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Abstract

In the area of graph drawing, the One-Sided Crossing Minimization Problem (OSCM)
is defined on a bipartite graph with both vertex sets aligned parallel to each other and
all edges being drawn as straight lines. The task is to find a permutation of one of the
node sets such that the total number of all edge-edge intersections, called crossings, is
minimized. Usually, the degree of the nodes of one set is limited by some constant k,
with the problem then abbreviated to OSCM-k.

In this work, we study an online variant of this problem, in which one of the node
sets is already given. The other node set and the incident edges are revealed iteratively
and each node has to be inserted into placeholders, which we call slots. The goal is
again to minimize the number of crossings in the final graph. Minimizing crossings in
an online way is related to the more empirical field of dynamic graph drawing. Note
the slotted OSCM problem makes instances harder to solve for an online algorithm but
in the offline case it is equivalent to the version without slots.

We show that the online slotted OSCM-k is not competitive for any k ≥ 2 and
subsequently limit the graph class to that of 2-regular graphs, for which we show a
lower bound of 4/3 and an upper bound of 5 on the competitive ratio.

1 Introduction

Online algorithms were introduced by Sleator and Tarjan [16] to solve problems for which the
instance is piecewise revealed to an algorithm, which must make some irrevocable decision
before the next element of the instance is presented. Online algorithms are classically ana-
lyzed using competitive analysis, where the performance of an online algorithm is compared
to that of an optimal offline algorithm working on the same instance. The worst case ratio
between any online algorithm and the optimal offline solution is the competitive ratio of a
problem. For a deeper introduction to online algorithms and competitive analysis we refer
the reader to the reference books [2, 8].

In graph drawing problems, given a graph, one usually wants to embed the graph into
some space with limited dimensions. The most common and practical examples are on the

1

http://arxiv.org/abs/2201.04061v1


Euclidean plane. It is also usual to try to embed such graphs in a way that minimizes the
number of edges that cross each other, i.e., their depictions overlap in a point that is not
occupied by a vertex. If a graph can be embedded in the Euclidean plane without any
crossings, we say the graph is planar. A survey on graph drawing and crossing minimization
can be found in [1, 14].

One common way to depict bipartite graphs is by arranging the vertices in each partition
on a straight (horizontal) line, making the lines for the two partition sides parallel. In
this scenario, the edges are drawn vertically from one side of the partition to the other as
straight segments. The problem of minimizing the crossings in this scenario is reduced, thus,
to properly ordering the vertices in each partition. However, in some practical applications
it is enough to restrict ourselves to ordering one set of the partition (the free side), while the
other set remains fixed (the fixed side). It is also usual to restrict the degree of the vertices
in the free side [10, 9] This (one sided) problem is formally defined as follows.

Definition 1. Given a bipartite Graph G = (S∪̇V,E). Let the nodes of S and V be aligned
in some ordering on straight lines parallel to each other, where S is on the top line and V on
the bottom line. Let the edges E be drawn as straight lines only. Let the degree of the nodes
of S be bound by some k ∈ N. The One-Sided Crossing Minimization Problem (OSCM-k)
is defined as the problem of finding a total ordering of the nodes of S such that the number
of resulting edge crossings in the graph is minimized.

We will assume that the ordering of V is part of the instance and fixed, such that we can
label and reference the nodes of V with ascending natural numbers, starting from the “left”.
If |S| = |V |, we sometimes speak of nodes “above” and “below” one another, by assuming
that the nodes on both lines are drawn equidistantly.

1.1 Related Work

The OSCM problem has already been extensively studied in the past under different names,
such as bipartite crossing number [6, 14], crossing problem [4], fixed-layer bipartite crossing
minimization [9] and others. Eades and Wormald [4] showed that the OSCM problem is
NP-complete for dense graphs, while Muñoz et al. [10] showed NP-completeness for sparse
graphs. Muñoz et al. also introduced the OSCM-k and showed that the OSCM-2 can be
solved optimally using the barycenter heuristic.

Li and Stallmann [9] showed that the approximation ratio of the barycenter heuristic is
in Ω(

√
n) on general bipartite graphs and also proved that OSCM-k admits a tight k − 1

approximation. Nagamochi presented a randomized approximation algorithm for general
graphs [11] and another approximation algorithm for bipartite graphs of large degree [12].

Further researching the complexity, Dujmović and Whitesides [3] first showed that OSCM
is fixed parameter tractable, i.e., it can be solved in f(k)nO(1), where the parameter k is the

number of crossings. The currently best known FPT running time is O(3
√
2k+n) and was

given by Kobayashi and Tamaki [7].
To the best of our knowledge, the field of online analysis on crossing minimization is

hardly researched. A closely related problem arises in the field of graph drawing, called
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dynamic graph drawing. Here, the task is to visually arrange a graph that is iteratively
expanded over time. The visualization follows certain empirical criteria to make the data
comprehensible, where crossing minimization is one of these criteria. For a survey regarding
dynamic graph drawing, see [15]. Dynamic graph drawing has many applications, for in-
stance, Frishman and Tal [5] present an algorithm to compute online layouts for a sequence
of graphs and its application in discussion thread visualization and social network visualiza-
tion. In another example, North and Woodhull [13] focus on hierarchical graph drawing, a
more restricted graph class that needs to be visualized in a tree-like fashion, which overlaps
with our topic regarding applications. While one of the most mentioned applications of the
offline OSCM is wire crossing minimization in VLSI this is arguably less applicable when
looking at an online version of the problem. However, the results of an online analysis can
be helpful for the application fields of graph drawing, e.g., software visualization, decision
support systems and interactive graph editors.

While dynamic graph drawing and online graph problems are similar in that parts of the
graph are revealed in an iterative fashion and not previously known, a central difference is
that in dynamic graph drawing the manipulation of previous decisions is usually allowed.
This is not the case in the classical online model. Thus, while theory and practice are
looking at similar problems, and are following the same goal of aesthetic graph drawings,
the methods to achieve this goal are different.

1.2 Our Contribution

In this paper, we look at the online version of the OSCM-k problem. Observe, that the online
version of OSCM-k can be defined in two different ways. The first version is the online free
OSCM-k, where given a bipartite graph (S∪̇V,E), an algorithm initially sees a fixed set of
vertices V , and then, in each step a request appears for a subset of vertices Ri ⊆ V , which
must be made adjacent to a vertex in S. Thus, after the arrival of the request Ri, one has
to place a vertex si ∈ S on the top line and adjacent to the vertices in Ri. In this version,
one chooses the partial ordering of si with respect to the other vertices already present in S.

The online free OSCM-k problem is solvable with a competitive ratio of at most k − 1,
using the same barycenter algorithm as in the offline case [9].

In this paper, we focus on a different version of this problem, which we call the online
slotted OSCM-k, which is formally defined as follows.

Definition 2. Given a vertex set V , a request sequence for online slotted OSCM-k is a
sequence R1, . . . , Rn of subsets of V , each of size k. The set of vertices S is initiated as
S = {s1, . . . , sn}. Initially there are no edges between S and V . Once a request Rj ⊆ V
arrives, an online algorithm solving online slotted OSCM-k chooses a vertex si without any
edges, and places an edge between si and every vertex in Rj . The goal is to minimize total
number of crossings.

The slotted OSCM-k is a model that follows the aesthetic paradigms of the area of dy-
namic graph drawing, where the so-called mental map and human readability is sustained.
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The term mental map describes the goal to make current visualization of the graph recog-
nizable in later iterations of the graph. Compared to the free OSCM-k no upper or lower
bound on the competitive ratio is known.

We call the vertices si ∈ S slots moving forward. If a request Rj ⊆ V is fulfilled by
adding edges between every vertex in Rj and slot si we say that request Rj is assigned to
slot si. Moreover, we call a slot si unfulfilled or free if no request has been satisfied using
this slot, thus the slot has no edges yet. Correspondingly, a fulfilled slot si is a slot in S with
edges to a subset Rj ⊆ V .

Online slotted OSCM-k has the advantage of knowing in advance the number of requests.
However, one has the distinct constraint that, once two consecutive slots are fulfilled, the
algorithm will not be able to assign any request to a vertex between the fulfilled slots, as
such a vertex does not exist.

We prove, that online slotted OSCM-k is not competitive for any k ≥ 2 in general graph
classes. However, if we focus on 2-regular graphs, we prove that this problem has a constant
competitive ratio. In particular, we prove a lower bound of 4/3 in this case, and then present
an algorithm with a competitive ratio of at most 5 as an upper bound.

2 Lower Bounds on General Graphs

We begin by looking at online slotted OSCM-k on general graphs, and show that for every
non-trivial value of k, i.e., k ≥ 2, there is no algorithm with a constant competitive ratio.

Theorem 1. There is no online algorithm with a constant competitive ratio for online slotted
OSCM-k, for any k ≥ 2.

Figure 1: Theorem 1: An algorithm is presented the requests colored in blue first. Some slot
has to be left open for which the request associated with the red edges is given.

Proof. Let us consider an algorithm A solving online slotted OSCM-k. Given the initial
sets of vertices V = {v1, . . . , vn} and slots S = {s1, . . . , sn}, A is presented the following
request sequence: {v1, v2}, {v2, v3}, . . . , {vn−1, vn}. Assume without loss of generality that A
has assigned these requests to slots in S without producing a single crossing. Since we have
n requests to fill n slots with, and A has only one unfulfilled slot si for some i ∈ {1, ..., n},
the last request will be assigned to si. We assume, without loss of generality, that i ≤ ⌈n

2
⌉.

The adversary now presents the request {vn−1, vn} as the last request of the input. This
results in at least 2 · 2 · (n

2
− 1) crossings as opposed to the optimal solution, which only

results in a single crossing as depicted in Figure 1. The competitive ratio is thus at least
2·2·(n

2
−1)

1
= 2n− 4 and therefore not bounded by any fixed constant c.
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If we closely look at the proof, we see that the proof relies on the adversary being able to
freely choose the degrees of the vertices in V . If we would require the degree of the vertices
in V to be defined in advance, the same strategy would not work. Thus, it makes sense to
look at graph classes where the degree of the vertices in the graph is fixed, in particular,
regular graphs.

In what follows we focus, on online slotted OSCM-2 on 2-regular graphs, as this particular
case is already hard to analyze, and we prove that the competitive ratio is within the range
between 4/3 and 5.

We conjecture that for any higher degree, online slotted OSCM-k on k-regular graphs
would also have a constant competitive ratio, with the constant depending on k. One can
observe, that a higher vertex degree means that even optimal solutions must have a lot of
crossings. Thus, even when an online algorithm makes a sub-optimal choice, the number of
crossings of the optimal solution that it is compared to should compensate for the mistakes.

3 Lower Bound for 2-Regular Graphs

We begin by proving a lower bound for the competitive ratio of online slotted OSCM-2 on
2-regular graphs.

It is important to note that an offline algorithm can find an optimal solution in a greedy
fashion, as we will see in Lemma 1. In the following lower bound, we prove that online
algorithms cannot find an optimal solution, greedily or otherwise. The difficulty is that
a request cannot be assigned in between two consecutive fulfilled slots. Thus, an online
algorithm has to fulfill a request by assigning it to a sub-optimal slot. An example of such a
situation is depicted in Figure 2. We can use this fact to construct a lower bound for online
slotted OSCM-2 on 2-regular graphs as follows.

x1 x2 y1 y2

sx sy

Figure 2: In this graph, a new request Ri = {x2, y1} appears. This request cannot be
fulfilled optimally. An assignment between sx and sy would be optimal, but there is no free
slot between them.

Theorem 2. Every deterministic online algorithm, solving the slotted OSCM-2 on 2-regular
graphs, has a competitive ratio of at least 4/3− ε.

Proof. For every node, every algorithm only has a finite amount of slots to insert it into.
Given an empty graph of size n > 6, the adversary will repeat its strategy on the set of the
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{v3, v4}

{v1, v2}, {v2, v4}, {v1, v3}

c ≥ 4/3

any placement

s3 or lower

{v4, v5}, {v3, v5}, {v1, v2}, {v1, v2}

c ≥ 4/3

any placement

s4 or or higher

Figure 3: Theorem 2: All behaviors of any algorithm, when presented with request {v3, v4},
and the resulting competitive ratio of each decision branch, when confronted with this ad-
versarial requests.

five leftmost free nodes, filling up the graph from left to right, until 6 or fewer free nodes
are left in the graph. Given five free slots, the adversary will repeat the strategy depicted in
Figure 3 which we will now describe in detail. For ease of notation, we will denote the five
left-most free slots as s1, . . . , s5 and the five left-most edge-free vertices as v1, . . . , v5.

The adversary starts by presenting the request pair {v3, v4}. We consider two possibilities,
either an algorithm places this request at s3 or smaller, or s4 or higher.

Case 1 (Algorithm assigns {v3, v4} to s3 or smaller): The adversary presents the request
{v1, v2}. We assume, that any reasonable algorithm places the second request to the left of
the first one (on a smaller slot). If an algorithm would place the second request to the right
it directly incurs 4 crossings instead of none.

We branch on three possibilities depending on the free slots after the first two placements.
So, the free slots are either {s1, s4, s5}, {s2, s4, s5}, or {s3, s4, s5}.

The adversary presents the request {v2, v4} and subsequently the request {v1, v3}.
If the free slots are {s3, s4, s5} any assignment of {v2, v4} and {v1, v3} results in at least

7 crossings.
If the free slots are {s2, s4, s5} any assignment of {v2, v4} and {v1, v3} results in at least

4 crossings.
If the free slots are {s1, s4, s5} any assignment of {v2, v4} and {v1, v3} results in at least

5 crossings.
However, an assignment of {v3, v4} to s4, {v1, v2} to s1, {v2, v4} to s3 and {v1, v3} to s2

results in only 3 crossings, where the considered algorithms all have at least four crossings.
Thus, the competitive ratio of any algorithm assigning request {v3, v4} to s3 or lower is at
least 4/3-competitive on these four requests.

Case 2 (Algorithm assigns {v3, v4} to s4 or larger): The adversary presents the request
{v4, v5} followed by {v3, v5} and the two identical requests {v1, v2}.

The assignment of the last two requests to slots s1 and s2 is optimal and generates one
crossing.

The optimal assignment places {v3, v4} to s3, {v4, v5} to s5 and {v3, v5} to s4 resulting
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in two crossings, 3 in total with the last two requests.
However, the algorithms we consider cannot assign {v3, v4} to s3, they assign it to s4 or

higher, these algorithms incur at least 3 crossings for the first three requests, and 4 crossings
in total for the five requests. Thus, they have a competitive ratio of at least 4/3 on these
five requests too, as expected.

Note that in Case 1, the adversary presents only four nodes in total, while in Case 2,
five nodes are used. Independent of which case is used, the adversary can now use the five
left-most free slots and edge-free vertices to repeat this tactic. Once r ≤ 6 slots are left,
the remaining slots are filled up as follows. The adversary presents the following r requests:
{vn−r, vn−r+1}, . . . , {vn−1, vn}. One slot is still free after presenting these requests, and the
last request is {vn−r, vn}. This results in r − 1 ≤ 5 additional, unavoidable crossings.

From the case distinction above and the argument to fill up the rest of the graph, one can
easily verify that the competitive ratio of every algorithm tends to 4/3 for growing n.

This lower bound proves that no online algorithm for online slotted OSCM-2 on 2-regular
graphs can perform optimally on all instances. In the following, we introduce some notions
that are used to prove an upper bound for the competitive ratio in the same setting.

4 Preliminaries and Notation

In order to prove upper bounds for online slotted OSCM-2 on 2-regular graphs, we need
to first extract some structural properties of this problem. First, we introduce the notion
of propagation arrows, which helps us to lower bound the total number of crossings of the
remaining graph if we only have a partial request sequence. Then, we observe that finding an
optimal placement, involves only looking at the placement of every pair of requests relative
to each other.

The number of crossings of an optimal assignment for a request sequence is the number of
unavoidable crossings of the request sequence. The difference between the number of cross-
ings incurred by an algorithm A, and the number of unavoidable crossings is consequently
the number of avoidable crossings of A on that request sequence.

Consider a 2-regular instance for online slotted OSCM-k with slots S = {s1, . . . , sn} and
vertices V = {v1, . . . , vn}, and a request sequence R1, . . . , Rn. Let us assume that at some
point after the k-th request has been fulfilled by algorithm A, there are fulfilled slots, and
the vertices in V have degree 2, 1 or 0, depending on how many times these vertices have
appeared in requests. Because we know that the final graph will be 2-regular, for those
vertices in V with degree less than two we are still expecting a request that contains the
vertex, and for any unfulfilled slot, there will be a request which will be fulfilled using this
slot.

Intuitively, we use propagation arrows to greedily match unfulfilled vertices to available
slots in a way that minimizes the number of crossings. We can see this through an illustration
in Figure 4. For instance, in an empty graph every vertex vi in V will have two propagation
arrows to the slot si, but once some slots are occupied we take the leftmost vertex with
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v1

s1

v2

s2

v3

s3

v4

s4

v5

s5

v1 v2 v3 v4 v5

s1 s2 s3 s4 s5

Figure 4: Propagation arrows before the first instance and after part of the instance is
fulfilled.

degree less than two and assign a propagation arrow to the left-most unfulfilled slot. We
know that the instance is 2-regular, so for every pair of missing edges of vertices in V there
must be an empty slot. We can define the propagation arrows formally as follows.

First, we know that after k requests for a 2-regular graph, there are n − k unfulfilled
requests, which corresponds to 2(n − k) missing edges. We will double count the missing
edges with the following two lists.

The list of unfulfilled vertices LV of an instance after the k-th request, is an ordered list
that contains every vertex vi ∈ V from smallest to largest at most twice. LV will contain no
copies of a vertex vi ∈ V if it already has appeared twice in the request sequence R1, . . . , Rk,
i.e., if vi has degree 2, LV will contain vi ∈ V once if vi has appeared only once in R1, . . . , Rk,
i.e., if vi has degree 1 in the partially fulfilled graph, finally, LV contains a vertex vi twice if
vi does not appear in R1, . . . , Rk, and thus has degree 0 at that point.

We can, thus, analogously consider the list of unfulfilled slots LS as an ordered list
that contains each unfulfilled slot twice, again from smallest to largest. From the previous
observation it should be clear that |LV | = |LS|.

Definition 3. Consider a 2-regular instance for online slotted OSCM-k with slots S =
{s1, . . . , sn} and vertices V = {v1, . . . , vn}, and a request sequence R1, . . . , Rn. Let A be an
algorithm that has fulfilled k requests. Let us consider the corresponding LV and LS for this
request. There is a propagation arrow from vertex v to slot s if both occupy the same place
in the ordered lists LV and LS, i.e., if v is the i-th element of LV and s is i-th element of LS

for some i ∈ [2(n− k)].

Observe that propagation arrows do not cross one another by construction. So, if we count
the crossings of a partial graph including the crossings between graph edges and propagation
arrows, we have a lower bound on the number of crossings that the graph will have after the
request sequence is completely fulfilled.

In the following, we want to observe, that an instance is optimally solved if an only
if, for every pair of requests, the relative order of their slot assignments is optimal, i.e., if
the placement of these two requests is such that there are fewer crossings between them
than otherwise. This basically means, that a crossing is unavoidable, if and only if, the
relative order of the two requests involved in this crossing is optimal, regardless of any other
placement of any other request within the graph. This provides us with a very powerful tool
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(a) 1-1 (d) 3-1 (b) 2-1

(e) 4-0 (c) 3-0 (f) 2-2

Figure 5: Case distinction for step one of Lemma 1. Each case is depicted before and after
the untangling. The request sx is drawn in red and sy in blue.

to analyze the performance of online algorithms solving online slotted OSCM-2 on 2-regular
graphs.

In order to prove the aforementioned statement, we first need the following lemma.

Lemma 1. Given two requests Rx = {x1, x2} and Ry = {y1, y2} assigned to slots sx and
sy. Without loss of generality assume that x1 ≤ y1 and x2 ≤ y2. An assignment where
sx < sy generates fewer or equally many crossings in the final graph than an assignment
where sy < sx if every other assigned slot remains unchanged.

Proof. We separate this proof into two steps. In the first step, we show that the number of
crossings between the two requests is always the same or smaller if sx < sy. This can be
done with an exhaustive case distinction and is depicted in Figure 5.

Now, for the second step, we need to show that the number of crossings in an overall
graph is still smaller or equal if sx < sy. We prove it by means of a contradiction. Let
us consider a 2-regular graph G for which we have two such requests {x1, x2} and {y1, y2}
and an assignment where sy < sx, with a total number of crossings cG. And let us consider
the graph G′ which is the same as G except that the placement of {x1, x2} and {y1, y2} is
exchanged, making sx < sy, with a number of crossings cG′. Assume that cG < cG′ . We
already know that this is not due to the number of crossings between edges to sx and sy, as
such a case would be covered by Figure 5. Without loss of generality assume thus that (one
of) the extra crossing(s) in G′ is between some edge (u, su) and one of the modified edges
(xt, si) with t ∈ {1, 2}.

In order for this pair of edges to produce an extra crossing in G′ compared to G at all,
we know that u /∈ [x1, x2], as otherwise this crossing is unavoidable and thus the same in G
and G′. We make a case distinction over the remaining cases, which we depict in Figure 6.

Assume now that x2 < u. Then, su < sx in order for the edges to cross at all. This
positioning produces two crossings with Rx in G and possibly some crossings with Ry. How-
ever, since Rx is only assigned further to the right in G′, we get the exact same number of
crossings between (u, su) and the edges of Rx and Ry in G′.

Assume finally that u < x2. Then, sx < su in order for the edges to cross at all. This
positioning produces two crossings with Rx in G and possibly some crossings with Ry. We
do a case distinction whether su < sy or sy < su.

If su < sy, then Ry and Rx simply “change roles” in G′ compared to G and the number
of crossings remains the same. If sy < su, then (u, su) crosses the edges of Rx and of Ry
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x1 y1 x2 u y2

sx sysu

x1 y1 x2 u y2

sy sxsu

u x1 y1 x2 y2

sx sysu

u x1 y1 x2 y2

sy sxsu

u x1 y1 x2 y2

sx sy su

u x1 y1 x2 y2

sy sx su

Figure 6: As shown in Lemma 1, there cannot be a crossing between Rx and an edge (u, su)
that makes the ordering sy < sx better than sx < sy.

completely in both G and G′.
Thus, by swapping the slot assignment in this way one cannot reduce the number of

crossings in the overall graph.

Lemma 1 plainly states that for each pair of requests, the optimal ordering gives the
left-most request a slot that is to the left of the slot assigned to the right-most request. The
notion of left and right requests only means here, that if the requests are not for identical
pairs of vertices, the left request contains the left-most distinguished vertex.

In order to find an upper bound on the competitive ratio, we only have to see that
any pair of requests is either placed optimally or otherwise bound the number of crossings
generated by that pair with the number of unavoidable crossings in the optimal solution.

5 Upper Bound for 2-Regular Graphs

With these structural properties we are ready to present the algorithm that will provide us
with an upper bound of 5 for the competitive ratio.

Neglecting to take the state of the graph into account when making decisions regarding
the insertion of requests seems to result in relatively bad upper bounds. As an example,
we take the simple barycenter algorithm (Algorithm 1) proposed in [10], which optimally
solves the offline OSCM-2. This algorithm, computes the average between the two requested
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Algorithm 1 Barycenter algorithm from [10], adjusted for the slotted case.

1: free slots = {1, . . . , n};
2: for {x1, x2} in input do
3: s := ⌊x1+x2

2
⌋;

4: while s.isUsed() do

5: s := { t | argmin∀t∈S.¬t .isUsed()(t− s) | } // take leftmost on tie

6: Assign {x1, x2} to s;

x1 x2 x3 x4
. . . xn−5 xn−4 xn−3 xn−2 xn−1 xn

s1 s2 s3 . . . sn−6 sn−5 sn−4 sn−3 sn−2 sn−1 sn

Figure 7: The request sequence is {xn−1, xn}, {xn−1, xn}, {xn−3, xn−2},
{xn−3, xn−2}, . . . , {x1, x2}, {x1, x2}. The last node crosses all others, resulting in roughly 4n
crossings compared to n

2
crossings in the optimal case.

vertices and assigns it to this particular point. In the case of the slotted version of the
problem, we have to adjust it to take the nearest free slot.

Algorithm 1 is no better than 8-competitive, as the following simple example illus-
trated in Figure 7 shows. If we request the sequence {xn−1, xn}, {xn−1, xn}, {xn−3, xn−2},
{xn−3, xn−2}, . . . , {x1, x2}, {x1, x2}, the two first requests are placed on slots sn−1, sn−2 and
then consecutively, the following requests occupy slots to the left of those until the last re-
quest, which is assigned the only available slot sn. The last pair of edges crosses all others,
resulting in roughly 4n crossings compared to n

2
crossings in the optimal case.

In order to achieve a good upper bound for the OSCM-2, we present Algorithm 2 that
given a request, selects the slot which minimizes the total number of crossings – including
crossings between edges and propagation arrows – among all available slots.

Note that analyzing an algorithm in this setting is not completely trivial. Our approach
is to show that the types of crossings between two requests produced by our algorithm
are good-natured. Specifically, we look at pairs of requests for which the crossings can be
completely avoided if they are appropriately ordered, i.e., 3-0 or 4-0 crossings as depicted
in Figure 5 (c) and (e) respectively. This type of crossing, then, is either not produced by
Algorithm 2 or we can show that a number of unavoidable crossings is necessary to produce
this configuration. With this, we can then upper bound the competitive ratio. Note that
this relatively rough estimate is most likely an overestimation of the actual competitive ratio
of the algorithm, but even such an estimate already requires a lot of structural analysis.

First, we present some lemmata outlining some relevant structural properties of assign-
ments made by Algorithm 2, then we consider each type of critical crossing, 4-0 crossings
and then 3-0 crossings and show that the competitive ratio is still bounded when these types
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Algorithm 2 Chooses in each step the insertion with the lowest number of additional edge-
edge and edge-propagation arrow crossings.

1: free slots = {1, . . . , n};
2: for element in input do

3: least crossings := ∞;
4: best slot := 0;
5: for slot in free slots do

6: G.simulate node insertion(slot, element);
7: new crossings=G.edge edge crossings() + G.edge prop crossings();
8: if new crossings < least crossings then

9: least crossings = new crossings ;
10: best slot = slot ;

11: G.revert simulated insertion(slot, element);

12: G.insert node(best slot, element);
13: free slots := free slots \ best slot ;

of crossings appear.

5.1 Structural Properties

To start the analysis of Algorithm 2 we first make a few observations on the changes of the
propagation arrows after a request is fulfilled.

Consider a request {x1, x2}, which is assigned to slot sx by some algorithm. Before this
request arrived, there were two propagation arrows from vertices y1 and y2 going to slot sx
(note that it is possible that y1 = y2). After the request is assigned to sx the propagation
arrows pointing to sx have to be shifted, as slot is not available anymore. Simultaneously,
one propagation arrow of each x1 and x2 disappears as the request is fulfilled. The rest of the
propagation arrows have to reflect this movement out of sx and into the two empty positions
left by x1 and x2, and they do so in the following way.

vi1 vk1 vk2 vi2

sj

vi1 vk1 vk2 vi2

sj

Figure 8: Schematic diagram showing how propagation arrows shift after a placement.

Observation 1. Let R = {x1, x2} be a request assigned to slot sx. And let y1 ≤ y2 be the
vertices (or vertex) whose propagation arrows point to sx before this request arrived. Only
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v2 v3 v4

s1 s2

(a)

v1 v2 v3 v4

s1 s2 s3

(b)

v1 v2 v3 v4

s1 s2

(c)

Figure 9: Types of crossings avoided by Algorithm 2, mentioned in Lemma 2. The prop-
agation arrows are drawn in blue and the edges already present in the graph are drawn in
black.

propagation arrows connected to nodes between the leftmost vertex of x1 and y1 and the
rightmost vertex of x2 and y2 will be shifted.

Observe that there are no propagation arrows connected to nodes between y1 and y2 as
otherwise these would be connected to slots other than sx and produce crossings between
propagation arrows, which is impossible by definition. The observation can be seen through
Figure 8.

Proof. Let t be the amount of propagation arrows attached to nodes in the interval between
the leftmost vertex of x1 and y1 and the rightmost vertex of x2 and y2 before R is assigned
to sx. After the placement, the number of propagation arrows in x1 and x2 is reduced by
1. The number of slots that require two arrows has been reduced by 1 in sx. If t = 2,
then x1 = y1, x2 = y2 and the interval has no remaining propagation arrows, after R is
placed. Otherwise, each available slot has to be matched to each available vertex and no
additional propagation arrows from outside the interval are required because the placement
of R removes two propagation arrows and one slot.

While Observation 1 is not specific to Algorithm 2, we can use it in the proofs to come.
We continue with a lemma that allows us to shorten a lot of case distinctions in the following
proofs.

Lemma 2. There is no instance during which two propagation arrows connected to a slot s2
cross both edges adjacent to a fulfilled slot s1 when using Algorithm 2.

Alternatively, the situations depicted in Figure 9 will never occur if one uses Algorithm 2.

Proof. We prove the lemma by contradiction and assume that after Algorithm 2 fulfills a
request Rx = {x1, x2} there are two propagation arrows crossing edges (v3, s2) and (v4, s2).
Figure 9 shows three different situations how these crossings can occur: (a) Either both
propagation arrows are connected to a single node v2 < v3 that cross the edges of s1, (b)
there is a propagation arrow from two nodes v1 < v2 crossing the nodes of s1 to a slot s2
with s1 < s2 and another edge from v2 to a slot s3 with s1 < s2 < s3 or (c) there are the

13



v2 v3 v4

s0 s1 s2

(a)

v1 v2 v3 v4

s0 s1 s2

(b)

v2 v3 v4

s0 s1 s2

(c)

v1 v2 v3 v4

s0 s1 s2

(d)

Figure 10: Possible configuration before the request Rx is added and the propagation arrows
are shifted to s2. The propagation arrows are drawn in blue and the edges already present
in the graph are drawn in black.

edges of (b) without the additional edge (v2, s3). Cases (a) and (b) are very similar, but in
case (a) both propagation arrows from v2 go to the same slot, whereas in case (b) they are
split between s2 and s3. In case (c) the vertex v2 is already assigned an edge, thus it only
has one remaining propagation arrow. We ignore this already present edge, as its precise
nature makes no difference for the following argumentation.

We assume that the propagation arrows from v2 (and possibly v1) are the first ones that
cross the edges of s1 as described in the lemma after request Rx has been fulfilled. It is
possible that there are vertices between v1 and v2 or between v2 and v3. However, if these
vertices exist, they cannot have propagation arrows. Otherwise, v2 (and possibly v1) would
not be responsible for the first two propagation arrows that cross s1, but the propagation
arrows of these other nodes. We look at the first request Rx whose assignment results in
such a structure and how the graph looked like before serving Rx.

Note that every slot has two propagation arrows pointing to it and after assigning a
request to this slot, the propagation arrows pointing to that slot move to a neighboring free
slot. Thus, there are four different configurations possible before the request Rx is fulfilled,
presented in Figure 10: (a) Both arrows are connected to a single node v2 < v3 and a slot
s0 < s1, (b) the two arrows are from different nodes v2 and v1 and are connected to a slot
s0 < s1, (c) Both arrows are connected to v2, one of them pointing to s0 and one to s2 with
s0 < s1 < s2 (d) the two arrows are from different nodes v1 and v2, one of them points to s0
and one to s2 with s0 < s1 < s2.

We know also by using Observation 1, that the assignment of Rx will only shift the
propagation arrows around s1 if these arrows are part of the affected interval between the
vertices of Rx and the propagation arrows pointing to the slot assigned to Rx.

Cases (a) and (b) have no previous arrows crossing with edges of s1, thus, they require
that two propagation arrows are shifted to the right hand side. As we saw in Observation 1,
this can only happen if Rx is assigned to s0 or to the left hand side of it and the vertices x1

and x2 are both to the right of v2. The propagation arrows of x1 and x2 point previously
to a slot to the right of s0, thus, assigning Rx to s0 will result in the two propagation
arrows previously pointing to s0 shifting to the right to fill up the slots left by the missing
propagation arrows of x1 and x2. These gaps are filled from the left hand side, which results
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v2 v3 v4

s0 s1 s2

v2 v3 v4

s0 s1 s2

v1 v2 v3 v4

s0 s1 s2

v1 v2 v3 v4

s0 s1 s2

Figure 11: Comparing the crossings of assigning Rx to the left or right hand side of s1 for the
cases (a) and (b) from Figure 10. The propagation arrows are blue, already present edges
are black and the newly introduced edges, adjacent to the recently fulfilled request Rx, are
red.

in the two crossing propagation arrows shown in Figure 9.
Assume that Algorithm 2, given case 10(a) or (b) and a request Rx with v2 < x1 < x2,

assigns Rx to a free slot to the left hand side of s1. Figure 11 shows that assigning Rx

more to the right results in fewer crossings, which is a contradiction to the procedure of the
algorithm itself. If the vertices x1 and x2 do not coincide with v3 and v4, they are even more
to the right hand side. If this is the case, we get even more crossings if Rx is assigned to the
left hand side of s1.

For the cases (c) and (d) from Figure 10 only one propagation arrow needs to be pushed
to the right hand side. Thus, w.l.o.g. only x2 has to be to the right hand side of v2 and the
position of x1 is arbitrary. Either x1 is a vertex to the left hand side of v2 (it is even possible
that x1 = v1) or it is to the right. The latter case is equivalent to the cases (a) and (b) in
the sense that two more propagation arrows will cross over s1 and a placement to the right
of s1 will result in less crossings as we saw in Figure 11.

In the first case, on the other hand, x1 is to the left of v2, and we push only one more
propagation arrow to the right hand side of s1. Figure 12 shows that choosing the position
s2 to the right of s1 results in fewer crossings. Just as with cases (a) and (b) we can assume
that x2 is the leftmost possible vertex to the right of v2 and otherwise the number of avoided
crossings with the placement to the left of s1 only grows.

Thus, Algorithm 2 will not place a request such that two edges of a slot are crossed by
two propagation arrows.

Lemma 2 forbids specific configurations of the propagation arrows during the course of
applying Algorithm 2 to a request sequence. The following lemma uses a counting argument
to guarantee that a specific request between two (far apart) vertices must eventually appear
in a specific setting. Such requests from vertices that are far apart, always guarantee the
appearance of unavoidable crossings as depicted in Figure 5 (f). The appearance of such
requests guarantees, in later proofs, the existence of such unavoidable crossings, which can
be counted in a way that bounds the competitive ratio.

Lemma 3. Let there be two request {x1, x2} and {y1, y2} that are assigned to slots sx and
sy, with x1 < x2 < y1 < y2 and no free slot between sx and sy. If there are two neighboring
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v2 v3 v4

s0 s1 s2

v2 v3 v4

s0 s1 s2

v1 v2 v3 v4

s0 s1 s2

v1 v2 v3 v4

s0 s1 s2

Figure 12: Comparing the crossings for assigning Rx to the left or right hand side of s1,
for the cases (c) and (d) from Figure 10. The propagation arrows are blue, already present
edges are black and the newly introduced edges, adjacent to Rx, are red.

vertices u, v, with x2 ≤ u < v ≤ y1 and propagation arrows pointing to two different slots
sl, sr, with sl < sx < sy < sr, and the request {u, v} appears, then there must be a future
request {a, b}, with a ≤ x2 and y1 ≤ b, which unavoidably crosses all edges of u and v.

Figure 13 depicts the situation described in the statement of Lemma 3.

sℓ sx sy sr

x1 x2 u v y1 y2

Figure 13: Sketch of the situation described in the statement of Lemma 3.

Proof. Our proof is a simple counting argument. The request {u, v} removes two propagation
arrows. One points to the left of the filled block between sx and sy and the other one points
to the right of it. The request, depending on its placement, pushes one propagation arrow
from one side of the fulfilled block between sx and sy to the other one.

W.l.o.g. we assume that {u, v} is placed on sl. The second propagation arrow pointing to
sl comes from x2 (if u 6= x2) or a vertex even more to the left. It is not possible that is comes
from a vertex between x2 and v due to Lemma 2. When the request {u, v} is placed, it pushes
this second propagation arrow to the slot sr. This propagation arrow represents a mismatch
between open slots and ”open/remaining” edges. The number of ”open/remaining” edges
to the left of u and to the right of v is odd, but the slots always consume two of these
”open/remaining” edges. This has to be compensated by some request {a, b} that is placed
right of sy, where a is to the left hand side of u and b is to the right hand side of v. This
request crosses all edges of u and v.

Where Lemmas 2 and 3 are applicable for specific configurations, the following lemma
provides a tool that gives a set of edges or propagation arrows that are necessary to make a
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vi vk

sl sj

C D

A B

Figure 14: Depending on the vertex vi, the vertices are split into four sets, A,B,C and D.

local configuration (e.g., a crossing of two requests) feasible in the context of the remaining
graph.

Lemma 4. For every edge or propagation arrow, starting at a vertex vi of V and pointing
to a slot sj with i < j (analogously j < i), there is one edge or propagation arrow pointing
from a vertex vk to a slot sl with i < k and l ≤ i (analogously k < i and i ≤ l).

Proof. We use a simple handshake argument and count the already present edges and the
propagation arrows in the graph to prove the statement.

At first, we separate the vertices into four sets, as depicted in Figure 14. The set A
contains the vertex sl and all vertices from S that are to the left hand side of sl. The set
B contains the vertices from S that are to the right hand side of sl. The set C contains the
vertex vi and all vertices from V that are to the left hand side of vi. The last set, called D,
contains the vertices from V that are to the right hand side of vl.

The vertices in the set A have two incident edges or two incident propagation arrows.
These edges or propagation arrows start either at a vertex in C or D. We denote the set of
edges that connect a vertex from A with a vertex from C as EAC . Analogously, we define
the edge set EAD. We also split the propagation arrows, starting at the vertices from V and
ending at a vertex in A, into two sets, PAC and PAD. We can observe that

2|A| = EAC + EAD + PAC + PAD (1)

must always be true.
Additionally, the sum of the edges and propagation arrows starting at a vertex in C must

be 2i. Or more formal,

2i = EAC + EBC + PAC + PBC . (2)

The number of vertices in the set A must be i, because we choose the vertex vi at position i
as a reference point to define the set A. Thus, we can combine Equation (1) and Equation (2)
to obtain

0 = EAD + PAD −EBC − PBC .

Note, because propagation arrows never cross each other, either PAD or PBC is empty (it
is also possible that both are empty). Thus, every edge or propagation arrow crossing from
one side to the other is compensated by an edge, crossing into the other direction.
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With our structural properties and observations regarding the propagation arrows we can
now start to analyze the critical crossings depicted in Figure 5 (e) and (c). These crossings
are critical in the sense that they have only avoidable crossings and no unavoidable ones. So,
they decrease the performance of our algorithm and do not guarantee a constant competitive
ratio like the other crossings depicted in Figure 5. In the following sections, we overcome
this problem by showing that for each of these critical crossings there must exist some other
request that unavoidably crosses one of the requests, involved in the critical crossing.

5.2 The 4-0 Crossings

Recall that, by Lemma 1, the optimal solution for a 2-regular instance of the online OSCM-
2 consists on minimizing crossings between every pair of requests. Thus, we can look at
a pair of requests and exhaustively classify them as depicted in Figure 5, and analyze the
competitive ratio of an algorithm depending on how many of these types of crossings appear.
In particular, if no 3-0 crossings (Figure 5(c)) or 4-0 crossings (Figure 5(e)) were produced by
an algorithm, the algorithm would be 3-competitive at worst, as any sub-optimal placement
would be trivially compensated by at least one unavoidable crossing. Thus, in order to
analyze the competitive ratio of Algorithm 2, we only have to look at 3-0 and 4-0 crossings.

Using Lemma 2 we can now prove that Algorithm 2 will not make too many mistakes
when producing 4-0 crossings. First we prove that Algorithm 2 will never produce 4-0
crossings with gaps, i.e., unfulfilled slots between the 2 slots generating the 4-0 crossing as
depicted for instance in Figure 15.

v1 v2 v3 v4 v5

s1 s2 s3 s4 s5

Figure 15: A 4-0 crossing with a slot in between. These types of crossings are forbidden by
Lemma 5.

Lemma 5. Algorithm 2 never generates 4-0 crossings with gaps in between. More precisely,
for each pair si, sj with i < j assigned by Algorithm 2 that generate a 4-0 crossing, every sk
with i < k < j is already full.

Proof. Let us assume that there are no 4-0 crossings with gaps in the graph yet. We prove
this lemma by means of a contradiction.

Let {v1, v2} be the request assigned to slot si by Algorithm 2, and a new request R =
{v3, v4} is made where v1 < v2 < v3 < v4 without loss of generality.

Let sj be a slot to the left of si with the smallest crossing values for R and let sk be the
leftmost empty slot between sj and si.
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v1 v2 . . . v3 v4

sj sisk

v1 v2 . . . v3 v4

sj sisk

Figure 16: Counting crossings in a 4-0 crossing with a gap in Lemma 5. Only edges like the
one depicted in red on top will make a placement in sk more favorable than a placement in
sj. But for every red edge a green edge must exist or the graph is not free of 4-0 crossings.

The only crossings that would make a placement in sk more unfavorable than a placement
in sj are edges coming from the right of v4 to a slot between sj and sk as depicted in the
left of Figure 16. There cannot be any propagation arrows of this kind as we assume that
all the slots between sj and sk are full.

For any edge coming from a vertex vt1 to the right of v4 into slot st with j < t < k there
must be another edge coming from a vertex vt2 to the left of (or directly from) the vertex v2.
Otherwise we would have a 4-0 crossing with an empty slot, namely v1 < v2 < vt2 < vt1 and
the slots st < sk < si, which would be a contradiction to the assumption that this is the first
occurrence, as we can see in Figure 16. Thus, this means that vt2 ≤ v2. However, then the
edge vt2 generates crossings only for the assignment of R to sj and not for the assignment to
sk, which means that for every crossing counting for sk there is at least one crossing counting
for sj .

Finally we are only left to count the crossings for the propagation arrows going to sj with
the placing in sk and vice-versa as depicted in the three drawings of Figure 17.

v1 v2 . . . v3 v4

sj sisk

v1 v2 . . . v3 v4

sj sisk

v1 v2 . . . v3 v4

sj sisk

Figure 17: Lemma 5: At most one propagation arrow crosses from the left of v2 to sk by
Lemma 2.

Before we assign the request {v3, v4}, we know that by Lemma 2 only one propagation
arrow can cross from the left of (or directly from) v2 to the slot sk. Thus, when assigning
the request to the slot sk there are no extra crossings for the propagation arrows going to
sj. However, if we assign the request to slot sj , the propagation arrows assigned to sj will
now be transferred to sk as we saw in Observation 1, creating four new crossings between
these propagation arrows and the new edges. This results in a contradiction, as we have
just seen that the placement in sj generates more crossings than the placement in sk which
contradicts our assumption that sj has the smallest crossing values.
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We prove now that Algorithm 2 only generates 4-0 crossings when they are forced or in
a very specific configuration. We will prove this in two different lemmas.

If we have a request for a pair of vertices, such that every available slot generates at least
one 4-0 crossing, we call it a forced 4-0 crossing. Observe, that it is possible that more than
one 4-0 crossing is forced by the same request (See Figure 18).

v1 v2

. . .
sℓ sr

Figure 18: More than one 4-0 crossing might be forced by the same request

Lemma 6. If Algorithm 2 is used, for every forced 4-0 crossing there is at least one uniquely
identifiable and unavoidable crossing.

Proof. We will prove this using Lemma 3. If a request {v1, v2} arrives in time step t and
every possible placement generates a 4-0 crossing, the propagation arrows of v1 and v2 have to
point to two different slots before the request is served due to Lemma 2. We assume v1 < v2
and call the slot on the left hand side sℓ and the other one sr, as sketched in Figure 18.

We denote the set of edges that are crossed by the request {v1, v2} when it is placed in sℓ
with L and analogously we define the set of crossed edges R for the slot sr. To be precise, the
set L contains the edges (sj, vi) with sℓ < sj < sr and vi < v1 (See Figure 19). Our algorithm
will always choose the slot which results in the least amount of crossings. Therefore, if our
algorithm chooses (w.l.o.g.) the slot sℓ, we know that positioning the request in slot sr results
in at least the same number of crossings. Thus, we know that |L| ≤ |R| (or |L| ≤ |R|+ 1 if
the edge other connected to v2 is placed between sℓ and sr but the edge connected to v1 is
not).

v1 v2

sℓ sr

Figure 19: The set of edges L is dashed, and the set of edges R is dotted. The request
{v1, v2} will generate two crossings per dashed edge if positioned in sℓ and two crossings per
dotted edge respectively if positioned in sr. There is one unavoidable crossing for the edges
going to vertices between v1 and v2 no matter the positioning.
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Because we are in the situation of a forced 4-0 crossing there are at least two edges in
each set L and R that belong to the same request. We look at the pair of edges (si, vi1)
and (si, vi2) in L, with vi1 < vi2 with the smallest possible vi2 , respectively the pair of edges
(sj, vj1) and (sj, vj2) in R, with vj1 < vj2 and the largest possible vj1. Applying now Lemma 3,
we know that there will be a future request between at least vi2 and vj1, meaning that a
future housing request will cross at least one of the edges - in L and R respectively - of every
pair generating a 4-0 crossing except at most one. Observe also, that by Lemma 2 there
cannot be any available edge slot between vi2 and vj1 other than v1 and v2, this will mather
further in the proof.

Note that every request, from which only one edge is in L (or R), unavoidably crosses

the request {v1, v2} anyway. Thus, at least |L|
2
+ |R|

2
(+1) edges are unavoidably crossed after

the request in Lemma 3. Here, the unavoidable crossing between the “housing request” and
v1 and v2 compensate for the potentially missing crossings with the edges from vi2 and vj1 .
Or in other words, for every slot between sℓ and sr there is at least one edge which is crossed
unavoidably, except for the aforementioned exceptions.

The request {v1, v2} crosses all edges in L twice, if it is placed in sℓ. Thus, the number
of avoidable crossings is 2|L| which is at most twice as large as the number of unavoidable

crossings |L|
2
+ |R|

2
(+1) ≥ |L|.

The argument above works if there is only one forced 4-0 crossing for a set of requests
before the housing request from Lemma 3 appears. In the following, we discuss why we can
assign, for each set of potentially overlapping forced 4-0 crossings, a uniquely identifiable
unavoidable crossing. Overlapping 4-0 crossings appear, when both involved requests in a
4-0 crossing are again completely crossed by another third request (See Figure 20).

We call the request that generates the first forced 4-0 crossing after its placement {v1, v2}.
The algorithm had the decision to place it in the left slot sℓ, crossing |L| edges or in the
right slot sr, crossing |R| edges.

Without loss of generality assume that the request {v1, v2} was placed in sℓ. In order to
have an overlapping 4-0 request, we assume that the request of the second forced 4-0 crossing
{v3, v4} is to the left of the request {v1, v2}. Because this request is also a forced 4-0 crossing,
it can be placed in a slot to the left s′ℓ < sℓ or a slot to the right s′r ≥ sr. The slots must be

s′ℓ sℓ sr, s
′
r

v3 v4 v1 v2

Figure 20: Two sets of 4-0 crossings overlap each other before a housing request appears.
The first one is drawn with a dotted pair of edges and the second one is dashed. This
particular scenario is not completely realistic for Algorithm 2 but could happen if the overall
graph is larger.
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v1 v2

. . .

v1 v2u1 u2

. . .

Figure 21: If there is no available slot without a 4-0 crossings, the propagation arrows point
to different sides, and a request u1, u2 must eventually exist.

more to the left (respectively, more to the right) because when the request {v1, v2} arrives,
all of the other vertices between vi2 and vj1 must be filled, as we already argued, thus v3 and
v4 are to the left of vi2 . Together with the assumption that the second 4-0 crossing is forced,
we get the restricted position for v3 and v4.

Analogous to the previous case, let L′ be the set of edges (v, s) with v < v3 and s′ℓ < s < s′r
and let R′ be the set of edges (v, s) with v > v4 and s′ℓ < s < s′r Note that, the edges of the
first 4-0 request are now part of R′. Like already explained above, if the algorithm decides
to place the request in s′r, this implies that |R′| ≤ |L′|(+1) holds. Moreover, |R′| ≥ |L|

2
+ |L|

holds, because v4 < vi2 , which by definition means that half of the edges of R are to the
right of v4 and, thus, part of R

′. Thus, applying again Lemma 3, we know that there will be
a future request that unavoidably crosses at least

|L′|
2

(+1) +
|R′|
2

≥ |R′|
2

+
|R′|
2

≥ |R′|
2

+
|R|
4

+
|L|
2

edges. The number of avoidable crossings is 2|L|+2|R′| ≤ |L|+ |R|+2|R′|, which if divided
by 4, for each possible 4− 0 crossing, means that

|L|
4

+
|R|
4

+
|R′|
2

≤ |R′|
2

+
|R|
4

+
|L|
2

.

Thus, we have for each of the avoidable 4-0 crossings at least one uniquely identifiable un-
avoidable crossing. Observe that we can iterate this argument for every possible overlapping
4-0 crossing. Moreover, if in the second case, the request {v3, v4} was placed in s′ℓ the
analogous counting argument still holds.

We just proved that forced 4-0 when using Algorithm 2, incur in one additional unavoid-
able crossing, this means that we can consider 4-0 crossings as if they were, in a sense 5-1
crossings instead, with a competitive ratio of 5 instead of being unbounded. However, this is
not enough, there can be 4-0 crossings produced by Algorithm 2 that are not forced. In the
following lemma we prove that non-forced 4-0 crossings are only produced by Algorithm 2
in a very specific configuration. Then we will proceed to look at the number of uniquely
identifiable unavoidable crossings of that configuration.

Lemma 7. Given a request for a pair of vertices in a graph, whose 4-0 crossings have either
been forced (Figure 21) or were served because any alternative placement would result in two
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v1 v2 . . . v3 v4

sj si sk

. . .
v1 v2 . . . v3 v4

sj si sk

. . .

Figure 22: If there is more than one slot positioned like the red ones (between the slots si
and sk with one vertex between v3 and v4, and one to the right of v4 each), Algorithm 2 may
choose slot sj generating a 4-0 crossing.

3-1 crossings as sketched in Figure 22. If a slot is available which will not generate any
4-0 crossings this slot will be selected by Algorithm 2 over any slot which will generate a
4-0 crossing, unless there are two additional requests resulting in two 3-1 crossings for the
alternative placement as depicted in Figure 22.

Proof. Let us assume that we have a graph with the only 4-0 crossings appearing in the
configurations of Figures 21 and 22. Let {v1, v2} be a request assigned to slot si. Let {v3, v4}
be a new request with v2 < v3 without loss of generality. The new request can be assigned
to a slot sk right of si without generating new 4-0 crossings or to a slot sj to the left of si
as depicted in the first drawing of Figure 23. We can assume by Lemma 5 that sj is the
rightmost available slot after si.

As we did in Lemma 5, we first count edge crossings and then count the propagation
arrow crossings.

In order to do this, we divide the relevant slots into two subsets. The subset X contains
the slots between sj and si. Recall that all the slots in this area are filled. The subset Y
contains the slots between si and sk, all of them are filled too. We also divide the vertices
into three subsets. Any vertex to the left of v3 belongs to subset A. Vertices between v3 and
v4 belong to subset B and vertices to the right of v4 belong to subset C. This division is
depicted in Figure 23.

Only edges to slots in X or Y will generate crossings that count only for one of the two
placements. In particular any edge from C to X or Y will generate two additional crossings
for the placement in sk with respect to the placement in sj , those edges are depicted in red
in the second drawing of Figure 23. On the other hand any edge from A to a slot in X or Y
generates two additional crossings for for the placement in sj with respect to the placement
in sk. Those edges are depicted in green in the second drawing of Figure 23. Finally, the
edges from B to X or Y are neutral with respect to both placements. This means that we
only need to analyze previously placed requests in X or Y with one endpoint in C, as these
are the only ones that will make a placement in sj more likely with respect to a placement
in sj.

We now analyze all possible requests in X with at least one endpoint in C. Recall that
we assume that there is always a slot that does not force a 4-0 crossing. This means that
there cannot be a pair of edges from C connected to the same slot in X or Y . On the other
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v1 v2 . . . v3 v4

sj si sk

. . .

A B C

X Y

v1 v2 . . . v3 v4

sj si sk

A B C

X Y

v1 v2 . . . v3 v4

sj si sk

A B C

X Y

v1 v2 . . . v3 v4

sj si sk

A B C

X Y

Figure 23: We have two possible placements for the request v3, v4 red edges contribute extra
crossings to the placement in sk and green edges contribute extra crossings to the placement
in sj. For the slots in Y if a slot has both endpoints in C it is a forced 4-0 crossing, but it
can happen that one endpoint is in B.

hand if a pair of edges from C and B respectively go to a slot X (we call this request CXB),
we have a previous 4-0 crossing in the graph. This means that either the request placed in
si generated a 4-0 crossing, or the request CXB did, we distinguish these two cases.

If the placement in si generated the 4-0 crossing we argue that there was a situation like
in Figure 23. If the 4-0 crossing was forced when si was placed, this means that there was
a request to the right of v1, and it was fulfilled by a slot in X , but between this request
and CXB there were at least 3 propagation arrows, in particular, from v1, v2 and v3, so this
situation is forbidden by Lemma 2. If there was a situation Figure 23 involving the request
CXB and v1, v2, then there must be two requests between v1 and v2 are in region A and
are fulfilled in the region of X . These two requests will completely counteract the crossing
contributions of the request CXB.

If the request CXB generated the 4-0 crossing, it also could not have been forced, as the
propagation arrow from v4 is between the two propagation arrows of the request and it also
generates a situation forbidden by Lemma 2. This means that also in this case there must
have been a situation like in Figure 22 involving the request CXB. In this case, depicted in
Figure 24, the two requests contributing to the situation in Figure 22 will already be present.

Finally, if a request has one endpoint in C and one in A, this means that their crossings
for the placements in sj and sk compensate.

We thus only care for slots in Y with at least one endpoint in C. If a slot in Y with one
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v1 v2 . . . v3 v4

sj si sk

A B C

X Y

v1 v2 . . . v3 v4

sj si sk

A B C

X Y

Figure 24: If we have a request with one endpoint in C and one in B placed inX , a 4-0 request
was already present in the graph. This means that we had a situation like Figure 22 already
with respect to that placement, and we either have a situation like Figure 22 with respect
to v3 and v4 too (left picture) or we have a forced 4-0 crossing (right picture), contradicting
the assumption of Lemma 7.

endpoint in C has the other endpoint in A, the number of edge crossings will be higher for
the placement in sj already. Moreover, there can not be a slot in Y with two edges directed
to C, as in the case for slots in X , this would contradict the assumption that we are not
in the case of a forced 4-0 crossing, as depicted with two red edges in the third drawing of
Figure 23. We are only left with one case, if there is a fulfilled request in Y with a vertex in
B and a vertex in C, as depicted in the fourth drawing of Figure 23. This type of request
generates two extra crossings for the placement in sk with respect to the placement in sj .
This is still not a problem if there is only one such request, as these crossings would still be
offset by the 4 extra crossings of the placement in sj. Moreover, if there is more than one
such request we are in the case of Figure 22, where a 4-0 placement is allowed.

Finally, we are left to count propagation arrow crossings. As depicted in Figure 25, the

v1 v2 . . . v3 v4

sj si sk

. . .

A B C

X Y

v1 v2 . . . v3 v4

sj si sk

. . .

A B C

X Y

v1 v2 . . . v3 v4

sj si sk

. . .

A B C

X Y

Figure 25: Only one propagation arrow might cross si due to Lemma 2, and at the rightmost
it comes from v3.

rightmost placement of the propagation arrows has the arrow from v3 pointing to si and
only the leftmost arrow from C pointing to sk. In the second and third pictures we see
what happens to these arrows after a possible sj and sk placement. The number of crossings
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due to the propagation arrows stays the same. If the propagation arrows would be more to
the left, the number of crossings in the 4-0 placement would only possibly increase, and the
number of crossings for the sk placement would only possibly decrease. This means that if
there is at most one slot in Y with an endpoint in B and an endpoint in C, a placement in
sk is prefered.

We now prove that the 4-0 crossings described in Lemma 7, also have uniquely identifiable
unavoidable crossings, just as we did in Lemma 6 for the forced 4-0 crossings.

Lemma 8. Any 4-0 crossing incurred by Algorithm 2, because any alternative placement
would result in two 3-1 crossings as sketched in Figure 22, has two uniquely identifiable
unavoidable crossings.

Proof. Observe, that if we only consider the crossings generated by the placement of the
request generating the 4-0 crossings we do not risk double counting unavoidable crossings
in this case. In a configuration like depicted in Figure 22, where Algorithm 2 generates a
4-0 crossing, an optimal algorithm can place the same requests as depicted in the right side
of Figure 26. The placement of the new request with a 4-0 crossing by Algorithm 2 has 6
crossings with previously placed requests (Figure 26 left) while the optimal placement for
this request has only 2 crossings with previously placed requests (Figure 26 right). These
crossings are unavoidable.

v1 v2 . . . v3 v4

. . .
v1 v2 . . . v3 v4

. . .

Figure 26: Algorithm 2 has generated a 4-0 crossing. We also depict the optimal configuration
for such a situation

We can finally conclude, using Lemmas 6 and 8, that any 4-0 crossings incurred by
Algorithm 2 have at least one unavoidable crossing.

Theorem 3. Forced and non-forced 4-0 crossings incurred by Algorithm 2 have at least one
unavoidable crossing.

5.3 The 3-0 Crossings

It remains to prove that Algorithm 2 only generates a 3-0 crossing – depicted in Figure 5 (c)
– if there is at least one unavoidable crossing for one of the two requests that are responsible
for the 3-0 crossing. In general the proofs use case distinction in a similar way to the proofs
from the previous section, handling the 4-0 crossings.

Similarly as in the 4-0 case, we start by proving that Algorithm 2 never produces a 3-0
crossing with a gap.
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Lemma 9. Algorithm 2 never generates 3-0 crossings with gaps in between. More precisely,
for each pair sj, si assigned by Algorithm 2 with j < i that generate a 3-0 crossing, every
slot sk with j < k < i is already full.

Proof. Let us assume that v1 and v2 is the pair of vertices adjacent to a filled slot si. Let v2
and v3 be a pair of vertices from a new request, with v1 < v2 < v3. If Algorithm 2 creates a
3-0 crossing between the requests {v1, v2} and {v2, v3}, it places the second request in a slot
sj with sj < si.

We can assume that sj is the rightmost available slot to the left of si, due to the following
observations. If there exists a slot s′i between sj and si, we observe that the propagation
arrow of v2 cannot point to sj, when the request {v2, v3} arrives. Because then, the two
propagation arrows pointing to s′i have to start at vertices to the right of v2 and cross the
edges of the request {v1, v2} which violates Lemma 2. This means that the propagation
arrow of v2 must point to s′i or to a slot to the right of si. But in this case, when the request
{v2, v3} is placed in sj it pushes the propagation arrows that pointed to sj, which must come
from vertices to the left of v2, to a slot to the right of sj, in this case s′i, crossing the edges
of the newly placed request and violating, again, Lemma 2. Thus, sj must be the rightmost
available slot to the left of si.

In the following lemma we explore the situation that the 3-0 crossing happens at the edge
of the graph, that is, a placement on any remaining slot causes a 3-0 crossing.

Lemma 10. Given two requests {v1, v2} and {v2, v3} with v1 < v2 < v3. Assume without
loss of generality that Algorithm 2 creates a 3-0 crossing between these requests, with the first
request for vertices {v1, v2} being placed in slot si and during the placement of the second
request there is no available slot sk > si. Then there is at least one uniquely identifiable
unavoidable crossing with the request {v2, v3}.

Proof. Let us assume that v1 and v2 is the pair of vertices adjacent to a filled slot si. Let v2
and v3 be a pair of vertices from a new request, with v1 < v2 < v3. If Algorithm 2 creates a
3-0 crossing between the requests {v1, v2} and {v2, v3}, it places the second request in a slot
sj with sj < si. Recall that by Lemma 9, sj must be the rightmost available slot to the left
of si.

If there is no free slot sk with sk > si, then all slots to the right of sj are filled. Moreover
the propagation arrows from v2 and v3 are the two right most propagation arrows and both
point to sj , when the request {v2, v3} arrives. Let the number of fulfilled slots to the right of
sj be t and the number of vertices that are to the right of v2 be b. If the number of fulfilled
slots is larger than the number of vertices on the bottom line (t > b), there are at least two
edges from vertices that are to the left of v2 pointing to fulfilled slots that are to the right of
sj. It is not possible that a fulfilled slot right of sj is adjacent to two vertices that are to the
left of v2 due to Lemma 2, because the propagation arrows of v2 and v3 would completely
cross it. Thus, the second adjacent vertex must be to the right of v2, resulting in at least one
unavoidable crossing for the request {v2, v3}. If t ≤ b, the slot sj is above the vertex v2 or to
the right of it. In this case, the edge {v1, si} must be compensated by an edge that starts to
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the right of v2 and points to a slot to the left of sj. It is not possible that the second edge of
this slot comes from a vertex to the right of v2, too (see Lemma 4 or Lemma 5). Thus, when
no slot sk exists, there must exist an edge that unavoidably crosses the request {v2, v3}.

What remains is an exhaustive case distinction analogous to the analysis done for the
4-0 crossings.

Theorem 4. If Algorithm 2 creates a 3-0 crossing between two requests {v1, v2} and {v2, v3},
there is at least one uniquely identifiable unavoidable crossing for at least one of the two
requests.

Proof. Let us assume that v1 and v2 is the pair of vertices adjacent to a filled slot si. Let v2
and v3 be a pair of vertices from a new request, with v1 < v2 < v3. If Algorithm 2 creates
a 3-0 crossing between the requests {v1, v2} and {v2, v3}, it places the second request in a
slot sj with sj < si. Recall that, by Lemma 9, sj must be the rightmost available slot to the
left of si. Moreover, the case where there is no available slot si < sk is already covered by
Lemma 10.

Thus, in the following we assume our algorithm can choose between the slot sj , resulting
in a 3-0 crossing, and the slot sk which does not generate a 3-0 crossing (sj < si < sk). This
situation is depicted in Figure 27 (a). We look at the cases where Algorithm 2 prefers a
placement on sj . In the following we investigate which edges must exits to make the slot sj
more preferable.

To count the crossings we divide the relevant slots into two subsets. The subset X
contains the slots between sj and si and the subset Y contains the slots between si and sk.
We do not need to consider the area to the left of sj or to the right of sk, because the number
of crossings with edges incident to a slot in one of these areas is independent of the position
of the request {v2, v3}. We also divide the vertices on the bottom line into three different
subsets. The vertices to the left of v2 form the set A. The vertices between v2 and v3 are in
the set B and the vertex v3 and all vertices to its right form the set C.

Figure 27 (b) shows which edges or propagation arrows cross the new request only if
placed in the the slot sj (in green) and the ones that cross the new request only if placed
in slot sk (in red). An edge that is incident to a vertex between v2 and v3 (area B) does
not favor a particular slot, because it crosses the request {v2, v3} once, independent of its
placement.

There must be edges or propagation arrows in our graph such that, avoiding the 3-0
crossing results in at least three crossings in order to make a placement in sj favorable.
Thus, requests like in Figure 27 (c) or (d) must be present in our graph in order to make
the 3-0 crossing a feasible choice.

But, if a vertex between v2 and v3 exists (area B is not empty), its edges unavoidably cross
the request {v2, v3} two times, fulfilling the statement of our lemma. So, in the following,
we can assume that there is no vertex between v2 and v3. Therefore, the edges that make
the 3-0 crossing more favorable must be incident to vertices from C. The corresponding slot
for these edges can be either in X or Y .
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v1 v2 v3

sj si sk

. . .

A B C

X Y

(a)

v1 v2 v3

sj si sk

A B C

X Y

(b)

v1 v2 v3

sj si sk

A B C

X Y

(c)

v1 v2 v3

sj si sk

A B C

X Y

(d)

Figure 27: We have two possible placements for the request v2, v3. Red edges contribute
extra crossings to the placement in sk and green edges contribute extra crossings to the
placement in sj. The blue edge cross with one edge of the request independent of its place-
ment.

We start with the case that there is a filled slot sx ∈ X with both edges incident to the
set C and analyze it in more detail. Assume that the request {v2, v3} arrives in the time
step t. Thus, at the end of time step t − 1 the slots si and sx are filled. If the propagation
arrows of v2 and v3 point to two different slots (sj and sk), we can apply Lemma 3 and
know that eventually there will be two unavoidable crossings between the request {v2, v3}
and the overarching request. To see this more clearly, we point out explicitly how we can
apply Lemma 3: The request {v2, v3} is the request {u, v}, the free slots sj and sk are the
slots sl and sr, the filled slots si and sx ∈ X correspond to the slots sx and sy.

If the propagation arrows of v2 and v3 point to the same slot Lemma 2 prohibits that the
propagation arrows point towards sk. Therefore, the only possible configuration at the end
of time step t− 1 is that both propagation arrows already point towards sj . This indicates
that the placement of a previous request from a time step t′ < t lead to this situation.

In the following we look at the time step t′, in which the request arrived that pushed the
propagation arrows - starting at v2 and v3 - to the slot sj for the last time. Note that the
request {v1, v2}, placed in si, cannot push the propagation arrows to sj, because positioning
it onto sj instead of si creates fewer crossings. To be precise, the three crossings between
the propagation arrows of v2 and v3 and the edges of the request {v1, v2} can be avoided
by placing it in sj instead of si. This means, that when the request {v1, v2} arrived, the
propagation arrow configuration must have been different. Thus, the slot si must be filled
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and there must be a different request that is responsible for the last push of the propagation
arrows in time step t′.

So, at the beginning of time step t′, at least one of the propagation arrows of v2 and v3
points to a free slot left of sj or to a free slot right of sj. But, if the propagation arrow of v2
points to a free slot left of sj, there must be another propagation arrow, starting to the right
of v2, that points to sj . Thus, there are two propagation arrows, starting at a vertex to the
right of v2 that cross the edges incident to si, violating Lemma 2. Thus, the request in time
step t′ cannot push the propagation arrows from left to right; it must push the propagation
arrows from a free slot to the right of sj to the left, onto sj . Note, that this implies that all
of the slots sx ∈ X are also already filled in the time step t′, because otherwise propagation
arrows, coming from the right of v2, would point to sx ∈ X and cross both edges incident to
si, violating again Lemma 2.

To push the propagation arrows to the left, it is necessary that at least one vertex of the
request is to the left of v3. And because there is no vertex between v2 and v3, it must also
be to the left of v2. We differentiate between two different cases. The other vertex of this
request can be to the left of v2 or to the right of v3.

If the other vertex of the request is also to the left of v2, the propagation arrows of v2
and v3 cross both edges of this request at the end of t′, violating Lemma 2. If the second
vertex is to the right of v3 we have a request that unavoidably crosses all edges of v2 and v3.
Thus, for every feasible configuration for the time step t′, we have unavoidable crossings.

Now, we consider the case that there is a slot sy ∈ Y with two incident edges to vertices
from C and analyze it in more detail. Assume that the request {v2, v3} arrives in the time
step t. Thus, at the end of time step t − 1 the slot si and sy are filled. We differentiate
between two cases. Either the propagation arrows of v2 and v3 point to different slots, sj
and sk respectively, or they point to the same slot.

If they point to different slots, we can apply Lemma 3 just as in the previous case and
know that there will be two unavoidable crossings between the edges from the request {v2, v3}
and the future overarching request.

In the following, we assume that the propagation arrows from v2 and v3 point to the
same slot, sj or sk. Note, if both point to sk, the vertex v3 must be adjacent to sy, otherwise
Lemma 2 is violated. But in this case, the configuration in which the propagation arrows
point to the same slot becomes symmetric. Thus, in the following, we look w.l.o.g. at the
case that both propagation arrows point to sj .

Just as in the previous case, we look at the last time step in which the propagation
arrows are pushed to the slot sj and call it t′. At the start of time step t′, the request
{v1, v2} must already be placed in the slot si, by the same argument as before. It is, again,
also not possible that the last time the propagation arrows are pushed is from left to right:
If the propagation arrow of v2 points to a slot left of sj , the propagation arrows pointing to
sj start at a vertex to the right of v2 and violate Lemma 2. Thus, at least one propagation
arrow from v3 is pointing to a slot right of sj , at the start of t′. To push the propagation
arrows to the left, it is necessary that at least one vertex of the request is to the left of v3.
The other vertex can be to the left of v2 too or to the right of v3 again.
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If the other vertex of the request is also to the left of v2, by the same argument as before,
the propagation arrows of v2 and v3 cross both edges at the end of t′, violating Lemma 2.
If the second vertex is to the right of v3 it unavoidably crosses two times with the request
{v2, v3}.

Thus, we have proven, finally that for every feasible configuration leading to a 3-0 crossing
there must be, at least by the end of the request sequence, two unavoidable crossings with
the edges of the request {v2, v3}.

This theorem shows that 3-0 crossings incurred by Algorithm 2 only happen in con-
junction with two extra unavoidable crossings with the request generating the 3-0 crossing,
this means, that any 3-0 crossing is in effect a 5-2 crossing, which would be better than
5-competitive.

5.4 The Upper Bound

We can finally put all results together to conclude with an upper bound for the competitive
ratio of Algorithm 2 to solve online slotted OSCM-2 on 2-regular graphs.

Theorem 5. Algorithm 2 solves the online slotted OSCM-2 on 2-regular graphs with a com-
petitive ratio of at most 5.

Proof. In order to calculate the competitive ratio of Algorithm 2 we simply compare for
every pair of requests, what the optimal placement compared to the placement chosen by
Algorithm 2 would be.

We exhaustively look at possible placements of pairs of requests, as depicted in Figure 5.
Observe, that except for the 3-0 crossings and 4-0 crossings, the rest of possible request
pairs are no worse than 3-competitive regardless of the algorithm used. Moreover, The-
orem 3 ensures that for every 4-0 crossing incurred by Algorithm 2, there is at least one
uniquely identifiable unavoidable crossing, meaning that the number of crossings incurred
by Algorithm 2 is 5, but optimally there must be at least 1 unavoidable crossing. Finally,
Theorem 4 guarantees that there are also two uniquely identifiable unavoidable crossings for
every occurrence of a 3-0 crossing. Thus, Algorithm 2 is at most 5-competitive.

6 Conclusion

In this work we have shown that the general slotted OSCM-k is not competitive for any k ≥ 2,
which led us to analyze the case of the slotted OSCM-k on 2-regular graphs. On this graph
class, we have given a construction which proved a lower bound on the competitive ratio of
4/3. Algorithm 2, which utilizes the information of the remaining space and unavoidable
crossings in the graph in the form of our so-called propagation arrows, was proven to be at
most 5-competitive. This was done by limiting the number of total crossings generated by
pairs of requests that do not cross one another in an optimal solution.

There are several open questions which we were not able to answer in the scope of this
work. First, there is still a considerable gap between the lower and upper bound of the
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competitive ratio that we have given. We assume that Algorithm 2 performs better than
analyzed and that the upper bound can be made tighter.

While Theorem 1 proves non-competitiveness on general graphs for any k ≥ 2, the case
of regular graphs with degree 3 or higher is still open. We suggest to analyze this graph class
further.
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