
Handbook of Requirements and Business Analysis

Bertrand Meyer

Handbook of Requirements
and Business Analysis

Bertrand Meyer
Schaffhausen Institute of Technology
Schaffhausen, Switzerland

ISBN 978-3-031-06738-9 ISBN 978-3-031-06739-6 (eBook)
https://doi.org/10.1007/978-3-031-06739-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of

the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,

reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic

adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even

in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and

therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be

true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or

implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher

remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cover illustration: “Émailleur à la Lampe, Perles Fausses”, plate from Diderot’s and D’Alembert’s Encyclopédie, by kind

permission of the ARTFL Project at the University of Chicago.

This Springer imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-06739-6

Short contents

The full table of contents starts on page xix.

Preface vii

Contents xix

1 Requirements: basic concepts and definitions 1

2 Requirements: general principles 21

3 Standard Plan for requirements 35

4 Requirements quality and verification 47

5 How to write requirements 71

6 How to gather requirements 105

7 Scenarios: use cases, user stories 129

8 Object-oriented requirements 137

9 Benefiting from formal methods 161

10 Abstract data types 187

11 Are my requirements complete? 205

12 Requirements in the software lifecycle 211

 Bibliography 229

Index 239

v

Preface

If a system is a solution, requirements state the problem. Since a solution to the wrong problem
is useless, stating the problem is as important as building the solution. Hence the centrality of
requirements engineering — also known as business analysis — in information technology.

Good requirements are among the most treasurable assets of a project. Bad requirements
hamper it at best and doom it at worst.

In software development as practiced today, requirements are more often bad than good.
What passes for requirements in too many projects is a loose collection of “use cases” or “user
stories”, revealing the kind of amateurish process that used to plague other tasks of software
engineering such as design, programming and testing. While these solution-side tasks have
benefited from enormous progress in the last decades, on the problem side requirements remain
the sick part of software engineering.

The goal of this book is to redress the balance so that the requirements you produce will sup-
port rather than hinder your projects. It is not a theoretical treatise but a Handbook, devised to
provide you with concrete and immediately applicable guidance.

THE MATERIAL

You will find in the following chapters:

• 1: A precise definition of requirements concepts, and a classification of requirement kinds.

• 2: A discussion of general requirements principles.

• 3: A Standard Plan applicable to the requirements of any project.

• 4: A review of the quality attributes for requirements and associated verification criteria.

• 5: Precise guidelines on how to write effective requirements.

• 6: A description of how to obtain requirements, a process known as elicitation.

• 7: A discussion of use cases and other scenario-based requirements techniques.

• 8: A presentation of the object-oriented approach to requirements.

• 9: An introduction to formal requirements, using mathematical rigor for precision.

• 10: An important kind of formal specification, abstract data types.

• 11: What it means for requirements to be “complete”, and how to achieve this goal.

• 12: How to make requirements a core part of the project lifecycle.

vii

PREFACE viii

As befits a practical and compact Handbook, the discussion focuses on concepts and uses only
short examples for illustration. A Companion Book, Effective Requirements: A Complete
Example, develops the requirements of an entire industrial case study from start to end, using
the concepts of this Handbook and the plan of chapter 3.

OBSTACLES TO QUALITY

Why has requirements quality continued to lag while other aspects of software engineering
have advanced? Lack of attention is not the reason. There are thousands of articles on require-
ments engineering, conferences that have been running regularly for decades, specialized jour-
nals, and several good books (you will find references to them in the Bibliographical notes and
further reading section at the end of this Preface). Their effect on how industry practices
requirements is, however, limited.

One of the obstacles has already been noted: the belief, in much of the software world, that
doing requirements means writing a few scenarios of user interaction with the system: “use cases”
or “user stories”. While helpful, such a collection of examples cannot suffice. If used as a sub-
stitute for requirements, it leads to systems that do not perform well outside of the chosen cases
and are hard to adapt to new ones. The industry needs to wean itself from use cases and user
stories as the basis for requirements, and start viewing them in their proper role: as tools for the
verification and illustration of proper requirements, produced by more appropriate techniques.

Another impediment is the widespread distrust of “upfront” activities — specifically,
upfront requirements and design— sown by proponents of agile methods such as Scrum. Along
with the undeniable improvements it has brought to the industry’s practice of software con-
struction, the spread of agile ideas has led many people to believe that requirements as separate
software engineering artifacts are a thing of the past, and that you can just rush into coding,
writing user stories as you go. In reality, some upfront work is essential: in no serious engineer-
ing endeavor can engineers proceed directly to construction without a preliminary phase of
analysis and planning. Good software practices include requirements, whether you write them
before or during development. In fact, as you will learn (see “Requirements Elaboration Prin-
ciple”, page 25, and the lifecycle discussion of chapter 12), you should do both. The principles
in this Handbook are equally applicable to agile and more traditional (“Waterfall”) projects.

DESCRIPTIVE AND PRESCRIPTIVE

We may expect anyone discussing a branch of science or engineering to start by precisely defin-
ing the objects of study. Unfortunately, the requirements literature lacks such meaningful and
systematically applicable definitions.

DESCRIPTIVE AND PRESCRIPTIVE ix

It often compounds the problem by failing to separate descriptive and prescriptive elements.
To study any discipline, you need to learn the basic notions involved before you learn right and
wrong ways of doing things. Speed is distance traveled per unit of time; only after giving this
definition can you start prescribing speed limits.

In software engineering and particularly requirements engineering, the standard sources
have not reached that level of maturity. They are as long on advice — not always buttressed by
objective justifications — as they are short on usable technical information, and many an
author seems to find it natural to claim a role of director of conscience for stranded souls. Con-
sider this definition of “requirement” from the IEEE standard on systems engineering:

Requirement: A statement that identifies a product or process operational,
functional, or design characteristic or constraint, which is unambiguous,
testable or measurable, and necessary for product or process acceptability (by
consumers or internal quality assurance guidelines).

Although you would not guess it from its mystifying grammar (how does one parse “product
or process operational, functional, or design characteristic”?), this definition is the result of
years of work by an IEEE committee; numerous articles and textbooks cite it reverently. But it
misses its purpose of defining the concept of requirements: it is instead trying to tell us what
requirements should be (unambiguous, testable, measurable). Hold the preaching, please; first
tell us what requirements are.

In its attempt at prescription, the definition is lame anyway: requirements quality involves
much more than the criteria listed. In chapter 4 of this Handbook, devoted to defining require-
ments quality, you will find a set of fourteen quality factors. It is not possible to do justice to
such a complex matter in the few lines of a definition. But consider the damage that this
botched attempt at prescription does to the description (which should be the goal of a definition
in a standard). If we only accepted “unambiguous” requirements as requirements, we would
exclude many — probably most — requirements documents produced in practice. (Imagine a
definition of “novel” specifying that the story must be absorbing, the characters compelling,
the dialog sharp and the style impeccable. Bookstores would have to remove many titles from
their “novel” shelves.) Requirements as we write them are human products; of course they will
contain occasional ambiguities and other deficiencies! Not every one of their elements will be
“testable or measurable”. Perfect or not, however, they are still requirements.

Such confusion of the descriptive and the prescriptive is pervasive in today’s standards. It
mars what should have been the definitive standard on requirements (but ends up being pretty
useless): the 2018 International Standard Organization’s “Systems and software engineering —
Life cycle processes — Requirements engineering”, which you can purchase for some $300 to
get such definitions as the following for “requirements elicitation”:

Use of systematic techniques, such as prototyping and structured surveys, to
proactively identify and document customer and end user needs

PREFACE x

(The underlined terms refer to other entries in the standard.) Requirements elicitation, covered
in chapter 6 of this Handbook, is the process of gathering requirements from stakeholders. The
cited definition only lists “customers” and “end users” as the source of needs, an obsolete view:
it should refer to the more general notion of stakeholder (for which the standard actually has
an entry!). The previous example used similarly imprecise and inadequate terminology by
referring to acceptability by “consumers”.

Even worse in the last entry is its failure to separate the definition of “elicitation” from the
prescriptive fashions of the moment. Some committee member must have had a particular ax
to grind: that prototyping is the best way to elicit requirements. (On prototyping for require-
ments, see 6.11, page 122 in this Handbook.) Another was pushing the idea of “structured sur-
veys”. They both got their two cents in, but at the expense of other widely used elicitation
techniques (why leave out stakeholder interviews and stakeholder workshops, widely-used
elicitation techniques discussed in chapter 6?). The result is a mishmash of partial prescrip-
tions, not a usable definition.

The present text has a fair amount of advice, as one may expect from a Handbook.
But it always defines the concepts first, and keeps the two aspects, descriptive and
prescriptive, distinct. A prescriptive part, whether an entire chapter or just one section
or paragraph, is marked at its start with the “Prescription” road sign shown here.

The first two chapters highlight the distinction: chapter 1 reviews and precisely defines the
fundamental concepts of requirements; it is almost fully descriptive. Chapter 2 introduces gen-
eral principles of requirements analysis and is almost fully prescriptive.

A BALANCED VIEW

One of the obstacles facing any serious discussion of software requirements is the dominance
of two extremist schools with little tolerance for each other:

• “Heavy artillery”: the more dogmatic fringe of the Waterfall, big-software-project school,
which treats requirements as a step of the software lifecycle and insists that the subsequent
steps cannot proceed until every single requirement has been spelled out.

• “Guerrilla warfare”: the more dogmatic fringe of the agile school, which is suspicious of
any “big upfront” activity (including upfront requirements and upfront design), and limits
requirements to “user stories” (7.2, page 132), covering small units of functionality and
written on-the-fly, interspersed with implementation.

Both extremes are unreasonable (and not endorsed by the wiser members of both schools). This
Handbook takes a pragmatic stance on the place of requirements in the overall software devel-

KEY IDEAS xi

opment process. Two of the “key ideas” summarized in the next section, “Just Enough Require-
ments” and “Upfront and evolving”, reflect this flexible approach, which accommodates:

• Heavy-requirements processes, as may be justified for example in life-critical systems or
others subject to strict regulatory processes.

• Light-requirements processes, as in web interface design or DevOps (12.4.3) projects.

• Anything in-between.

Each project is entitled to define the dosage of “a priori” and “as we go” requirements that best
suits its context. This Handbook will, it is hoped, provide guidance and support in all cases.

KEY IDEAS

Successful requirements engineering demands a coherent approach with clear guiding princi-
ples. Here is a preview of core ideas that this Handbook will help you master and apply.

A Standard Plan. Requirements in industry, when just using an ad hoc structure, often fol-
low the model plan of a 1998 IEEE standard. While good for its time, it has long outlived its
relevance; we understand far more about requirements, and today’s projects are vastly more
sophisticated, calling for a more sophisticated plan. The plan presented in chapter 3 consists of
four “books” covering the four PEGS of requirements engineering (Project, Environment, Goals
and System), with a chapter structure covering all important aspects. It has been tried on a num-
ber of examples and fine-tuned over several years, with the goal of becoming the new standard.

A proper scope for requirements. Requirements are too often misconstrued as “the defi-
nition of the functions of the system”. Such a view restricts the usefulness of a requirements
effort. This Handbook restores the balance by covering all four PEGS of the requirements plan.
All are equally important. “Project” covers features of the actual development project, such as
tasks, resources and deadlines. “Environment” covers properties with which the development
must contend, but which are not under its control because they come from physical laws, engi-
neering constraints or business rules. “Goals” covers the business benefits expected from the
project and system. “System” covers the behavior and performance of the system to be built.

Requirements as a question-and-answer device. The maximalist view of an all-encom-
passing requirements document, which must specify everything there is to know about a system
(and in traditional “Waterfall” approaches, specify it ahead of any design or implementation),
is in most cases expensive, unfeasible (as not all system properties can be determined early on),
and over-reaching (as the project may not need to determine all of them early). Pushing this
view on a project may lead to an equally damaging over-reaction from the team: a blanket dis-
missal of the importance of requirements. More productive and practical is a view of require-
ments as a technique for identifying key questions to be asked about the system, and answering
these questions independently of design and implementation. This Handbook focuses through-
out on this role of requirements as a question-asking and question-answering tool.

PREFACE xii

Not just documents. We will be less concerned with requirements documents in the tradi-
tional sense than with requirements. Elements of requirements appear not only in dedicated
documents but in a variety of expected and unexpected places, from PowerPoint slide decks to
emails. It is more productive to think of a repository (a database) of requirements, from which
one can produce requirements documents if desired. The four books of the Standard Plan col-
lect all necessary elements, across all four dimensions, but do not have to be written linearly.

Just enough requirements. Requirements are the focus of this Handbook, but they should
not be the focus of software development. What counts is the quality of the systems you will
produce. To reach this goal, you need to pay enough attention to requirements, but not so much
as to detract from other tasks. This Handbook teaches how to devote to requirements the req-
uisite effort — no less, and no more.

Upfront and evolving. The Waterfall-style extreme of requirements all done up-front then
frozen, and the agile extreme of requirements (user stories) produced piecewise while you
implement system components, are equally absurd. It is as irresponsible to jump into a project
without first stating the requirements as it is illusory to expect this statement to remain
untouched. The proper approach is to start with a first version (carefully prepared but making
no claim of perfection or completeness) and continue extending and revising it throughout the
project. This combination of up-front work and constant update avoids the futile disputes
between traditional and agile views; it retains the best of both.

Requirements are software. Requirements are a software engineering product of the first
importance, along with other artifacts such as code, designs and tests. They share many of their
properties and can benefit from many of the same techniques and tools.

Requirements as living assets. As one of the fundamental properties they share with other
software artifacts, requirements will inevitably undergo change. Correspondingly, they can
benefit from configuration management techniques and tools for recording individual ele-
ments, their relations with others, and their evolution throughout the development process.

Taking advantage of the object-oriented method. The object-oriented style of decompo-
sition structures specifications (of programs but also of systems of any kind) into units based
on types of objects, rather than functions; then each function is attached to the relevant object
type and the types themselves are organized into inheritance structures. This style has proved
its value in the software development space, by yielding simple and clear architectures, facili-
tating change and supporting reuse. While it has long been known that the same ideas can also
help requirements, they should be more widely applied in that space. This Handbook shows
how to benefit from an OO style for requirements.

Taking advantage of formal approaches. Some parts of requirements demand precision,
at a level that can only be achieved through the use of mathematical methods and notations,
also known as formal. For most projects, the bulk of the requirements is informal — using a
combination of English or other natural language, figures, tables — but it is important to be
able to switch to mathematics for aspects that have to be specified rigorously, for example if

GEEK AND NON-GEEK xiii

misunderstandings or ambiguities could cause the system to malfunction, with potentially
grave consequences. This Handbook shows that formal approaches are not an esoteric aca-
demic pursuit but a practical tool for requirements engineering, and explains how to benefit
from them in a realistic project setting.

GEEK AND NON-GEEK

The charm as well as the challenge of requirements engineering is that it straddles geek and
non-geek territory. Requirements describe how a software project and the system it produces
interact with their physical and business environment (non-geek), but must do so with enough
rigor and precision to serve as a blueprint for development, verification and maintenance (geek).

The geek/non-geek duality is apparent in the existence of two competing terms: what some
branches of the Information Technology (IT) industry call “requirements engineering” is
known in others as “business analysis”. While nuances exist between these names (“Require-
ments engineering, business analysis”, 1.2.5, page 6), for the most part they express a differ-
ence of focus: engineering versus business.

This Handbook does not take sides. It is intended both for IT professionals (“geeks”) and for
non-IT stakeholders (“non-geeks”) wanting to understand how to make projects meet their needs.
It ignores industry borders and applies to projects in both the engineering and business worlds.

THE AUTHOR’S EXPERIENCES BEHIND THIS HANDBOOK

A technical book is usually one of: practical advice, by a consultant; course textbook, by an
academic; research monograph, also by an academic; prescription of standard practices, often
by a committee. This Handbook does not fall into just one of these categories, but has features
from each. It benefits from the author’s experience across several professional roles.

Part of this background is the author’s practice as a software project team leader. A suc-
cessful project must avoid two opposite dangers: unprepared coding (jumping too early to
implementation, without taking the time to define requirements); and “analysis paralysis”,
whereby you become so bogged down specifying requirements down to the last detail that you
have no time left to implement them properly. Experience teaches how much effort to devote
to requirements so that they guide and protect the development without detracting from it.

Another experience — helping projects while they are under development — confirms
what many published studies have shown: that some of the worst deficiencies in software sys-
tems come from insufficient work on requirements (rather than mistakes in the design and
implementation of the software). It is amazing in particular to see how a distorted invocation
of agile ideas can damage a project: “We are agile! We don’t do any requirements! We just start
implementing and add user stories as we go!”. A sure way to disaster. Agile methods — often
used in a misunderstood form — serve here as a convenient excuse for sloppiness and laziness.
In agile and less agile projects a consultant can help a development team produce a much better

PREFACE xiv

system by prompting them, both upfront and throughout the development, to identify relevant
stakeholders and devote the proper effort to requirements. This Handbook explains how to
combine a significant but limited upfront requirements effort with a constant update and exten-
sion of the requirements throughout the rest of the development process.

Also part of the author’s background for this Handbook is work as software expert in legal
cases. Company C (customer) contracts out to company D (developer) to build an IT system.
Things go sour and two years later they find themselves in court. C blames D for failing to
deliver a working system, D blames C for failing to provide enough information and support.
In comes a software expert, asked by the court to assess the technical merits. Sifting though
tens of thousands of emails, meeting minutes, PowerPoint presentations, use cases, test reports
and other project documents reveals major requirements-related problems. Sometimes they are
the cause of the failure, sometimes just one factor, but they are always part of the picture. The
flaws can be managerial (requirements did not receive enough attention); technical (require-
ments were not of good enough quality); human (D did not provide the right business analysts,
C did not provide the right Subject-Matter Experts — see “Who produces requirements?”,
1.10.2, page 16). In all cases, the expert’s sentiment — kept to himself, since it’s too late — is
that the parties would have been better off devoting proper attention to requirements while the
project was alive; and if they had to call on an expert, it would have been better to do so upfront
(in the role of a project advisor, discussed in the previous paragraph) to secure the project’s suc-
cess, rather than now to help decide who pays and who receives millions in damages.

This Handbook benefits from numerous one-day or two-day courses for industry on
requirements engineering and related topics, taught by the author to industry practitioners.

Also on the teaching side, the text relies on the author’s university courses at ETH Zurich,
Politecnico di Milano, Innopolis University and the Schaffhausen Institute of Technology on
requirements engineering and more general software engineering topics (including agile meth-
ods). Such courses often include a development project with a requirements component. A par-
ticularly interesting experience was the Distributed Software Engineering Laboratory, taught
for over a decade at ETH, and covering the challenges of software projects developed collab-
oratively across different sites. A key part of the course was a project conducted with several
other universities and resulting in the full implementation of a system by student groups. Each
group consisted of three teams located in different universities from different countries, with
two or three students in each team. There is hardly a better way for students to realize the
importance of requirements than when you have to interface your own part of the system with
another written by people a few time zones away, from a different culture, and whom you have
never met. Many students who took part in this experience have commented on how well it pre-
pared them for the reality of distributed development (before Covid-19 made this setup even
more prevalent), and how it helped educate them in fruitful requirements techniques.

BIBLIOGRAPHICAL NOTES AND FURTHER READING xv

BIBLIOGRAPHICAL NOTES AND FURTHER READING

The “Companion Book” mentioned on page viii is Effective Requirements: A Complete Exam-
ple [Bruel et al. 2022].

Examples of the existing “good books” on requirements (page viii) include, on the practical
side, [Wiegers-Beatty 2013], rich with examples from the author’s practice as a consultant. On
the more academic side, an important contribution is [Van Lamsweerde 2008] which covers the
field extensively, focusing on goal-oriented requirements techniques; see also a textbook,
[Laplante 2018]. Another requirements text is [Kotonya-Sommerville 1998]. [Pfleeger-Atlee
2009] is a general textbook on software engineering, but its almost 80-page chapter on require-
ments provides a good survey of the topic. Another software engineering textbook, older but
still applicable, is [Ghezzi et al. 2002]. A classic text on software project management, [Brooks
1975-1995], includes some oft-quoted lines about the importance of requirements. An important
source is the work of Michael Jackson and Pamela Zave, starting with an influential early paper,
[Zave-Jackson 1997] and continuing with Jackson’s own requirements books: [Jackson 1995]
and [Jackson 2000]; a more recent compendium of the work of their school is [Nuseibeh-Zave
2010]. [Lutz 1993] is a classic study of software errors due to poor requirements.

The standards cited on page ix are the IEEE systems engineering process standard [IEEE
2005], and the ISO-IEC-IEEE requirements engineering standard [ISO 2018]. Another
IEEE-originated standard is SWEBOK [IEEE 2014], the Guide to the Software Engineering
Body of Knowledge. It still shows signs of immaturity (with such examples as “a process
requirement is essentially a constraint on the development of the software”, where “essen-
tially”, inappropriate in a definition, can only confuse the reader). It has, however, become
more precise and rigorous over its successive editions (the latest one, referenced here, is the
third) and serves as a good summary of accepted concepts of software engineering including
requirements, the topic of its first chapter.

The Distributed Software Engineering Laboratory at ETH Zurich and elsewhere, initially
called DOSE (Distributed and Outsourced Software Engineering), included a project devel-
oped collaboratively by students from different universities around the world, in which require-
ments played a key role. It led to numerous publications accessible from [DOSE 2007-2015].

ACKNOWLEDGMENTS

Special thanks are due the Schaffhausen Institute of Technology (sit.org) for providing an
excellent environment for teaching and research. SIT is an ambitious new university destined
to make a big splash in the technology world; this Handbook appears to be the first book pro-
duced by an SIT member since SIT’s creation in 2019. It is important to express the key roles
of Serguei Beloussov, the founder of SIT and definer of its vision, Stanislav Protassov, one of
SIT’s leading lights, and faculty colleagues Mauro Pezzè and Manuel Oriol.

PREFACE xvi

Part of the context that led to this Handbook is the collaborative work, going back several
years, of an informal research group on requirements whose members are spread between the
University of Toulouse (IRIT, Université Paul Sabatier), SIT, and previously Innopolis Univer-
sity. The present work is in debt to the members of this group for many stimulating discussions
and particularly for helping with the initial version of the taxonomy of requirements (“Kinds
of requirements element”, 1.3, page 6). They are Profs. Jean-Michel Bruel, Sophie Ebersold
and Manuel Mazzara as well as Alexandr Naumchev, Florian Galinier and Maria Naumcheva.

The author’s expert-consulting work in legal cases, and the resulting insights mentioned
above, greatly benefited from collaboration with Benoît d’Udekem from Analysis Group.

The courses cited in the previous section yielded thoughtful comments by attendees, lessons
from course projects, and insights from co-lecturers, teaching assistants and colleagues includ-
ing, at ETH, Peter Kolb, Martin Nordio, Julian Tschannen and Christian Estler; at Innopolis,
Alexandr Naumchev and Mansur Khazeev; at Politecnico di Milano, faculty members Elisa-
betta Di Nitto and Carlo Ghezzi in many thought-provoking discussions. A seminar at UC
Santa Barbara in 2020 at the invitation of Laura Dillon and two talks in 2021, one for ACM,
organized by Will Tracz, the other for IBM, at the invitation of Grady Booch, provided oppor-
tunities to refine the ideas and their presentation.

The author has had the privilege of being exposed early on and over the years to the work
of pioneers in requirements engineering, people who really defined the field, and even in some
cases to interact directly with them. Without in the least implying agreement, it is important to
acknowledge the influence of such star contributors (a few of them not strictly in requirements
engineering but in kindred areas, for example agile methods and software lifecycle models) as
Joanne Atlee, Kent Beck, Daniel Berry, Barry Boehm, Grady Booch, Mike Cohn, Alistair Cock-
burn, Anthony Finkelstein, Carlo Ghezzi, Tom Gilb, Martin Glinz, Michael and Daniel Jackson,
Ivar Jacobson, Capers Jones, Cliff Jones, Jeff Kramer, Philippe Kruchten, Bashar Nuseibeh,
David Parnas, Axel Van Lamsweerde, Karl Wiegers and Pamela Zave. A number of them are
members of the IFIP (International Federation for Information Processing) Working Group 2.10
on Requirements; attendance at one of their meetings provided many insights, as did regular
participation in meetings of another IFIP committee, WG2.3 on Programming Methodology.

The friendly and efficient support of Ralf Gerstner at Springer, now for the third book in a
row, is a great privilege.

The ETH Zurich library helped in obtaining the text of older articles. Alistair Cockburn
kindly authorized using material from his book on use cases, [Cockburn 2001], for an example
appearing in chapters 7 and 8; Bettina Bair kindly authorized reproducing her sample require-
ments document, devised for a course, [Bair 2005].

ACKNOWLEDGMENTS xvii

Comments received on early drafts of the text, particularly by from Mike Cohn, Lutz Eicke,
Philippe Kruchten, Ivar Jacobson and Karl Wiegers, led to corrections and improvements.

Marco Piccioni provided support, comments and material over many years, and suggested
exercises.The text immensely benefited from Raphaël Meyer’s punctilious proofing. However
much one would like to hope that no mistakes remain, chances are slim; the Handbook site ref-
erenced below will list corrections to errors reported after publication.

September 2022 (corrected printing)

HANDBOOK PAGE

Further material associated with this Handbook, including course
slides, document templates for the Standard Plan of chapter 3 and
links to video lectures (MOOCs) on requirements, is available at

requirements.bertrandmeyer.com

https://requirements.bertrandmeyer.com

PREFACE xviii

CREDITS

Cover picture: from “Émailleur à la Lampe, Perles Fausses” (lampwork enameler, imitation pearls), a plate in
Diderot’s and d’ Alembert’s Encyclopédie (1751-1766), by kind permission of the ARTFL Project at the Uni-
versity of Chicago.

Pages 168 and 178: detail from A Pic-Nic Party by Thomas Cole, Brooklyn Museum, photo by Bill Hathom
on Wikimedia at upload.wikimedia.org/wikipedia/commons/0/09/Thomas_Cole%27s_%22The_Pic-
nic%22%2C_Brooklyn_Museum_IMG_3787.JPG. See museum page at www.brooklynmuseum.org/opencoll
ection/objects/1356.

RUP diagram, page 214: adapted from Wikimedia picture at commons.wikimedia.org/wiki/File:Develop-
ment-iterative.png.

https://upload.wikimedia.org/wikipedia/commons/0/09/Thomas_Cole%27s_%22The_Picnic%22%2C_Brooklyn_Museum_IMG_3787.JPG
https://upload.wikimedia.org/wikipedia/commons/0/09/Thomas_Cole%27s_%22The_Picnic%22%2C_Brooklyn_Museum_IMG_3787.JPG
https://www.brooklynmuseum.org/opencollection/objects/1356
https://www.brooklynmuseum.org/opencollection/objects/1356
https://commons.wikimedia.org/wiki/File:Development-iterative.png
https://commons.wikimedia.org/wiki/File:Development-iterative.png

Contents

PREFACE VII

The material vii
Obstacles to quality viii
Descriptive and prescriptive viii
A balanced view x
Key ideas xi
Geek and non-geek xiii
The author’s experiences behind this Handbook xiii
Bibliographical notes and further reading xv
Acknowledgments xv
Credits xviii

CONTENTS XIX

1 REQUIREMENTS: BASIC CONCEPTS AND DEFINITIONS 1

1.1 Dimensions of requirements engineering 1
1.1.1 Universe of discourse: the four PEGS 1
1.1.2 Distinguishing system and environment 2
1.1.3 The organizations involved 2
1.1.4 Stakeholders 3

1.2 Defining requirements 4
1.2.1 Properties 4
1.2.2 Statements 4
1.2.3 Relevance 5
1.2.4 Requirement 5
1.2.5 Requirements engineering, business analysis 6

1.3 Kinds of requirements element 6
1.4 Requirements affecting goals 6

1.4.1 Goal 6
1.4.2 Special case: obstacle 6

1.5 Requirements on the project 8
1.5.1 Task 8
1.5.2 Product 8

1.6 Requirements on the system 8
1.6.1 Behavior 8
1.6.2 Special cases: functional and non-functional requirements 8
1.6.3 Special cases: examples (scenarios) 8

xix

CONTENTSxx

1.7 Requirements on the environment 9
1.7.1 Constraint 9
1.7.2 Special cases of constraints: business rule, physical rule, engineering decision 9
1.7.3 Assumption 9
1.7.4 Distinguishing between constraints and assumptions 10
1.7.5 Effect 10
1.7.6 Invariant 10

1.8 Requirements applying to all dimensions 11
1.8.1 Component 11
1.8.2 Responsibility 11
1.8.3 Limit 11
1.8.4 Special case: role 11

1.9 Special requirements elements 12
1.9.1 Silence 12
1.9.2 Noise 12
1.9.3 Special case: hint 12
1.9.4 Metarequirement 13
1.9.5 Special case: justification 13

1.10 The people behind requirements 13
1.10.1 Categories of stakeholders 13
1.10.2 Who produces requirements? 16

1.11 Why perform requirements? 17
1-E Exercises 18

Bibliographical notes and further reading 19
Terminology note: verification and validation 20

2 REQUIREMENTS: GENERAL PRINCIPLES 21
2.1 What role for requirements? 21

2.1.1 The need for requirements 21
2.1.2 The role of requirements 22
2.1.3 The nature of requirements 22
2.1.4 The evolution of requirements 23
2.1.5 The place of requirements in the project lifecycle 25
2.1.6 The form of requirements 26
2.1.7 Outcomes of requirements 27

2.2 Human aspects 28
2.2.1 Stakeholders 28
2.2.2 Authors 28

2.3 Requirements elicitation and production 29
2.4 Requirements management 30
2.5 Requirements quality 31
2.6 Other principles 32
2-E Exercises 33
Bibliographical notes and further reading 33

CONTENTS xxi

3 STANDARD PLAN FOR REQUIREMENTS 35

3.1 Overall structure 35
3.2 Front and back matter 36
3.3 Using the plan 36

3.3.1 Forms of requirements conforming to the Standard Plan 36
3.3.2 Customizing the plan 37
3.3.3 Mutual references 37

3.4 The Goals book 38
3.5 The Environment book 40
3.6 The System book 42
3.7 The Project book 43
3.8 Minimum requirements 45
3-E Exercises 45

Bibliographical notes and further reading 46
4 REQUIREMENTS QUALITY AND VERIFICATION 47

4.1 Correct 48
4.1.1 About correctness 48
4.1.2 Ensuring correctness 48
4.1.3 Assessing correctness 48
4.1.4 Parts of the Standard Plan particularly relevant to assessing correctness 49

4.2 Justified 49
4.2.1 About justifiability 49
4.2.2 Ensuring justifiability 50
4.2.3 Assessing justifiability 50
4.2.4 Parts of the Standard Plan particularly relevant to assessing justifiability 51

4.3 Complete 51
4.4 Consistent 52

4.4.1 About consistency 52
4.4.2 Ensuring consistency 52
4.4.3 Assessing consistency 53
4.4.4 Parts of the Standard Plan particularly relevant to assessing consistency 53

4.5 Unambiguous 54
4.5.1 About non-ambiguity 54
4.5.2 Ensuring non-ambiguity 54
4.5.3 Assessing non-ambiguity 54
4.5.4 Parts of the Standard Plan particularly relevant to assessing non-ambiguity 54

4.6 Feasible 55
4.6.1 About feasibility 55
4.6.2 Ensuring feasibility 55
4.6.3 Assessing feasibility 56
4.6.4 Parts of the Standard Plan particularly relevant to assessing feasibility 56

CONTENTSxxii

4.7 Abstract 56
4.7.1 About abstractness 56
4.7.2 The difficulty of abstracting 57
4.7.3 Overspecification 59
4.7.4 Design and implementation hints 59
4.7.5 Beware of use cases 60
4.7.6 Ensuring abstractness 60
4.7.7 Assessing abstractness 60
4.7.8 Parts of the Standard Plan particularly relevant to assessing abstractness 60

4.8 Traceable 61
4.8.1 About traceability 61
4.8.2 Ensuring traceability 61
4.8.3 Assessing traceability 62
4.8.4 Parts of the Standard Plan particularly relevant to assessing traceability 62

4.9 Delimited 62
4.9.1 About delimitation 62
4.9.2 Ensuring delimitation 63
4.9.3 Assessing delimitation 63
4.9.4 Parts of the Standard Plan particularly relevant to assessing delimitation 63

4.10 Readable 63
4.10.1 About readability 63
4.10.2 Ensuring readability 64
4.10.3 Assessing readability 64
4.10.4 Parts of the Standard Plan particularly relevant to assessing readability 65

4.11 Modifiable 65
4.11.1 About modifiability 65
4.11.2 Ensuring modifiability 65
4.11.3 Assessing modifiability 65
4.11.4 Parts of the Standard Plan particularly relevant to assessing modifiability 65

4.12 Verifiable 66
4.12.1 About verifiability 66
4.12.2 Ensuring verifiability 66
4.12.3 Assessing (“verifying”) verifiability 66
4.12.4 Parts of the Standard Plan particularly relevant to assessing verifiability 66

4.13 Prioritized 67
4.13.1 About prioritization 67
4.13.2 Ensuring prioritization 67
4.13.3 Assessing prioritization 67
4.13.4 Parts of the Standard Plan particularly relevant to assessing prioritization 67

4.14 Endorsed 68
4.14.1 About endorsement 68
4.14.2 Ensuring endorsement 68
4.14.3 Assessing endorsement 68
4.14.4 Parts of the Standard Plan particularly relevant to assessing endorsement 68

4-E Exercises 69
Bibliographical notes and further reading 70

CONTENTS xxiii

5 HOW TO WRITE REQUIREMENTS 71

5.1 When and where to write requirements 71

5.2 The seven sins of the specifier 72
5.2.1 The Sins list 72
5.2.2 Noise and silence 73
5.2.3 Remorse 73
5.2.4 Falsehood 74
5.2.5 Synonyms 74
5.2.6 Etcetera lists 74

5.3 Repetition 75

5.4 Binding and explanatory text 77

5.5 Notations for requirements 79
5.5.1 Natural language 79
5.5.2 Graphical notations 80
5.5.3 Formal notations 82
5.5.4 Tabular notations 83
5.5.5 Combining notations 84

5.6 Some examples: bad, less bad, good 85
5.6.1 “Provide status messages” 85
5.6.2 The flashing editor 86
5.6.3 Always an error report? 86
5.6.4 Words to avoid 87

5.7 Style rules for natural-language requirements 88
5.7.1 General guidelines 88
5.7.2 Use correct spelling and grammar 89
5.7.3 Use simple language 90
5.7.4 Identify every part 90
5.7.5 Be consistent 91
5.7.6 Be prescriptive 91

5.8 The TBD rule 92

5.9 Documenting goals 93

5.10 The seven sins: a classic example 93
5.10.1 A simple specification 94
5.10.2 A detailed description 95
5.10.3 More ambiguity! 100
5.10.4 Lessons from the example 101
5.10.5 OK, but can we do better? 102

5-E Exercises 102

Bibliographical notes and further reading 103

CONTENTSxxiv

6 HOW TO GATHER REQUIREMENTS 105

6.1 Planning and documenting the process 105

6.2 The role of stakeholders 105

6.3 Sources other than stakeholders 106

6.4 The glossary 107

6.4.1 Clarify the terminology 108
6.4.2 Kidnapped words 108
6.4.3 Acronyms 109

6.5 Assessing stakeholders 109

6.6 Making business analysts and domain experts work together 111

6.7 Biases, interviews and workshops 112

6.8 Conducting effective interviews 113

6.8.1 Setting up and conducting an interview 113
6.8.2 Interview reports

6.9 Conducting effective workshops 114

6.9.1 Why workshops help 114
6.9.2 When to run workshops 115
6.9.3 Planning a workshop 115
6.9.4 Running a workshop 116
6.9.5 After the workshop 117

6.10 Asking the right questions 118

6.10.1 Uncover the unsaid 118
6.10.2 Cover all PEGS 118
6.10.3 Do not confuse roles 119
6.10.4 Ask effective questions 119
6.10.5 Get stakeholders to prioritize 121

6.11 Prototypes: tell or show? 122

6.11.1 What is a prototype? 122
6.11.2 Incremental prototypes 122
6.11.3 Throwaway prototypes 123
6.11.4 UI prototypes 123
6.11.5 Feasibility prototypes 123
6.11.6 Limitations of prototypes 125
6.11.7 Risk assessment and mitigation 126

6-E Exercises 126

Bibliographical notes and further reading 127

114

CONTENTS xxv

7 SCENARIOS: USE CASES, USER STORIES 129

7.1 Use cases 129

7.2 User stories 132

7.3 Epics and use case slices 133

7.4 The benefits of scenarios for requirements 133

7.5 The limitations of scenarios for requirements 134

7.6 The role of use cases and user stories in requirements 135

7-E Exercises 136

Bibliographical notes and further reading 136

8 OBJECT-ORIENTED REQUIREMENTS 137

8.1 Two kinds of system architecture 137

8.2 The notion of class 138

8.3 Relations between classes and the notion of deferred class 139

8.4 Why object-oriented requirements? 140

8.5 An OO notation 142

8.6 Avoiding premature ordering 143

8.6.1 The limitations of sequential ordering 143
8.6.2 A detour through stacks 144

8.7 Logical constraints versus premature ordering 147

8.7.1 A contract-based specification 147
8.7.2 Logical constraints are more general than sequential orderings 150
8.7.3 What use for scenarios? 151
8.7.4 Where do scenarios fit? 151
8.7.5 Different roles for different techniques 152
8.7.6 Towards formal methods and abstract data types 153
8.7.7 “But it’s design!” 153
8.7.8 Towards seamlessness 154

8.8 The seven kinds of class 154

8.8.1 Requirements classes 155
8.8.2 Design and implementation classes 156
8.8.3 Goals and project classes 156
8.8.4 Permissible relations between classes 156

8.9 Going object-oriented 158

8-E Exercises 159

Bibliographical notes and further reading 159

CONTENTSxxvi

9 BENEFITING FROM FORMAL METHODS 161

9.1 Those restless Swiss! 161
9.2 Basic math for requirements 162

9.2.1 Logic and sets 162
9.2.2 Operations on sets 163
9.2.3 Relations 163
9.2.4 Functions 164
9.2.5 Powers and closures 165
9.2.6 Sequences 166

9.3 The relocating population, clarified 167
9.3.1 Naming components of a specification 167
9.3.2 Interpretation 1 167
9.3.3 Interpretation 2 168
9.3.4 Back to English: the formal picnic 168

9.4 Who writes formal specifications? 170
9.5 An example: text formatting, revisited 171

9.5.1 Defining a framework 171
9.5.2 The distinctive nature of requirements 173
9.5.3 Text formatting as minimization 174
9.5.4 The specification 175
9.5.5 Analyzing the specification 175
9.5.6 Proving requirements properties 176
9.5.7 Back from the picnic 178
9.5.8 Error handling 179

9.6 Formal requirements languages 180
9.7 Expressing formal requirements in a programming language 182
9-E Exercises 183

Bibliographical notes and further reading 185

10 ABSTRACT DATA TYPES 187

10.1 An example 187
10.2 The concept of abstract data type 188
10.3 Functions and their signatures 188
10.4 Axioms 190
10.5 ADT expressions as a model of computation 190
10.6 Sufficient completeness 191

10.6.1 A workable notion of completeness 192
10.6.2 A proof of sufficient completeness 193

10.7 Partial functions and preconditions 194
10.7.1 The need for partial functions 194
10.7.2 Partial functions in ADT specifications 194
10.7.3 The nature of preconditions 195
10.7.4 Expression correctness 196

CONTENTS xxvii

10.7.5 Ascertaining correctness 197
10.7.6 No vicious cycle 197

10.8 Using abstract data types for requirements 198
10.8.1 Turning an ADT into a class 198
10.8.2 Functional and imperative styles 199
10.8.3 From an ADT to a class 200

10.9 ADTs: lessons for the requirements practitioners 200
10-E Exercises 201

Bibliographical notes and further reading 203
11 ARE MY REQUIREMENTS COMPLETE? 205

11.1 Document completeness 205
11.2 Goal completeness 206
11.3 Scenario completeness 207
11.4 Environment completeness 208
11.5 Interface completeness 208
11.6 Command-query completeness 209
Bibliographical notes and further reading 210

12 REQUIREMENTS IN THE SOFTWARE LIFECYCLE 211
12.1 Rescuing the Waterfall 211
12.2 Rescuing the Spiral model 212
12.3 Rescuing RUP 214
12.4 Rescuing Agile and DevOps 215

12.4.1 An agile lifecycle 215
12.4.2 Agile damage, agile benefit 216
12.4.3 DevOps 216

12.5 The Cluster model 217
12.6 Seamless development 218

12.6.1 The unity of software development 218
12.6.2 A seamless process 219
12.6.3 Reversibility 220

12.7 A unifying model 221
12.7.1 Overall iterative scheme 221
12.7.2 Not all sprints are created equal 221
12.7.3 An example sequence of sprints 223
12.7.4 Implement early and often 224
12.7.5 Detailed view of a sprint 225
12.7.6 A combination of best practices 226

Bibliographical notes and further reading 227

 BIBLIOGRAPHY 229

INDEX 239

	Short contents
	Preface
	THE MATERIAL
	OBSTACLES TO QUALITY
	DESCRIPTIVE AND PRESCRIPTIVE
	A BALANCED VIEW
	KEY IDEAS
	GEEK AND NON-GEEK
	AUTHOR’S EXPERIENCES BEHIND THIS HANDBOOK
	BIBLIOGRAPHICAL NOTES AND FURTHER READING
	ACKNOWLEDGMENTS
	HANDBOOK PAGE
	CREDITS

	Contents

