path with generators ai and aj ,
the midpoint of seg(ai, aj) can not lie on the interior of e. On the other hand, e is a subset of the
perpendicular bisector of seg(ai, aj) and the weight of each point on e is its distance to ai (which is
the same as its distance to aj). So, the weight on e should change monotonically as we move from one
of its endpoints to another. Now, suppose that the proposition is not true. Then, there must be a first
edge ht (direction is along p) on the path such that as we move from h to t, the weight decreases. This
means that the vertex h should have local maximum weight on the path which is contradiction because
if we slightly move from h, the distance with one of its generators should be increased. �

The intersection hull of A at radius r is defined as ∩a∈Adisk(a, r). Lets denote the intersection hull
of A at radius r by HA(r). We can easily see that HA(r) is composed of a set of circle arcs with radius r
with end points at the edges of ∂F(A). So, if we start from the leftmost endpoint of H(r) and traverse
its arcs clockwise, we obtain a unique sequence of arcs. We refer to this sequence as the arc-sequence
of HA(r) and denote it by Seq(H(r)). Let x be a vertex of HA(r). Suppose that x lies on an edge e
of F(A). We call the half-line from x along e that does not intersect the interior of HA(r) the arm of
HA(r) from x. See Firgure 7.

20

Fig. 7. The farthest-point Voronoi diagram of a set of points and its intersection hull at some radius r.

21

Appendix B: Proofs

Proof of Proposition 4. First, we prove that D∗1 should have a pair of dominating points each on the
different sides of line(c∗1, c

∗
2). Note that if D∗1 has three dominating points on one side of line(c∗1, c

∗
2),

their induced triangle can’t cover c∗1 and based on our general assumption such situation can’t happen.
Now, suppose that D∗1 has two dominating points d1 and d2 both on a same side of line(c∗1, c

∗
2). Because

D∗1 is not MED (it has only two dominating points), the distance between c∗1 and c∗2 should be exactly
δ (otherwise, move c∗1 toward the dominating points to get better solution). Because d1 and d2 are on a
same side of line(c∗1, c

∗
2), the region R := disk(d1, r

∗) ∩ disk(d2, r
∗) ∩ disk(c∗2, δ) is not empty. So, if we

slightly move c∗1 into R, we would get a better solution which is contradiction (See Figure 8).

Fig. 8. If d1 and d2 are on a same side of line(ci,j+ , ci,j−), (Di,j
− , D

i,j
+) can’t be best optimal

For the second statement, again if D∗1 has three dominating points such that no pair of them inter-
sect seg(c∗1, c

∗
2), their induced triangle can not contain c∗1 which is contradiction. Now, suppose that D∗1

has two dominating points d1 and d2 such that their connecting segment intersect seg(c∗1, c
∗
2). Because

seg(d1, d2) has non-empty intersection with the interior of disk(c∗2, δ) and this disk is tangent to c∗1, we
can slightly move c∗1 toward the mid-point of seg(d1, d2) while we are still inside disk(c∗2, δ) to get a
better solution. �

Proof of Proposition 5. 1,2) We prove the first statement and the second statement is similar.
Because M+[i, j] is non-critical, its dominating points make a triangle for ci,j+ (their induced triangle

covers ci,j+). On the other hand, P i,j+ ⊂ P i
′,j′

+ . So, Di′,j′

+ contains the dominating points of Di,j
+ and

its radius should be greater or equal than Di,j
+ which gives Proposition. 3) Suppose M+[i, j] is critical

and M+[i, j] > radius(Di,j
−). Then, we can slightly move both centers toward the dominating points

of Di,j
+ and get a solution with reduced cost which contradicts best optimality of (Di,j

+ , Di,j
−) 4) If

M+[i, j] > radius(Di,j
−), based on case 3, M+[i, j] should be non-critical while we assumed it is critical.

5) If d(ci,j− , c
i,j
+) < δ, we can slightly move ci,j+ toward the dominating points of Di,j

+ without violating

the PCC and reduce the radius of Di,j
+ which again contradicts best optimality. �

22

Appendix C: Proof of the Theorem 1

Lets x and y be two points in the plane. We recall that the directed line passing from x and y directed
from x to y is denoted by line(x, y). Also, we denote the half-line from x passing y by half -line(x, y).
In this section, when we say first, second, third and fourth quarter of a point t with respect to some
directed line l we mean the first, second, third and fourth quarter of the plane when we consider t as
the origin and the directed line parallel to l passing t as the x-axis. We prove the theorem by providing
several propositions. For simplicity, when we assign a letter to a geometric object inside a proof, the
scope of that notation is only inside that proof and we may assign that letter to another object later. In
addition, when we state a proposition or observation, we mean if the proposition or observation is false,
the statement is either impossible or the theorem follows. So, we can assume that after a proposition or
observation, its statement is always true. Also, when we say one disk is smaller than another disk, we
mean smaller or equal. Let c be the center of some disk D. We say that a set of three points T make
a triangle for c if their induced triangle covers c and any disk that covers T has a radius greater than
radius(D).

Observation 4 Let d1 and d2 be the dominating points of Di,j
+ . Then for any point t /∈ Di,j

+ inside the

cone induced by two half-lines from ci,j+ along line(d1, c
i,j
+) and line(d2, c

i,j
+) containing ci,j− , the points

d1d2t makes a triangle for ci,j+ .

A similar statement is also true for Di,j
− and their dominating points. Figure 9 shows an example for

Observation 4.

Fig. 9. d1, d2 and x make a triangle for ci,j+

Let M+ [̂i, j̄] be a given doubly-marked element. Also, let M+ [̄i, j̄] and M+ [̂i, ĵ] be the elements for
which we marked M+ [̂i, j̄] when we evaluated them in the top-right and bottom-left initial searches

respectively. For simplicity of notation, henceforth we denote Dî,j̄
+ , Dî,j̄

− , cî,j̄+ and cî,j̄− by D′+, D′−, c′+

and c′− respectively. Similarly, we denote Dī,j̄
+ , Dī,j̄

− , cī,j̄+ , cī,j̄− by D̄+, D̄−, c̄+, c̄− and Dî,ĵ
+ , Dî,ĵ

− , cî,ĵ+ ,

cî,ĵ− by D̂+, D̂−, ĉ+, ĉ− respectively. Note that based on our assumptions all of these disks has exactly
two dominating points.

We denote the dominating points of D̄+ by a and b, D̄− by x and y, D̂+ by c and d, D̂− by w and
u, D′+ by h1 and h2 and finally D′− by h′1 and h′2. Let a and c be the two dominating points of D̄+ and
D̂+ who lie on the opposite side of x and w with respect to line(c̄−, c̄+) and line(ĉ−, ĉ+) respectively.

Note that h′1 and h′2 should be in both P ī,j̄− and P î,ĵ− (because if they are in the positive side, they can’t

be dominating points of D′−). a, b, c and d should be in P î,j̄+ and so covered by D′+ (because we only add
points to the positive side when we walk on M+ from left to right or top to bottom). Also, suppose that
x and w are the dominating points of D̄− and D̂− respectively who are moved to the positive side in the

(̂i, j̄)-partition. So, we can assume that y and u are not in P î,j̄+ . This is because if for example y ∈ P î,j̄+ ,
D′+ should cover a, b, x and y which are the all dominating points in the pair (D̄−, D̄+). This means

23

that the radius of D′+ and any positive disk of (i′, j′)-partition with i′ ≥ î and j′ ≥ j̄ is greater than
the radius of D̄− and so, we can discard them and the theorem follows (cases 2 and 3 in the theorem).
Note that x is p-type and w is q-type (because x(resp. w) is moved to the positive side when we walk

on a column(resp. row) of M+) also y, u should be covered by D′−. Furthermore, x ∈ P î,ĵ+ because x is

p-type and if x ∈ P î,ĵ− , we can not bring it into the positive side in the (̂i, j̄)-partition by walking on

the îth-row. Similarly, w ∈ P ī,j̄+ . We assume that u is covered by D̄− because if u ∈ P ī,j̄+ , then u should

also be in P î,j̄+ which means D′+ would cover c, d, w, u and the theorem follows. Similarly, y should be

covered by D̂−. Note that the intersection of the disks are non-empty because we are in the nearby
case. So, we can consider a point inside the intersection of the disks and have an angular clockwise and
counter-clockwise order for all the dominating and intersection points of the disks. We consider two
cases for M+ [̂i, j̄] and prove the theorem for each case separately.

Case 1: M+ [̂i, j̄] > max{M+ [̄i, j̄],M+ [̂i, ĵ]}

According to Proposition 4 part 2, both h′1 and h′2 can’t be on D′+. Let h′1 be the one outside D′+ (the
case h′2 is outside D′+ is similar). We show that h′1h1h2 makes a triangle for c′+. Suppose not. Based on
Observation 4, for one of h1 or h2 namely h2, h′1 should be on the opposite side of h2 with respect to
line(c′−, c

′
+) (see Figure 10). Also, h′1 and c′− should lie on opposite sides of line(h2, c

′
+). Note that h2

should lie outside of D′− otherwise, we can’t place h′1 having these conditions.
Without loss of generality, we assume that h1 is p-type (the case h1 is q-type is similar). Because

h1 is p-type, h1 ∈ D̂+ (if h1 was q-type, we would have h1 ∈ D̄+). This is because when we traverse on
a row, we only move q-type points to the positive side. On the other hand, both h′1 and h′2 should be
covered by D̂−. Based on this situation, we have two sub-cases:

sub-case 1: h2 ∈ D̂+. In this sub-case, because {h′1, h′2} ∈ D̂− and {h1, h2} ∈ D̂+, M+ [̂i, j̄] can’t
be greater than M+ [̂i, ĵ] which is contradiction.

sub-case 2: h2 ∈ D̂−. Let t be the intersection point of half -line(h2, c
′
+) and D′+ (see Figure 10).

Note that D̂− covers h′1 and it can not cover t (because it is smaller). So, ĉ− should lie on the side of

line(h2, c
′
+) that has h′1. Also, D̂− covers all points of P î,j̄− . Now, h′1 should be on the third quarter of

c′+ with respect to line(h2, c
′
+). This is because h′1 is outside D′+ (the way we chose h′1) and h2 is on the

opposite side of line(c′−, c
′
+) with respect to h′1. Also, h′1 and h′2 are on opposite sides of line(h2, c

′
+)

(because of Proposition 4). Now, for any point z inside D̂−, if h′1z intersects the half -line(c′−, c
′
+), it

can’t be h′2 (again Proposition 4 second part) and if it doesn’t, |zc′−| < |h′1c′−| = M+ [̂i, j̄] which again
means that z can’t be h′2. So, we don’t have any place for h′2 which is contradiction (see Figure 10).

Fig. 10. Proof of Sub-case 2 in Case 1.

24

Case 2: M+ [̂i, j̄] ≤ max{M+ [̄i, j̄],M+ [̂i, ĵ]}

In this section, we assume that M+ [̂i, j̄] ≤ M+ [̄i, j̄] and the case M+ [̂i, j̄] ≤ M+ [̂i, ĵ] is similar. Hence-
forth, we consider line(c̄−, c̄+) as the x-axis unless we say otherwise. We consider two sub-cases based
on the position of x with respect to D̄+. For simplicity, when we provide a proposition within each case
or sub-case, we include the assumptions of the case or sub-case in the proposition.

Sub-case 1: x /∈ D̄+.

In this sub-case, we assume that x is below line(c̄−, c̄+) and the case x is above the line is simi-
lar.

Proposition 8 c′+ should be on the lower-right of c̄+.

Proof. D′+ should cover a, b and x. Based on Proposition 4, a and b should be on different sides of
line(c̄−, c̄+) and a should be on the first quarter with respect to c̄+ and thus, outside of D̄− (otherwise,
because of Proposition 4 part 2, b should be on the right side of c̄+. Now, x /∈ D̄+ and D′+ should contain
the triangle 4abx which contradicts D′+ is smaller than D̄+). If c′+ is on the lower-left of c̄+, D′+ can’t
cover a while it is smaller than D̄+. If c′+ is on the top-left of c̄+, it should be above line(a, c̄+) and b
should be below this line on ∂D̄+. This implies that D′+ can’t cover a, b and x while being smaller than
D̄+ (see Figure 11 for such situation). If c′+ is on top-right c̄+, its distance from x would be greater
than the radius of D̄+ which is again not possible. �

Fig. 11. Proof of Proposition 8.

An immediate corollary of the above proposition is that c′− can’t be on the lower-left of c′+ otherwise,
given the fact that y is above line(c̄−, c̄+) and y /∈ D′+ (otherwise D′+ would have a, b, x, y which are all
dominating points of D̄− and D̄+ and so can’t be the smaller disk) D′− can’t cover y.

Observation 5 x and c̄− should lie on different sides of line(a, c̄+).

The reason of the above observation is that because a /∈ D̄− and x is below line(c̄+, c̄−), if x lies on the
right side of line(a, c̄+), axb would be a triangle for c̄+ which contradicts the assumption that D′+ is
smaller than D̄+. Also, xa can’t intersect half -line(c̄+, c̄−) otherwise, abx would be a triangle for c̄+ and
again contradicts that D̄+ is the smaller disk. Henceforth, we denote the upper and lower intersection
points of ∂D̄− and ∂D̄+ by I1 and I2 respectively. Also, let o be the mid-point of c̄−c̄+ and I3 be the
intersection of half -line(c̄−, c̄+) and ∂D̄+.

Proposition 9 c′− can’t be on the right side of c′+.

25

Proof. Suppose not and c′− is on the right side of c′+. First note that c′− can’t be on the lower-right
of c′+ otherwise D′+ ∪ D′− can’t cover both y and x while they are smaller (because of Proposition 4
part 2 between x and y). So, suppose that c′− lies on the top-right of c′+. First note that h′2 can’t be
above line(c̄+, c̄−). To see why, let ε be the difference of the x-coordinates of c′+ and c′−. Also let h be
minimum difference of the y-coordinates of c′− and c′+ in order to have h′2 above line(c̄+, c̄−). In order
to keep the PCC, we need to have h <

√
δ2 − ε2 but h ≥

√
r2 − (r − δ − ε)2 (just assume that c′+ lies

on line(c̄+, c̄−) and use the fact that D′+ should cover I3 to get the bound) which is not possible. On
the other hand, h′1 should come after y in the counter-clockwise order because D′− needs to cover y. So,
by adding h′1 to the positive side, any disk covering x, a, h′1 should also cover h′2 which means its radius
would be bigger than M+ [̂i, j̄] and so we can discard based on Theorem 1 (see Figure 12). �

Fig. 12. Proof of Proposition 9. The positions of h′1 and h′2 with respect to c′− (note that we relaxed
the condition that y should be covered by D′− to make the figure clear)

We know that y /∈ D′+. This is because if y ∈ D′+, D′+ would have a, b, x, y which are the all
dominating points of the solution of M+ [̄i, j̄] and so can’t be the smaller disk. On the other hand, both
h′1 and h′2 should be in D̄−. Let h′1 be the first dominating point after y in the counter-clockwise order.
We recall that h′1 should be outside D′+ (otherwise, it contradicts Proposition 4). From Proposition 9,
we know that c′− is on the left side of c′+. Also, note that c′− can’t be below c′+ otherwise D′− can’t
cover y (consider Proposition 4 between x and y). So, the intersection point of half -line(c′−, c

′
+) and

∂D′+ should lie on the forth quarter with respect to o. This implies that one dominating point of D′+
namely h1 lies after a in the angular counter-clockwise order and the other h2 before x.

We consider two cases. First, assume that h′1 is on the right side of line(c′+, c
′
−). In this configuration,

because c′+ is on the lower-right of c̄+ and Proposition 4 for x and y, after adding h′1 to the positive
side, we always have 4h1h2h

′
1 around c′+ and so we can discard (see Figure 13 (a)). Now, assume that

h′1 is on the left side of line(c′+, c
′
−). In this case, because a is above c̄+ and h1 is after a in the order,

the intersection of half -line(h1, c
′
+) and D′− should be below c′+. Now, if h′1 is above c′+, we again

have triangle 4h′1h1h2 for c′+ and thus we can discard. Otherwise, half -line(h′1, c
′
−) should intersect

∂D′− inside D̄− (otherwise there would be no place for h′2). Now, let t be the point on ∂D′− with same
y-coordinate as c′− on the left side of it (see Figure 13 (b)). Because h′1 is below c′−, t should lie inside
D′− but in order to have this condition dist(c′+, c

′
−) should be greater than δ which is not possible.

Sub-case 2: x ∈ D̄+.

In this sub-case, because x ∈ D̄+, y should be outside of D̄+ and left side of c̄− and indeed on
∂convex-hull(P). Similar to the previous sub-section, let h′1 be the first dominating point of D′− that
appear after y in the counter-clockwise order which should be outside D′+.

Observation 6 c′+ lies on the right side of c̄+.

26

Fig. 13. (a) h′1 is on the right side of line(c′+, c
′
−). (b) when t is inside D̄−, dist(c′−, c

′
+) would be greater

than δ.

This is because if c′+ is on the left side of c̄+, there would be no place for a and b such that ab does
not intersect the half -line(c̄+, c̄−) while keeping D′+ the smaller disk. Similar to Proposition 9 we can
assume that c′− is on the left side of c′+ otherwise h′2 should be covered by any disk covering a, b and x.
Now, let z1 and z2 be the two intersection points of ∂D′− and ∂D′+ where z1 appears first in the counter-
clockwise order from y. Also, let R(z1) and R(z2) be the portions of ∂D′− between two perpendicular
lines from c′− and c′+ on line(c′−, c

′
+) around z1 and z2 respectively (see Figure 14)

Proposition 10 h′1 does not intersect R(z1) and R(z2).

Proof. We first show that h′1 does not intersect R(z2). We proceed by contradiction and suppose that
h′1 ∈ R(z2). Let t1 be the intersection point of ∂D̄− and D̄′− which comes first after y. In this situation,
t1 should also be in R(z2). Also, let t2 be the first intersection point of the half-line passing from t1
parallel to line(c′−, c

′
+) and ∂D′+ (see Fig 14 (a)). Now, t2 should be outside D̄− because t2 ∈ R(z1)

and the positive slope of line(c′−, c
′
+) (in order to have have t1 inside R(z2)). On the other hand, D′+

has both t2 and x. If t2x intersect the half -line(c̄−, c̄+), |t2x| should be greater than M+ [̄i, j̄] which is
contradiction. Otherwise, D′+ should have a, b, x, t2 which again make it bigger than M+ [̄i, j̄] (consider
a pair of disks with centers c̄+ and c̄− and dominating points {a, b} and {x, t2} respectively) .

Now, we prove that h′1 can’t intersect R(z1). Let q be the last point of R(z2) in the counter-clockwise
order. (see Figure 14 (b)).

Fig. 14. An example of configuration of points for Proposition 10. Note that in this figure, we relaxed
the condition that x should be covered by D′+ in order to illustrate situations where h′1 lies inside R(z1)
and R(z2).

27

If h′1 lies onR(z1), h′2 needs to lie between q and D̄− on ∂D′− in order to not intersect half -line(c′−, c
′
+).

But, q is outside D̄− because the right intersection point t of D̄− and D′− is below c′− (this is because
the PCC. Precisely, if ζ is the difference between the radii of D′− and D̄−, c′+ should lie at least ζ to
the right of c̄+ to cover a and b. This implies that c′− should also lie at least ζ to the right of c′− to keep
the PCC which make t below c′−) there is no place for h′2 inside D̄− which is contradiction. �

Consider an (i, j)-partition. Let’s call the (convex)cone obtained by m as its vertex and the separa-
tor half-lines from m as its sides the (i, j)-cone. If the positive direction of the m-line is in the cone,
we say the cone is positive otherwise we say it is negative. We say two points z1, z2 in P i,j− (resp. P i,j+)

make a cut for z3 ∈ P i,j+ (resp. z3 ∈ P i,j−) in a positive(resp. negative) (i, j)-cone, if z1z2 intersects both
the sides of the cone and does not separate z3 from m in the cone. See Figure 15 for an example of a
cone and a cut for it.

Fig. 15. A negative cone. z1, z2 make a cut for z3.

Observation 7 If two point z1 and z2 in P i,j+ (resp. P i,j−) make a cut for a point z3 in P i,j− (resp

P i,j+) in a negative(resp. positive) (i, j)-cone, then if z3 is not covered by convex-hull(P i,j+) (resp.

convex-hull(P i,j−)), then m can not be covered by convex-hull(P).

The reason of the above observation is that if z3 is not covered by convex-hull(P i,j−), there is a line that
separates this convex hull and m. Now, by adding the points inside the cone to the convex hull, we just
move this separating line closer to m but this line can never reach m.

In order to discard a sub-row or a sub-column of M+ [̂i, j̄] according to Theorem 1, we need to consider
different configurations of the points in the (̂i, j̄)-partition. Because x can be above or below line(c̄−, c̄+),
in order to cover these cases, we can assume that x is below line(c̄−, c̄+) but the m-line can take the
both possible directions. Let h1 be the dominating point of D′+ on the right side of line(c′+, c

′
−) and h2

be the other one. We proceed the following cases based on the position of the m-line with respect to y
and h′1:

1) Both h′1 and y are on the left side of the m-line: Based on Proposition 10 h′1 is on the boundary
of convex-hull(D′− ∪ D′+) and because x ∈ D̄+, y is also on the boundary of convex-hull(D̄− ∪ D̄+).
Now, because all points in P are covered by the two convex hulls, both y and h′1 should be on the
boundary of convex-hull(P). So, if y, h′1 are on the left side of the m-line, because m ∈ convex-hull(P)
and h′1 and h′2 has different types (and so the m-line should pass between h′1 and h′2), when we add
h′1 to the positive side, we first need to add y to the positive side and then h′1 (see Figure 16). Which
means that after adding h′1, the positive side has a, b, x, y which are the all dominating points of D̄−
and D̄+. This implies that any covering disk of them should have a radius greater than M+ [̄i, j̄] and so,
we can discard the rest of the row or column of M+ [̂i, j̄] based on the type of h′1.

2) h′1 and y are on the left and right sides of the m-line respectively: Based on Proposi-
tion 10 both h′1 and y are on the convex hull of the points. Now, one of a or b should also be on
convex-hull(P) which means it is not possible to add both of them to the positive side before either

28

Fig. 16. In order to add h′1 to the positive side, we first need to add y to the positive side.

adding y or h′1 to the positive side which is not possible.

3) h′1 is on the right side of the m-line: We consider two cases: First, suppose that h′1 lies on
the right side of line(c′+, c

′
−). Now, if h2 lies on the right side of line(h′1, c

′
+), then adding h′1 makes a

triangle 4h′1h1h2 and we are done. Otherwise, h2 should be on ∂convex-hull(D′− ∪ D′+) (because of
Proposition 10) and so the points h′1, y and h2 would be on ∂convex-hull(P). Now, if h2 and h′2 has
different types, h2 and h′1 should have a same type (because h′1 and h′2 had different types based on
our assumption) and so on a same side of the m-line. In this case, because y lies on the right side of
line(h2, h

′
1) and both h′1 and h2 lie on the right side of the m-line, because h′2 should lie on the left side

of the m-line, y should also lie on the right side of the m-line. In this situation in order to add h2 to the
positive side, we need to add h′1 and y to the positive side first which is not possible. This argument
implies that h′2 and h2 have a same type. Because h2 needs to be added to the positive side before h′2,
m should be on the left side of line(h2, h

′
2) but in this situation, after adding h′1 to the positive side, we

would have negative cone h′1mh2 and h′1h2 makes a cut for h′2 (h′2 lies on the right side of line(h′1, c
′
−)

to satisfy Proposition 4) which implies that any disk covering h′1 and h2 should also cover h′2 which
means we can discard (see Figure 17 (a)).

Fig. 17. h′1 is on the right side of the m-line. (a) h′1 is on the right side of line(c′+, c
′
−). (b) h′1 is on the

left side of line(c′+, c
′
−).

29

Now, suppose that h′1 is on the left side of line(c′+, c
′
−). Again, if h1 is on the left side of line(h′1, c

′
+),

adding h′1 makes triangle 4h′1h1h2 and we can discard. So, we assume that h1 is on the right side of
line(h′1, c

′
+). Note that here h′2 can’t lie above c′− because of PCC (similar to the argument of point t in

the proof of Proposition 10) which implies c′− is above c′+ (otherwise, there would be no place for h′2).
Now, if a ∈ D̄−, by adding h′1 to the positive side, any disk smaller than D̄+ covering h1, a, h

′
1 should

also cover h′2. This is because h′2 is on the left side of line(h′1, c
′
−) and the portion of the disk in the

first quarter of o would be outside of D̄+ (in order to cover a) and so we can discard. Let’s assume that
a /∈ D̄− and so on ∂convex-hull(P). On the other hand, because h1 is inside D̄+, b should also lie on
convex-hull(P) (see Figure 17 (b)). Now, if b is on the left side of line(y, c̄−), x, y make triangle for c̄−
with both a, b (because x ∈ D̄+) and so, we could discard in the initial search. But if b lies on the right
side of line(y, c̄−), because h′1 is after y in the counter-clockwise order, it is not possible to cover three
points h′1, a, b with a radius smaller than M+ [̂i, j̄] and so again we can discard.

30

	An Efficient Algorithm for the Proximity Connected Two Center Problem

