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Abstract
For sets of n points, n even, in general position in the plane, we consider straight-
line drawings of perfect matchings on them. It is well known that such sets admit
at least Cn/2 different plane perfect matchings, where Cn/2 is the n/2-th Catalan
number. Generalizing this result we are interested in the number of drawings of perfect
matchings which have k crossings. We show the following results. (1) For every
k ≤ 1

64n
2 − 35

32n
√
n + 1225

64 n, any set with n points, n sufficiently large, admits a
perfect matching with exactly k crossings. (2) There exist sets of n points where every
perfect matching has at most 5

72n
2− n

4 crossings. (3) The number of perfect matchings
with at most k crossings is superexponential in n if k is superlinear in n. (4) Point sets
in convex position minimize the number of perfect matchings with at most k crossings
for k = 0, 1, 2, and maximize the number of perfect matchings with

(n/2
2

)
crossings

and with
(n/2

2

)−1 crossings.

Keywords Perfect matchings · Crossings · Geometric graphs · Combinatorial
geometry · Order types

1 Introduction

The question of how many different plane (that is, crossing-free) straight-line perfect
matchings can be drawn on a point set P in general position (that is, no three points
are colinear) has been extensively studied; see for example [3–7]. It is known that
n = 2m points in general position admit at least Cm plane perfect matchings, where
Cm = 1

m+1

(2m
m

) ∈ 2�(n) is them-thCatalan number. This bound is tight, as point sets
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of size n in convex position (for short, convex point sets) allow exactly Cn/2 = Cm

plane straight-line perfect matchings, and (almost) all other point sets allow strictly
more [3, 5]. On the other hand, the number of plane straight-line perfect matchings of
any set of n points is bounded from above by O(10.05n) [6]. Finally, there exist point
sets which allow �(3.09n) plane straight-line perfect matchings [4].

If we allow crossings, then we can draw every possible perfect matching. On n
vertices there exist (n − 1)!! ∈ 2�(n log n) such matchings [8], each having at most(n/2

2

) ∈ O(n2) crossings. Given n, the question of the existence of perfect matchings

with exactly μ = (n/2
2

)
crossings belongs to an active area of research around the

so-called crossing family problem (see for example [9, 10]). A crossing family of a
point set is a set of pairwise crossing straight-line edges spanned by the point set.
Only recently, it was shown that any set of n points in general position contains a
crossing family of almost linear size, more precisely, of size n1−o(1) [11]. This was
the first substantial improvement after 25 years. The previously best known bound
was

√
n/12, published in 1994 [9]. As a related result, Pach and Solymosi [12] gave

a complete characterization of point sets admitting a perfect crossing family, that is,
a perfect matching of pairwise crossing edges. If we restrict considerations to convex
point sets, there are several results on the distribution of crossings over all perfect
matchings; see for example [13–15]. However, not much is known about the existence
or number of straight-line perfect matchings with k crossings for 0 < k < μ. In this
work, we make a substantial step towards filling this gap.

We analyze the number of straight-line perfect matchings with exactly or at most k
crossings that a point set can admit. All considered point sets are in general position
and have an even number of points. Additionally, we also assume that no two points lie
on the same vertical or horizontal line. For brevity, we will from now on mostly omit
the term straight-line. Further, k-crossing matchings and (≤ k)-crossing matchings
refer to perfect matchings with exactly k and at most k crossings, respectively.

We denote by pmk(P) the number of k-crossing matchings on a point set P , by
pmmax

k (n) the maximum of pmk(P), taken over all sets P of n points, and by pmmin
k (n)

the minimum of pmk(P), also taken over all sets P of n points. Similarly, we denote
with pm≤k(P) the number of (≤ k)-crossing matchings on a point set P and define
pmmax≤k (n) and pmmin≤k (n) analogously as before. Finally, pmconv

k (n) is the number of
k-crossing matchings on a set of n points in convex position.

Contribution. We start by investigating matchings with exactly k crossings in Sect. 2.
There we prove that for every k ≤ 1

64n
2 − 35

32n
√
n + 1225

64 n, any set of n points with n
sufficiently large admits a perfect matching with exactly k crossings (Theorem 1) and
that there exist sets of n points where every perfect matching has at most 5

72n
2 − n

4
crossings (Theorem 2). We also investigate point sets where the possible numbers
of crossings in perfect matchings are not consecutive. In Sect. 3 we then consider
matchings with at most k crossings. We show that the number of perfect matchings
with at most k crossings is superexponential in n if k is superlinear in n (Theorem 3),
but only exponential if k is in O( n

log n ) (Corollary 1). Finally, in Sect. 4, we show
that convex point sets are extremal in several aspects. More specifically, we show that
convex point sets minimize the number of perfect matchings with at most k crossings

123



Algorithmica

Table 1 Numbers of k-crossing matchings for n = 6, 8, 10 points

n = 6 n = 8 n = 10
k min conv max k min conv max k min conv max

0 5 5 12 0 14 14 56 0 42 42 311

1 2 6 10 1 20 28 60 1 120 120 442

2 0 3 3 2 4 28 33 2 135 180 350

3 0 1 1 3 0 20 28 3 39 195 308

4 0 10 10 4 0 165 165

5 0 4 4 5 0 117 117

6 0 1 1 6 0 70 72

7 0 35 35

8 0 15 15

9 0 5 5

10 0 1 1

For each number k of crossings, we display the minimum number of k-crossing matchings, the number of
k-crossing matchings in the convex situation, and the maximum number of k-crossing matchings

for k = 0, 1, 2 (Theorem 8), and maximize the number of perfect matchings with μ

crossings and with μ−1 crossings (Theorem 7).

2 Perfect Matchings with Exactly k Crossings

In this section, we show that every set P of n points (with n sufficiently large) admits
a k-crossing matching for every 0 ≤ k ≤ 1

64n
2 − 35

32n
√
n + 1225

64 n, while this is not

the case for k > 5n2
72 − n

4 .
For even values of n ≤ 10, we have computed the numbers of perfect matchings

with k crossings for all combinatorially different sets of n points using the order type
data base; see [16] for details on order types. Table 1 lists the obtained numbers for
sets of n = 6, 8, and 10 points, from 0 up to the maximum number of

(n/2
2

)
crossings.

We obtain the following observation.

Observation 1 For any k ≤ 3, every set of at least 10 points admits a k-crossing
matching.

For sufficiently large values of n we obtain the following result:

Proposition 1 For any sufficiently large even value of n, every set P of n points admits
a straight-line perfect matching with more than 77

76
1
64n

2 crossings.

Proof Consider the straight-line drawing of Kn on P . Let M be a random perfect
matching of Kn chosen uniformly from the set of all perfect matchings of Kn . Let M
be the corresponding straight-line drawing of M on P . For every set T of 4 points in
P , let XT be the indicator random variable that has value equal to 1 if a pair of crossing
edges of M has all four endpoints in T and 0 otherwise. Note that if T is not in convex

123



Algorithmica

position then XT = 0. LetC be the set of subsets of P of four points in convex position.
If T ∈ C , then the expected value of XT is equal to the probability that M contains
the only two crossing edges with endpoints in T . Hence, E(XT ) = 1

(n−1)(n−3) . Let X

be the number of pairs of edges of M that cross. We have that

E(X) = E

(
∑

T∈C
XT

)

=
∑

T∈C
E(XT ) = |C |

(n − 1)(n − 3)
.

Further, |C | is also equal to the number of pairs of edges of Kn that cross.
The minimum number, cr(Kn), of pairs of edges that cross in any straight-line
drawing of Kn is called the rectilinear crossing number of Kn . It is known that
limn→∞ cr(Kn)

(n4)
= q∗, for some positive constant q∗. Ábrego et al. [17] showed that

q∗ > 0.379972. Thus, we have

E(X) ≥ q∗(n
4

)

(n − 1)(n − 3)
≥ 0.379972n(n − 2)

24
>

77

76

n2

64
(1)

for any sufficiently large value of n. The result follows. 	

Wenext show two technical lemmaswhichwe afterwards use to prove in Theorem 1

that for sufficiently large n and any 0 ≤ k ≤ 1
64n

2 − 35
32n

√
n + 1225

64 n, there always
exists a perfect matching with k crossings.

Lemma 1 Let P be a point set with n points and let M be a perfect matching on P
with cr(M) crossings. Let 0 < k ≤ cr(M). Then P has a perfect matching M ′ with
k − n + 3 ≤ cr(M ′) ≤ k crossings.

Proof Let M0 := M and let p0, . . . , pn−1 be the points of P ordered from top to
bottom. We obtain a matching Mi+1 from matching Mi as follows. If p2i is matched
to p2i+1, then Mi+1 = Mi . Otherwise, let q2i , q2i+1 be the points of P matched to p2i
and p2i+1, respectively, in Mi . We replace the edges (p2i , q2i ) and (p2i+1, q2i+1) by
the edges (p2i , p2i+1) and (q2i , q2i+1). Note that the edges (p0, p1), . . . , (p2i , p2i+1)

have no crossing inMi+1. Furthermore, the number of crossings of the edges (p2i , q2i )
and (p2i+1, q2i+1) is at most n−2i −3 in Mi : in the worst case, each edge crosses all
((n − 2i)/2) − 1 other edges, but the crossing between (p2i+1, q2i+1) and (p2i , q2i )
is counted twice. Hence, we have cr(Mi+1) ≥ cr(Mi )− n + 2i + 3 ≥ cr(Mi )− n + 3
and cr(Mn/2) = 0. Then, the bound follows from choosing M ′ = Mi+1 such that
k ≥ cr(Mi+1) ≥ cr(Mi ) − n + 3 ≥ k − n + 3. 	

Lemma 2 For any sufficiently large even n and 0 ≤ k ≤ 9

169
n2
64 , it holds that

pmmin
k (n) ≥ 1.

Proof Let n2 := 10
⌊ 1
13n

⌋
, and let n1 := ⌈ 3

13n
⌉ − 2 if

⌈ 3
13n

⌉
is even, or

n1 := ⌈ 3
13n

⌉ − 1 otherwise. Note that n1 + n2 ≤ n, since n is even. We linearly
separate the point set P into a point set P1 consisting of the leftmost n1 points and a
point set P2 consisting of the rightmost n2 points.
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LetM1 be thematching of P1 with the largest number of crossings. Then, by Propo-

sition 1, M1 has more than 77
76

n21
64 ≥ 77

76
(� 3

13 n−2)2

64 ≥ 77
76

( 3
13 n−2)2

64 = 9
169

n2
64 + 1

64

(
1
76

9n2
169

− 77
76

12n
13 + 308

76

)
≥ 9

169
n2
64 crossings, where the last inequality holds for n > 1330.

By Lemma 1, P1 has a matching M ′
1 with k − n1 + 3 ≤ cr(M ′

1) ≤ k crossings,
which we aim to extend to a k-crossing matching of P . To achieve this, we need to add
exactly � = k − cr(M ′

1) crossings during the completion. As k − cr(M ′
1) ≤ n1 − 3,

we have � ≤ ⌈ 3
13n

⌉ − 1 − 3 < 3
13n − 3.

Next, we linearly separate P2 into
⌊ 1
13n

⌋
sets of 10 points each. By Observa-

tion 1, every set of 10 points can be matched such that the matching has 0, 1, 2, or 3
crossings. Thus, we can find a matching of P2 with exactly x crossings for every
0 ≤ x ≤ 3

⌊ 1
13n

⌋
. Since 3

⌊ 1
13n

⌋ ≥ 3
13n − 3 ≥ �, we can find a matching M2 of P2

with exactly � crossings. By combining M2 and M ′
1, we get a matching M = M ′

1∪M2
of P with exactly cr(M) = cr(M ′

1) + cr(M2) = k − � + � = k crossings. Finally, if
n1 + n2 < n, we match the remaining points (which lie between P1 and P2) without
additional crossings. 	

Theorem 1 For any sufficiently large even n and 0 ≤ k ≤ 1

64n
2 − 35

32n
√
n + 1225

64 n, it
holds that pmmin

k (n) ≥ 1.

Proof We linearly separate the point set P into two parts; a point set P1 consisting of

the leftmost n1 = n−2 ·
⌊
52
3

√
n
⌋
points and a point set P2 consisting of the rightmost

n2 = 2 ·
⌊
52
3

√
n
⌋
points. Note that n1 is even since n is even.

Let M1 be the matching of P1 with the largest number of crossings; then M1 has
more than

77

76

1

64
n21 >

1

64

(
n − 2 ·

⌊
52

3

√
n

⌋)2
(n > 1225)≥ 1

64

(
n − 105

3

√
n

)2

≥ 1

64
n2 − 35

32
n
√
n + 1225

64
n

crossings by Proposition 1.

By Lemma 1, P1 has a matching M ′
1 with k− (n−2 ·

⌊
52
3

√
n
⌋
)+3 = k−n1+3 ≤

cr(M ′
1) ≤ k crossings. Let � = k − cr(M ′

1) ≤ n − 2 ·
⌊
52
3

√
n
⌋

− 3.

By Lemma 2, P2 has a matching with exactly x crossings for every 0 ≤ x ≤ 9
169

n22
64 .
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Fig. 1 Illustration for the proof of Theorem 2:A point set P for which every perfectmatching has≤ 5n2
72 − n

4
crossings (left). Interior (I1) and outgoing (O0, O1) matching edges for wing 1 of P (right)

Note that

9

169

n22
64

= 9

169 · 64
(
2 ·

⌊
52

3

√
n

⌋)2

≥ 9

169 · 16
(
52

3

√
n − 1

)2

= n − 9

169 · 16
(
2 · 52

3

√
n − 1

)

≥ n − 9

169 · 16
(
2 ·

⌊
52

3

√
n

⌋
+ 1

)

≥ n − 2 ·
⌊
52

3

√
n

⌋
− 3.

Hence, there is a matching M2 of P2 with exactly � crossings. This implies that
there is a matching M = M ′

1 ∪ M2 of P with exactly cr(M) = cr(M ′
1) + cr(M2) =

k − � + � = k crossings. 	

Theorem 2 For any n ≡ (0 mod 6) and k > 5n2

72 − n
4 , it holds that pm

min
k (n) = 0.

Proof For every n ≡ (0 mod 6), we consider a specific set of n points, see Fig. 1. We
call it a windmill consisting of three wings. Each wing is a set of n/3 points forming a
flat convex chain that is arranged along a ray from the center of the windmill, where the
rays for the three wings pairwise span angles of 2π/3. The three wings are rotational
symmetric copies of each other, and any line spanned by two points of one wing
passes between the other two wings. We label the wings with indices 0,1, and 2 in
counterclockwise order. In the following we consider all indices modulo 3. With Ii we
denote the collection of interior matching edges of wing i , that is, edges that match
two points of this wing.With Oi we denote the collection of outgoingmatchings edges
of wing i , that is, edges that match a point of wing i to wing i + 1. Let ιi = |Ii | and
oi = |Oi | denote the cardinalities of these sets.
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As we aim for an upper bound on the maximal possible number of crossings,
we distribute the edges to maximize the crossings. We thus can assume that, for
each wing i , the edges in Ii and Oi are arranged to maximize the possible crossings
between them as well as within each of them (cf. the drawing on the right in Fig. 1).
The number of crossings we can get this way is

∑2
i=0

((
ιi
2

) + (oi
2

) + ιi oi
)
. So we have

six parameters tomaximize this sum.We get three equations for these parameters from
the size of the wings, namely 2ιi + oi + oi−1 = n

3 , i ∈ {1, 2, 3}. From this, we derive
that oi = n

6 + ιi−1 − ιi − ιi+1, and can thus express the number of crossings only
using the numbers of interior matching edges, where 0 ≤ ιi ≤ n

6 . For the crossings
formed by Ii ∪ Oi , this gives

(
ιi

2

)
+

(
oi
2

)
+ ιi oi =

(
ιi

2

)
+

( n
6 + ιi−1 − ιi − ιi+1

2

)
+ ιi

(n
6

+ ιi−1 − ιi − ιi+1

)

= n2

72
− n

12
+ n

6
(ιi−1 − ιi+1) + 1

2

(
ιi+1 − ιi−1 + ιi−1

2 + ιi+1
2
)

− ιi−1ιi+1.

Summing over all three wings gives n2
24 − n

4 + ι0
2 + ι1

2 + ι2
2 − ι0ι1 − ι0ι2 − ι1ι2

crossings.
By symmetry, we can assume w.l.o.g. that in the maximizing solution ι0 ≥ ι1, ι2

holds. Then, under the additional condition that all ιi and oi have to be non-negative, the
uniquemaximum is obtained for ι0 = n

6 and ι1 = ι2 = 0. This results in n2
24 − n

4 + n2
36 =

5n2
72 − n

4 crossings, which completes the proof. 	


2.1 Gaps in the Number of Crossings

The above two theorems provide bounds on k such that for every point set and every
k′ ≤ k, the point set admits a k′-crossing matching. Now we are focusing on a fixed
set P of n points and analyze for which values of k there exists a k-crossing matching
on P . For some point sets P , there exist perfect matchings with all possible numbers
k of crossings from 0 to

(n/2
2

)
. The following lemma states that this property holds for

convex point sets.

Lemma 3 Every set of n points in convex position admits a k-crossing matching for
every 0 ≤ k ≤ μ = (n/2

2

)
.

Proof Let P be a set of n points in convex position. Label the points in cyclic order
from p1 to pn . A crossing family of size c is a set of c edges which pairwise cross
and thus has c(c−1)

2 crossings. Let c′ be the largest integer such that c′(c′−1)
2 ≤ k. To

obtain k crossings in total observe that the number of crossings we still need to add to
a crossing family of size c′ is x = k − c′(c′−1)

2 < c′. We first construct the crossing
family of size c′ by connecting the points pi and pc′+i+1, for i ∈ {1, . . . , x}, and
by connecting the points pi and pc′+i+2, for i ∈ {x + 1, . . . , c′}. See Fig. 2 for a
depiction. Next we connect points pc′+1 and pc′+x+2 which were not yet connected
within the crossing family and contribute the remaining x crossings. Finally, wematch
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Fig. 2 Proof of Lemma 3: Matching with 42 crossings obtained from a crossing family of size c′ = 9 plus
x = 6 extra crossings

Fig. 3 A set of 30 points with a perfect matching with
(15
2
) = 105 crossings, but with no perfect matching

with k ∈ {103, 104} crossings. This result is obtained by direct computation

all remaining points (if any, with indices 2c′ + 3 to n) without crossings. Then M has
in total k crossings as desired. 	


In contrast to Lemma 3, Fig. 3 gives an example of a set P of 30 points, that has
a perfect matching with 105 crossings but does not have a perfect matching with 104
and 103 crossings. We say that P has a gap between 102 and 105, as it does not have
a perfect matching with 103 and 104 crossings. The following proposition is inspired
by the example in Fig 3. In its proof, we construct an infinite family of point sets with
large gaps.

Proposition 2 For infinitely many values of n, there exists a set of n points which
admits a matching withμ = (n/2

2

)
crossings, but does not admit a matching withμ− i

crossings for any 1 ≤ i ≤ 1
4 (

√
4n + 1 − 11).

Proof We construct a point set Pg with n = 4g2 + 6g + 2 points, where g ≥ 2 is
an integer, as follows. Consider a regular n-gon centered at the origin with points
p0, . . . , pn−1. We consider all indices modulo n. Let Cε be a circle centered at origin
and small enough such that no line spanned by pi and p n

2+i±1 for 1 ≤ i ≤ n
2

intersects Cε. For 0 ≤ i ≤ 2g, we push the points p(2g+2)·i onto Cε along the ray
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from the origin through p(2g+2)·i ; see Fig. 3 for a depiction with g = 2. Note that the
points p(2 g+2)·i with 0 ≤ i ≤ 2g form a regular (2g + 1)-gon and are on Cε. The set
Pg consists of those 2g+1 points plus the remaining n−2g−1 vertices of the regular
n-gon we started with. Obviously, Pg spans a crossing family of size n

2 , formed by the
edges (pi , pi+ n

2
), 0 ≤ i < n

2 , and hence admits a matching with μ crossings.

An edge connecting two points in Pg is called long if it connects two points on the
boundary of the convex hull of Pg . Otherwise it is called short.

Claim If M has a long edge (px , py) with py �= px+ n
2
, then M has at most μ − g + 1

crossings.

Proof of Claim. We determine the maximal number of crossings of (px , py). To do
this, we count the number of points in the half planes H1 and H2 defined by the line
spanned by px and py . By construction, all points on Cε are in the half plane which
contains more points of Pg , say H2. Let H ′ be the open half plane with H1 ⊂ H ′
that has the origin on its boundary (that is, the boundary of H ′ is parallel to the line
spanned by px and py). Note that H ′ contains at most n

2 points of Pg . Since the points
on Cε form a regular (2g + 1)-gon, every half plane with the origin on its boundary
contains at least g points of Pg on Cε. Since H1 ⊂ H ′ and H1 ∩ Cε = ∅, H1 has at
most n

2 − g points. Hence, (px , py) has at most n
2 − g crossings.

The matching M\{(px , py)} has at most (n/2−1)(n/2−2)
2 = (n/2)2−3(n/2)+2

2 cross-

ings. Hence, M has at most (n/2)2−3(n/2)+2
2 + n

2 − g = μ − g + 1 crossings. �
We prove by contradiction that there exists no matching with μ − i crossings for

any 1 ≤ i < g − 1. Assume that there exists a matching M ′ with k crossings where
μ − g + 1 < k < μ. The claim shows that all long edges of M ′ are of the form
(px , px + n

2 ) if M ′ has more than μ − g + 1 crossings. Moreover, since there are
2g + 1 points on Cε and 4g2 + 4g + 1 points on the boundary of the convex hull of
Pg , there are at least 2g2 + g long edges of the form (px , px + n

2 ). Since there are
only 2g2 + g long edges of the form (px , px + n

2 ), all those long edges are forced for
any matching with more than μ − g + 1 crossings.

If there exists an edge of M ′ between two points on Cε, then there exists another
long edge of the form (px , py) with py �= px+ n

2
, by the pigeonhole principle. It

follows from the claim that any matching containing an edge between two points on
Cε has at most μ − g + 1 crossings.

The remaining case is that every point on Cε is connected by a short matching edge
to a point on the convex hull. Note that if M ′ contains all short edges of the form
(px , px+ n

2
), px ∈ Cε, then M ′ has exactly μ crossings. Hence M ′ contains a short

edge (px , py) with px ∈ Cε and y = x + n
2 ± r for some 1 ≤ r < n

2 . We consider
py = px+ n

2+r (py = px+ n
2−r follows analogously). Since (px , px+ n

2
) is a short edge

and all long edges of the form (px , px+ n
2
) were forced in M ′, r > 2g+1. So the edge

(px , py) does not cross any of the line segments (px+i , px+ n
2+i )with 1 ≤ i ≤ 2 g+1.

On the other hand, 2g of the line segments (px+i , px+ n
2+i ) correspond to the forced

long edges. So (px , py) has at most n
2 − 2 g crossings. Similar as above, it follows

that M ′ has at most μ − g + 1 crossings, a contradiction. 	
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3 Perfect Matchings with at Most k Crossings

We next show that if k is superlinear in n, then the number of (≤k)-crossingmatchings
is superexponential for every set of n points.

Theorem 3 For any k ∈ ω(n), it holds that pmmin≤k (n) ∈ 2�(n log( kn )).

Proof Let P be a set of n points. By our assumption on point sets, no two points of
P have the same x-coordinate. Process the points from left to right and partition them
into � n2

k � groups Pi , with i = 1, 2, . . . , � n2
k � of the same even number of points (plus

one additional group P ′ if n is not an even multiple of the number of groups). More
exactly, if � k

n � is even, then each group is of size � k
n �; otherwise it is of size� k

n � − 1.
Consider first such a group Pi . As mentioned in the introduction, we can draw

2�( kn log( kn )) perfect matchings on Pi , and each of them has at most
(�k/n�

2

)
< � k2

n2
�

crossings. Now let M ′ be an arbitrary but fixed plane matching of P ′. Then the number
of perfect matchings where all edges are either within some Pi or in M ′ is

(
2�( kn log( kn ))

)(� n2
k �) = 2�(n log( kn )). (2)

Further, each such matching has at most � n2
k � · � k2

n2
� ≤ k crossings. Hence the number

of ≤ k-crossing matchings of P is bounded from below by 2�(n log( kn )). 	

Note that for a (≤k)-crossingmatching, atmost 4k points can be incident to crossing

edges. Hence, the next theorem implies the upper bound on pmmax≤k (n) as stated below
in Corollary 1.

Theorem 4 For any set P of n points, n even, and 0 ≤ x ≤ n, x even, let pmx (n)

be the number of perfect matchings whose crossing edges are incident to at most x
points. Then pmx (n) ∈ 2O(n+x log x).

Proof Consider some subset P ′ ⊂ P of size x . We want to count the number of
perfect matchings on P whose crossing edges are incident to points in P ′. There are
2�(x log x) perfect matchings on P ′. We extend the matching on P ′ to P by adding
matching edges of P\P ′ such that the matching on P\P ′ is plane. As mentioned in
the introduction, any point set in general position with n points, the number of plane
perfect matchings is in O(10.05n) ∈ 2O(n).

Thus there are at most 2O(n−x) plane perfect matchings on P\P ′. Note, however,
that edges of the matching on P\P ′ might intersect with edges from the matching
on P ′. But as we are only interested in an upper bound of the number of matchings
where all edges with intersections are incident to points in P ′, it is sufficient that these
matchings are a subset of the matchings we consider in our construction. Finally, the
choices for P ′ are

(n
x

) ≤ 2n . Hence, we get pmx (n) ∈ 2n · 2�(x log x) · 2O(n−x) ⊆
2O(n+x log x). 	

Corollary 1 For any even n and any k, it holds that pmmax≤k (n) ∈ 2O(n+k log k).
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For k ∈ �(n), this bound isworse than the trivial upper bound from thenumber of all
perfect matchings. For k ∈ O( n

log n ) we get a bound of 2O(n), which is asymptotically
tight.

4 Points in Convex Position

In this section, we study the number pmconv
k (n) of k-crossing matchings on a set of

n points in convex position. Obviously, pmmin
k (n) ≤ pmconv

k (n) ≤ pmmax
k (n). It is

well known that convex sets minimize the number of plane perfect matchings; see for
example [5, 18].Hence,wehave pmmin

0 (n)=pmconv
0 (n).On the other hand, considering

the maximum number μ = (n/2
2

)
of crossings, we can show that for k ∈ {μ,μ − 1},

convex sets maximize the number of different k-crossing matchings. Precisely, the
maximum number of μ-crossing matchings and (μ − 1)-crossing matchings are 1
andn/2, respectively.Moreover, all sets of n points achieving thesemaximumnumbers
have exactly n

2 halving edges (edges that have n−2
2 points of the set on each side of

their supporting line). We remark that, given n points, it is folklore that the minimum
number of halving edges is n/2. The exact maximum number of halving edges is still
unknown. The current best lower bound for the maximum number of halving edges
on a point set of size n is �(ne

√
ln 4

√
ln n/ ln n) by Nivasch [19] and the current best

upper bound is O(n4/3) by Dey [20].
Next we state two results of Pach and Solymosi (adapted to our notation) that gives

the existence and number of μ-crossing matching w.r.t. the number of halving edges
of the given point set.

Theorem 5 (Theorem 1, [12]) A set of n points, n even, in general position in the plane
admits a perfect crossing family if and only if it has precisely n/2 halving edges.

Theorem 6 (Theorem 2, [12]) Any set of an even number of points in general position
in the plane admits at most one perfect crossing family.

The following result is a consequence of Theorems 5 and 6.

Corollary 2 For any even n and μ = (n/2
2

)
, it holds that pmconv

μ (n) = pmmax
μ (n) = 1.

Proof Let P be a set of n points in convex position labelled in cyclic order from p0
to pn−1. By Theorem 5, a point set P admits a μ-crossing matching if and only if P
has exactly n

2 halving edges. Thus, we construct our matching M to entirely consist
of halving edges by connecting the points pi and p n

2+i , for i ∈ {0, . . . , n
2 − 1}. Then

any two edges of M cross and hence M has μ crossings. This is the only possible
μ-crossing matching, as Theorem 6 states that every set P of n points has at most one
μ-crossing matching. 	

Theorem 7 For any even n ≥ 6 and μ−1 = (n/2

2

)−1, the following three statements
hold.

(1) pmconv
μ−1(n) = pmmax

μ−1(n) = n
2 .

(2) Any set P of n points with exactly n
2 halving edges has pmμ−1(P) ≤ n

2 .
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Fig. 4 The case where the non-crossing edges e and f are in non-convex position

(3) Any set P of n points with more than n
2 halving edges has pmμ−1(P) ≤ 2.

Proof We will first show that any point set P with pmμ−1(P) ≥ 1 either has exactly
n
2 halving edges or has more than n

2 halving edges and pmμ−1(P) ≤ 2. Then, to
complete the proof, we will show that any point set P with exactly n

2 halving edges
has pmμ−1(P) ≤ n

2 and that n
2 is attained for convex point set.

Consider a set P of n points with pmμ−1(P) ≥ 1 and a perfect matching M with
μ − 1 crossings on P . Then M contains exactly one non-crossing pair of edges, say
e and f . There are two ways on how the endpoints of e and f can be arranged: they
can be in convex position (e and f are essentially “parallel”) or one endpoint is in
the interior of the convex hull of the other three endpoints (one edge is “stabbing” the
other). In this second case we denote the unique endpoint of e and f that is inside the
convex hull as pc.

Case 1: The endpoints of e and f are in convex position: In this case, we remove
the edges e and f and add the diagonals of the convex quadrilateral defined by their
endpoints to find a matching M ′ with μ crossings. Since all other edges crossed e and
f , they also cross the diagonals of this convex quadrilateral and thus the new edges. So
we do not lose any crossing, but gain a crossing between e and f . Thus, by Theorem 5,
the underlying point set has exactly n/2 different halving edges.

Case 2: The point pc is in the interior of the convex hull of e and f : We assume
w.l.o.g. that e is horizontal and that pc is the left endpoint of e. Moreover, f is vertical
and to the left of pc, and no other edges are horizontal or vertical; see Fig. 4 for an
illustration. By the following claim, the underlying point set P has more than n/2
different halving edges.

Claim The point pc in the interior of the convex hull of e and f is incident to exactly 3
halving edges of P and all other points are incident to exactly one halving edge of P .

Proof of Claim. There are two types of edges other than e and f in the matching M :
a family A of edges that cross e from above (edges with negative slope) and a family
B of edges that cross e from below (edges with positive slope), where each of A and
B might be empty. Clearly, all edges of M except f are halving edges of P . Now
consider the lines through pc and the endpoints of f . As both e and f cross all the
other edges of M , so does each of these lines. Hence, the two edges between pc and
the endpoints of f are also halving edges of P . This shows that pc is incident to at
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least 3 halving edges, and every point of P is incident to at least one halving edge.
Next we show that no other edge is a halving edge of P . Assume for a contradiction
that some other edge g spanned by P is a halving edge as well. Let Me = M\{e},
M f = M\{ f }, and Me, f = M\{e, f }. Similarly, let Pe, Pf , and Pe, f be the point
sets obtained from P by removing the endpoints of e, f , or e and f , respectively. Note
that Me, M f , and Me, f are pairwise crossing perfect matchings of Pe, Pf , and Pe, f ,
respectively, and hence contain exactly all halving edges for their underlying point
sets. Thus, g cannot cross e (or f or both), as otherwise g would be a halving edge
of Pe (or Pf or Pe, f ) and hence an edge of Me (or M f or Me, f ) contained in M . If e
and f lie in the same closed halfspace of g then each edge of Me, f must have at least
one endpoint in that halfspace as well, which gives a count of at least 2+ n−4

2 > n−2
2

points of P in the open halfspace, a contradiction to g being a halving edge. If e and
f lie in opposite closed halfspaces of g, then at most one endpoint of g is incident to
e or f (as otherwise, g would be one of the three halving edges incident to pc). Let
pg be the endpoint of g that is not incident to e and f . The edge in M incident to pg
lies in exactly one closed halfspace of g and hence crosses at most one of e and f ,
again a contradiction. �

From this claim it follows that in Case 2 the point pc has to be the same for every
matching of P withμ−1 crossings. Further, in any suchmatching pc must be incident
to a halving edge. Thus, for matchings other than M , it can only be matched with one
of the endpoints of f . In particular, to obtain a matching with μ − 1 crossings, there
are at most three choices for an edge incident to pc, each choice uniquely determines
the whole matching, and the edges in A and B must appear in any such matching.

As the edge incident to pc must cross the edges in both A and B, a differentmatching
exists exactly if A or B are empty. If both A and B are empty, there are three possible
matchings, but the underlying point set has only 4 points. If for n ≥ 6 only one of A
and B is empty and there are more than n/2 different halving edges, it follows that
there can be at most two matchings with μ − 1 crossings.

It remains to show that if there are exactly n/2 different halving edges, then there
are at most n/2 matchings with μ − 1 crossings. As argued above, only Case 1 can
occur now, as in Case 2 there must be strictly more than n/2 different halving edges.
A perfect crossing family (a perfect matching of pairwise crossing edges) defines a
natural rotational order on its edges by sorting them by slopes. We call two edges
neighbored if they are neighbored in this cyclic order. Similar to Case 1 above we can,
for anymatchingwithμ−1 crossings, exchange the “parallel” edgeswith the diagonals
of the corresponding convex quadrilateral. This gives a mapping from matchings with
μ−1 crossings to perfect crossing families where two neighboring edges are marked.
Clearly, this mapping is an injection, showing that there are at most n/2 matchings
with μ − 1 crossings. This mapping turns into a bijection when we have a convex
point set and thus gives exactly n/2 such matchings. 	

Remark 1 While Fig. 3 gives an example of a point set of size n with exactly n/2
halving edges that does not admit a perfect matching with μ − 1 crossings, we can
characterize point sets that have exactly n/2 perfect matchings with μ − 1 crossings
as follows. From the proof of Theorem 7 it is clear that such point sets have exactly
n/2 halving edges and thus admit a perfect crossing family. Let ei and ei+1 be two
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Fig. 5 The pink shaded area represents the butterfly region of ei and ei+1. If the butterfly region is empty
of points, then any edge that crosses ei and ei+1 also crosses e′i and e′i+1

neighboring edges (w.r.t. the rotational ordering by the slope of the edges) of this
perfect crossing familywhich cross at x .We construct the butterfly region of ei and ei+1
by considering the convex quadrilateral Q formed by the endpoints of ei and ei+1. Seen
from x there are four wedges within Q. If for every edge of the perfect crossing family,
except ei and ei+1, we translate its supporting line such that it passes through x , then
there are twowedgesW1 andW2 where all these lines go trough – the other twowedges
are empty since ei and ei+1 are neighbored in the rotational order by slope. The union of
the interior ofW1 andW2 is the butterfly region of ei and ei+1, see Fig 5. If this butterfly
region is empty of any points of the given point set, then we can obtain a (μ − 1)-
crossingmatching by replacing ei , ei+1 with the two non-crossing edges that still cross
all other edges (e′

i and e
′
i+1 in Fig. 5). Consequently, if the butterfly regions of all pairs

of neighboring edges of a perfect crossing family are empty, then the underlying point
set has exactly n/2 perfect matchings with μ − 1 crossings. So for n ≥ 8 there are
also non-convex point sets with n/2 perfect matchings with μ − 1 crossings.

It is natural to ask for which values of k and n it holds that pmconv
k (n) ∈

{pmmin
k (n), pmmax

k (n)}; exhaustive computations for all point sets of small size indicate
that this might be true for more than just k ∈ {0, μ−1, μ}. In Fig. 6, which is a graph-
ical representation of Table 1 for n = 10, we can see that pmconv

k (n) = pmmax
k (n) for

4 ≤ k ≤ 10, except for k = 6. By analyzing this special case we found that the wheel
set of size 10,where 9 points form a regular 9-gonwith the remaining point in its center,
is the unique point set that has the maximum of 72 perfect matchings with 6 crossings
(whereas the convex set has only 70 perfect matchings with 6 crossings). By further
examining wheel sets of small size we conjecture that they maximize the number of
perfect matchings with (n−2)(n−4)

8 crossings, and that this maximum is (n − 1)2
n
2−2.

For k >
(n−2)(n−4)

8 crossings it still might hold that pmconv
k (n) = pmmax

k (n).
As a variant of the above question, we consider for which values of n and k the

convex set minimizes the number of matchings with at most k crossings, that is,
pmconv≤k (n) = pmmin≤k (n)? In the following, we prove the statement for any n and k ≤ 2.
We start by showing a useful technical lemma.

We remark that the next lemma follows from variants of the Ham Sandwich Theo-
rem. For self-containment, we give a short argumentation here.

Lemma 4 Let S = S1 ∪ S2 be a point set in general position in which S1 and S2 are
separated by a line h. W.l.o.g. let h be horizontal, S1 above h and S2 below h. Then
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Fig. 6 Comparison of pmmin
k (n), pmmax

k (n), and pmconv
k (n) for n = 10 and 0 ≤ k ≤ 10

for any a, b, c, d ∈ N0, a + b = |S1| − 1 and c+ d = |S2| − 1, there is a unique pair
of points p1 ∈ S1 and p2 ∈ S2 such that the supporting line � spanned by p1 and p2
splits S1 such that there are a points to the left of � and b points to the right of �, and
at the same time � splits S2 so that there are c points to the left of � and d points to
the right of �.

Proof Consider the points of S1 ordered from left to right and let p be the point with
index a + 1 in this order. Let � be the vertical line through p and note that � splits S1
in the required way. If � has c points of S2 to its left, we are done. W.l.o.g. assume
that � has more than c points of S2 to its left, and start rotating � clockwise around p.
(The case that � has less than c points of S2 to its left can be handled analogously by
rotating � counterclockwise around p.) Whenever � touches a point q ∈ S1, we set
p = q and continue the rotation around the new point p. Note that the splitting of S1
remains a : b. If � touches a point q ∈ S2, then the number of points of S2 to the left
of � is reduced by 1. If this number is c, then we stop the process and set p1 = p and
p2 = q. Otherwise, we continue the rotation. Before � becomes horizontal, there are
no points of S2 to the left of �, so the process terminates.

We now show that there is only one pair of points p1 and p2 that spans a line �

which splits the sets in the required way. Assume for the sake of contradiction that
there are two such lines �′ and �′′. Then �′ and �′′ intersect at most once, w.l.o.g. above
h. Further assume that the notation is such that below h, line �′ is to the left of �′′. If
�′ has, as required, c points of S2 to its left, then �′′ has at least c + 1 points to its left,
as also the point q ∈ S2 which spans �′ is to the left of �′′; a contradiction. 	

Theorem 8 For any even n and any k ∈ {0, 1, 2}, it holds that pmmin≤k (n) = pmconv≤k (n).

Proof Let PC be a set of n points in convex position and let P be a set of n points
in general position. We prove the theorem by establishing an injective mapping from
perfect matchings with at most k crossings on PC to those on P . Let M be a perfect
matchingwith atmost k crossings on PC . FromM wewill construct a perfectmatching
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4

Fig. 7 An illustration of the proof of Theorem 8 for k = 2 crossings

M ′ on P with at most k crossings. Let v be the leftmost point on PC and let w be
the point of PC to which v is matched in M . The line � = vw splits PC in an upper
half U and a lower half L . Map v to the leftmost point v′ of P . Let w′ ∈ P be the
unique point such that there are |U | points of P above the supporting line v′w′ (call
this subset U ′) and |L| points of P below it (call this subset L ′). Add v′w′ as an edge
to M ′.

If the edge vw is not crossed in M , then we treat the smaller setsU and L of PC and
their corresponding sets U ′ and L ′ of P recursively. Note that each of these subsets
has an even number of points and that they are linearly separated in both P and PC ,
and can thus be treated independently.

If the edge vw is crossed in M , then we consider the leftmost crossing on it. Note
that there exists a unique leftmost crossing on vw, as it cannot be a vertical line by the
assumption on the point set. Let the crossing edge be ul with u ∈ U and l ∈ L . By
Lemma 4, there is a unique pair of points u′ ∈ U ′ and l ′ ∈ L ′ such that the supporting
line of u′l ′ intersects the supporting line of v′w′ in P and the four resulting quadrants
in P have the same cardinality as the corresponding quadrants in PC . Note, however,
that the edges v′w′ and u′l ′ might not intersect (which is whywe can show themapping
only with an upper bound on the number of crossings, and not with an exact bound).

The resulting four quadrants are disjoint convex regions. Hence, if none of the edges
vw and ul is involved in the potential second crossing in M , then the subsets of points
in these regions can be treated independently. If the edge vw (or the edge ul) contains
a second crossing in M , then we repeat the just described procedure once more for the
convex region formed by the two quadrants whose union contains the crossing. This
results in a partition of the plane into six convex regions, each of which can be treated
independently as k ≤ 2 (see Fig. 7).

Once all (at most two) crossings of the currently considered connected component
of the matching M have been considered, we iterate on the remaining subsets as
described above.

At the end of this construction, we obtain a perfect matching M ′ in P which
corresponds to the matching M in PC and has at most k crossings. As every step in
this construction generated a unique matching edge, this gives the desired injective
mapping. 	


Note that the above proof cannot be used to show the case for exactly k crossings.
The reason is that if a matching of the convex set has a crossing, the according two
edges might not cross in the matching of the general set. Moreover, the proof does
also not work for k > 2 crossings as it may contain cycles, where a cycle in a drawing
is referred to as a closed region bounded by edge segments and crossings. Due to the
presence of cycles, it might not be possible to treat the sub-quadrants independently.
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Fig. 8 For k = 3 crossings, the proof of Theorem 8 does not work: For the convex set (left) the given
matching has three crossings. When drawing the edges on the second set (right) in the order given by the
proof as indicated, an additional crossing occurs

An example of such a situation is depicted in Fig. 8, where an additional crossing
is generated. The crucial observation is that if only two crossings are allowed, such
a situation cannot occur. (Actually, for the proof it is sufficient that any connected
component of the drawing of the matching forms at most two crossings.)

5 Conclusion

We have shown bounds for the number of perfect matchings with k crossings on point
setswith an even number n of points. Aswithmany other counting problems in discrete
geometry and some decision problems on point sets in the plane, the computational
complexity of deciding the existence of and counting the number of perfect matchings
with k crossings is in general unknown.

We have shown that if k ≤ 1
64n

2 − 35
32n

√
n + 1225

64 n, every set of n points, for n
even and n sufficiently large, admits a perfect matching with k crossings. For those
values of k, the existential question is therefore settled. On the other hand, as stated
in [21], it is not even known whether counting the number of plane perfect matchings
on a set of n points is hard, that is, #P-complete.

Given a set P of n points, the problem of deciding whether it admits a perfect
matching with k crossings can be reformulated in terms of the intersection graph
G of line segments connecting points in P . This graph contains a vertex for each
segment connecting two points in P and edges connect intersecting segments, where
an intersection is either a proper crossing or a common endpoint.We consider a 2-edge-
coloring of this graph where edges corresponding to segments sharing an endpoint are
colored blue and edges corresponding to crossing segments are colored red. The point
set P admits a perfect matching with k crossings if and only if G has an induced
subgraph with n/2 vertices, k red edges, and no blue edge. For general edge-colored
segment intersection graphs, this problem is NP-complete by a reduction from the
clique problem in such graphs [22]. However, the input parameters and the subclass
of segment intersection graphs that we are interested in are very specific (though not
so well understood), and it is therefore possible that the problem is polynomial-time
solvable when restricted to these specific instances.

5.1 Open Problems

In light of the above discussion, we point out the following open problems.
Open Problem 1: Determine the computational complexity of deciding whether a

given point set admits a perfect matching with k crossings.
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OpenProblem2: Investigatewhether the number of perfectmatchingswith exactly
one crossing is minimized by point sets in convex position.

OpenProblem3:Determine forwhich values of k, the number of perfectmatchings
with exactly k crossings is maximized by point sets in convex position.

In this paper we have shown that Open Problem 3 is true for k ∈ {(n/2
2

)
,
(n/2

2

)−1}.
As we have mentioned before it could be also true for k >

(n−2)(n−4)
8 .
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