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Abstract. Timed automata (TAs) are an efficient formalism to model
and verify systems with hard timing constraints, and concurrency. While
TAs assume exact timing constants with infinite precision, parametric
TAs (PTAs) leverage this limitation and increase their expressiveness, at
the cost of undecidability. A practical explanation for the efficiency of
TAs is zone extrapolation, where clock valuations beyond a given con-
stant are considered equivalent. This concept cannot be easily extended
to PTAs, due to the fact that parameters can be unbounded. In this
work, we propose several definitions of extrapolation for PTAs based on
the M -extrapolation, and we study their correctness. Our experiments
show an overall decrease of the computation time and, most importantly,
allow termination of some previously unsolvable benchmarks.

Keywords: timed automata · abstraction · parameter synthesis · reach-
ability · liveness · IMITATOR

1 Introduction

Timed automata (TAs) [AD94] represent an efficient and expressive formalism to
model and verify systems mixing hard timing constraints with concurrency, being
one of the most expressive decidable formalisms with timing constraints. How-
ever, TAs assume exact timing constants with infinite precision, which may not
be realistic in practice; in addition, they assume full knowledge of the model, pre-
venting verification at an early development phase. Parametric timed automata
(PTAs) leverage these limitations, by allowing unknown timing constants in the
model—at the cost of undecidability: the mere emptiness of the parameter val-
uations set for which a given (discrete) location is reachable (called reachability
emptiness) is undecidable [AHV93].

A practical explanation for the efficiency of TAs for reachability properties
is (zone) extrapolation, where clock valuations beyond a given constant are con-
sidered to be equivalent. Since the seminal work [AD94], several works improved

? This is the author (and extended) version of the manuscript of the same name
published in the proceedings of the 14th NASA Formal Methods Symposium (NFM
2022). The final authenticated version is available at springer.com. This work is
partially supported by the ANR-NRF French-Singaporean research program ProMiS
(ANR-19-CE25-0015).

1

ar
X

iv
:2

20
3.

13
17

3v
1 

 [
cs

.F
L

] 
 2

4 
M

ar
 2

02
2

https://orcid.org/0000-0001-8473-9555
https://nfm2022.caltech.edu/
https://nfm2022.caltech.edu/
https://www.springer.com
https://www.loria.science/ProMiS/


the quality and efficiency of zone extrapolation, by considering different con-
stants per clock [Beh+03; Beh+06] or extending extrapolation to liveness prop-
erties [Tri09; Li09]. This concept cannot be easily extended to PTAs, due to the
fact that parameters can be unbounded, or that one of their bound may converge
towards a constant (for example 1

n ≤ p, with n growing without bound.).

1.1 Related works

Extrapolation in TAs Daw and Tripakis first introduced the extrapolation ab-
straction in [DT98] as a mean to obtain a finite simulation of the state space
of TAs. The extrapolation abstraction preserves reachability properties and is
based on the largest constant appearing in any state of the model, which can
be computed syntactically from the constants present in its guards and invari-
ants. In [Beh+03] Behrmann et al. redefine this abstraction with individual clock
bounds (i.e., the largest constant is computed for each clock) and will later re-
fer to it in [Beh+06] as the M -extrapolation. In this latter work [Beh+06], the
M -extrapolation is extended to a coarser abstraction based on two constants for
each clock: its greater lower bound and its greater upper bound. This new form
of extrapolation is referred to as the LU -extrapolation and still preserves reach-
ability properties. Experiments are performed using Uppaal [LPY97]. In 2009,
Tripakis [Tri09] showed that the M -extrapolation is correct for checking empti-
ness of timed Büchi automata, i.e., checking for accepting cycles in TAs. The
same year, Li [Li09] proves that this result holds true for the LU -extrapolation
on TAs.

Parameter synthesis for PTAs Most non-trivial decision problems are undecid-
able for PTAs (see [And19] for a survey). As a consequence exact synthesis is
usually out of reach, except for small numbers of clocks or of parameters (see,
e.g., [AHV93; Ben+15; BO17]). For general subclasses (without bound on the
number of variables), exact synthesis results are very scarce. Some fit in the sub-
classes of L/U-PTAs1 [Hun+02], and notably in U-PTAs (resp. L-PTAs) [BL09],
where each timing parameter is constrained to be always compared to a clock
as an upper (resp. lower) bound, i.e., of the form x ≤ p (resp. p ≤ x). The
only known situations when exact reachability-synthesis (i.e., synthesis of all pa-
rameter valuations for which a given location is reachable) can be achieved for
subclasses of PTAs are

1. reachability-synthesis for U-PTAs (resp. L-PTAs) over integer-valued timing
parameters [BL09];

2. reachability-synthesis for the whole PTA class, over bounded and integer-
valued parameters (which reduces to TAs) [JLR15]; and

3. reachability-synthesis for reset-update-to-parameters-PTAs (“R-U2P-
PTAs”), in which all clocks must be updated (possibly to a parameter)
whenever a clock is compared to a parameter in a guard [ALR21].

1 While “L/U” means in both cases “lower-upper (bound)”, L/U-PTAs are a com-
pletely different concept from LU-extrapolation for (P)TAs.
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On the negative side, even L/U-PTAs show negative results for synthesis:
while reachability-emptiness is decidable for L/U-PTAs [Hun+02], reachability-
synthesis is intractable (its result cannot be represented using a finite union of
polyhedra) [JLR15]; and even in the very restricted subclass of U-PTAs without
invariant, TCTL-emptiness (i.e., the emptiness of the parameter valuations set
for which a TCTL formula is valid) is undecidable [ALR18].

We performed a first attempt to define an extrapolation for PTAs in [ALR15]:
we adapted the M -extrapolation to the context of PTAs, although restricted to
bounded parameter domains only. No implementation was provided. In [Bez+16],
the authors also define an extrapolation very similar to [ALR15]. Compared
to [ALR15], we reuse here some of the definitions of [ALR15], and we signifi-
cantly extend the definition of extrapolations; we also consider several subclasses
of models, as well as liveness properties; we also perform an experimental eval-
uation.

1.2 Contributions

We propose several definitions of extrapolation for PTAs, and study their correct-
ness. In the context of bounded parameter domains, we extend the parametric
M -extrapolation from [ALR15] to individual clock bounds. Those extrapolations
are combined with results from [BL09] to cope with the issue raised by un-
bounded parameters. We notably consider variants of the U-PTAs and L-PTAs.
We show that, on the subclass of (unbounded) PTAs on which they apply, those
abstractions preserve not only reachability-synthesis but also cycle-synthesis
(“liveness”). We perform experiments using the parametric timed model checker
IMITATOR [And21], including on the most general class (rational-valued, pos-
sibly unbounded parameters). With the aforementioned negative theoretical re-
sults in mind, our evaluation focuses on evaluating the speed enhancement, and
the increase of termination chances for our case studies. We show that, overall,
extrapolation decreases the verification time and, most importantly, can effec-
tively solve previously unsolvable benchmarks.

Outline We introduce the necessary preliminaries in Section 2. The M -
extrapolation in the bounded context (partially reusing results from [ALR15]) is
studied in Section 3. Section 4 adapts the M -extrapolation to the unbouded con-
text for reachability properties. Liveness properties are discussed in Section 5.
Finally, Section 6 benchmarks the abstractions, and Section 7 concludes the
paper.

2 Preliminaries

2.1 Clocks, parameters and guards

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i.e., real-
valued variables that evolve at the same rate. A clock valuation is a function
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w : X→ R+. We identify a clock valuation w with the point (w(x1), . . . , w(xH)).
We write ~0 for the clock valuation assigning 0 to all clocks. Given d ∈ R+, w+d
denotes the valuation s.t. (w + d)(x) = w(x) + d, for all x ∈ X. Given R ⊆ X,
we define the reset of a valuation w, denoted by [w]R, as follows: [w]R(x) = 0 if
x ∈ R, and [w]R(x) = w(x) otherwise.

We assume a set P = {p1, . . . , pK} of parameters, i.e., unknown constants.
A parameter valuation v is a function v : P → Q. We identify a valuation v
with the point (v(p1), . . . , v(pK)). Given two valuations v1, v2, we write v1 ≥ v2
whenever ∀p ∈ P, v1(p) ≥ v2(p).

In the following, we assume ./ ∈ {<,≤,=,≥, >}. A constraint C over X ∪ P
is a conjunction of inequalities of the form lt ./ 0, where lt is a linear term over
X ∪ P of the form

∑
1≤i≤H αixi +

∑
1≤j≤K βjpj + d, with xi ∈ X, pj ∈ P, and

αi, βj , d ∈ Z. We also refer to constraints as their geometrical representation,
i.e., of convex polyhedron.

We denote by ⊥ the constraint over P corresponding to the empty set of
parameter valuations.

Given a parameter valuation v, v(C) denotes the constraint over X obtained
by replacing each parameter p in C with v(p). Likewise, given a clock valu-
ation w, w(v(C)) denotes the expression obtained by replacing each clock x
in v(C) with w(x). We say that v satisfies C, denoted by v |= C, if the set of
clock valuations satisfying v(C) is nonempty. Given a parameter valuation v and
a clock valuation w, we denote by w|v the valuation over X ∪ P such that for
all clocks x, w|v(x) = w(x) and for all parameters p, w|v(p) = v(p). We use the
notation w|v |= C to indicate that w(v(C)) evaluates to true. We say that C is
satisfiable if ∃w, v s.t. w|v |= C.

We define the time elapsing of C, denoted by C↗, as the constraint over X
and P obtained from C by delaying all clocks by an arbitrary amount of time.
That is, w′|v |= C↗ iff ∃w : X→ R+,∃d ∈ R+ s.t. w|v |= C ∧ w′ = w + d.

Given R ⊆ X, we define the reset of C, denoted by [C]R, as the constraint
obtained from C by resetting the clocks in R, and keeping the other clocks
unchanged. We denote by C↓P the projection of C onto P, i.e., obtained by
eliminating the variables not in P (e.g., using Fourier-Motzkin [Sch86]).

A simple clock guard is an inequality of the form x ./
∑

1≤i≤K αipi + z, with
pi ∈ P, and αi, z ∈ Z. A clock guard is a constraint over X ∪ P defined by a
conjunction of simple clock guards. Given a clock guard g, we write w |= v(g)
if the expression obtained by replacing each x with w(x) and each p with v(p)
in g evaluates to true. We do not consider diagonal constraints (i.e., simple clock
guards of the form x− x′ ./ . . . ) in this work.

2.2 Parametric timed automata

Parametric timed automata (PTAs) extend timed automata with parameters
within guards and invariants in place of integer constants [AHV93].

Definition 1 (PTA). A PTA A is a tuple A = (Σ,L, `0, LF ,X,P,D, I, E),
where:
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1. Σ is a finite set of actions,
2. L is a finite set of locations,
3. `0 ∈ L is the initial location,
4. LF ⊆ L is a set of accepting locations,
5. X is a finite set of clocks,
6. P is a finite set of parameters,
7. D : P→ (Q ∪ {−∞})× (Q ∪ {+∞}) is the parameter domain,
8. I is the invariant, assigning to every ` ∈ L a clock guard I(`),
9. E is a finite set of edges e = (`, g, a,R, `′) where `, `′ ∈ L are the source and

target locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset, and g is a clock
guard.

Let G(A) denote the set of all simple clock guards of the PTA A, i.e., all
simple clock guards being a conjunct within a guard or an invariant of A. Given
a clock x ∈ X, we denote by Gx(A) ⊆ G(A) the set of simple clock guards
where x appears, i.e., is bound by a non-0 coefficient. A clock x of A is said to
be a parametric clock if it is compared to at least one parameter (with a non-0
coefficient) in at least one guard of Gx(A).

The parameter domain of a PTA is the admissible range of the parameters.
Given p, given D(p) = (b−, b+), D−(p) denotes b− while D+(p) denotes b+. The
admissible valuations for p are therefore [D−(p),D+(p)] (the domain is closed
unless on the side of an infinite bound). A bounded parameter domain assigns
to each parameter a minimum rational bound and a maximum rational bound.
In that case, D−(pi) > −∞ and D+(pi) < +∞. A bounded parameter domain
can be seen as a hyperrectangle in K dimensions. Any parameter that is not
bounded is called an unbounded parameter. Note that an unbounded parameter
can still have a lower bound or an upper bound ∈ Q.

Definition 2 (bounded PTA). A bounded PTA is a PTA the parameter
domain of which is bounded. Otherwise, it is unbounded.

Given a parameter valuation v, we denote by v(A) the non-parametric struc-
ture where all occurrences of a parameter pi have been replaced by v(pi). We
denote as a timed automaton any structure v(A), by assuming a rescaling of the
constants: by multiplying all constants in v(A) by the least common multiple
of their denominators, we obtain an equivalent (integer-valued) TA, as defined
in [AD94].

Example 1. Fig. 1a displays the graphical representation of a bounded PTA. We
have G(A) = {x ≤ 1, 1 < y, x < p}, Gx(A) = {x ≤ 1, x < p}, and Gy(A) =
{1 < y}. The valuation of parameter p can be any rational value in [0, 5], hence
an infinite number of possible parameter valuations. Therefore, this PTA can be
seen as the abstract representation for an infinite number of TAs.

Concrete semantics of TAs Let us now recall the concrete semantics of TAs.
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`0 `1

x ≤ 1

x← 0

1 < y ∧ x < p

(a) A bounded PTA (0 ≤ p ≤ 5).

(`0, x = y ≤ 1)

(`0, y ≤ x + 1 ∧ x ≤ 1 ∧ x ≤ y) (`1, 0 < p ≤ 5)

(`0, y ≤ x + i ∧ x ≤ 1 ∧ x ≤ y)

(b) Simplified state space

Fig. 1: Example of a bounded PTA generating an infinite state space. Blue states
are a representation of an infinite sequence of states where variable i corresponds
to the number of times the looping transition on `0 was taken.

Definition 3 (Semantics of a TA). Given a PTA A =
(Σ,L, `0, LF ,X,P,D, I, E) and a parameter valuation v, the concrete se-
mantics of v(A) is given by the timed transition system (S, s0,→), with

– S = {(`, w) ∈ L× RH
≥0 | w |= v(I(`))},

– s0 = (`0,~0),
– → consists of the (continuous) delay and discrete transition relations:

• delay transitions: (`, w)
d7→ (`, w+d), with d ∈ R≥0, if ∀d′ ∈ [0, d], (`, w+

d′) ∈ S;

• discrete transitions: (`, w)
e7→ (`′, w′), if (`, w), (`′, w′) ∈ S, and there

exists e = (`, g, a,R, `′) ∈ E, such that w′ = [w]R, and w |= v(g).

Moreover, we write (`, w)
(d,e)−→ (`′, w′) for a combination of a delay and dis-

crete transition if ∃w′′ : (`, w)
d7→ (`, w′′)

e7→ (`′, w′).
Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states

of S as the concrete states of v(A). A run of v(A) is an alternating sequence of
concrete states of v(A) and pairs of edges and delays starting from the initial
state s0 and is of the form s0, (d0, e0), s1, · · · si, (di, ei), · · · with i = 0, 1, . . . ,

ei ∈ E, di ∈ R≥0 and si
(di,ei)−→ si+1. The set of all (finite or infinite) runs of

a TA v(A) is Runs(v(A)). Given a concrete state s = (`, w), we say that s is
reachable in v(A) (and by extension that ` is reachable, or that v(A) visits `) if
s appears in a run of v(A). An infinite run is accepting if it visits infinitely often
(at least) one location ` ∈ LF .

Symbolic semantics of PTAs Let us now recall the symbolic semantics of
PTAs (see e.g., [Hun+02; And+09]).

Definition 4 (Symbolic state). A symbolic state is a pair (`, C) where ` ∈ L
is a location, and C is a constraint over X ∪ P called its associated parametric
zone.

6



Definition 5 (Symbolic semantics). Given a PTA A =
(Σ,L, `0, LF ,X,P,D, I, E), the symbolic semantics of A is the labeled transition
system called parametric zone graph PZG = (E,S, s0,⇒), with

– S = {(`, C) | C ⊆ I(`)},
– s0 =

(
`0, (

∧
1≤i≤H xi = 0)↗ ∧ I(`0) ∧

∧
1≤j≤K D−(pj) ≤ pj ≤ D+(pj)

)
, and

–
(
(`, C), e, (`′, C ′)

)
∈ ⇒ if e = (`, g, a,R, `′) ∈ E and C ′ =

(
[(C ∧ g)]R ∧

I(`′)
)↗ ∧ I(`′), with C ′ satisfiable.

That is, in the parametric zone graph, nodes are symbolic states, and arcs
are labeled by edges of the original PTA. Given (s, e, s′) ∈ ⇒, we write s′ =
Succ(s, e).

Given a concrete state s = (`, w) and a symbolic state s = (`′, C), we write
s ∈ s whenever ` = `′ and w |= C.

Example 2. Fig. 1b displays the parametric zone graph of the PTA in Fig. 1a.
Blue states represent an infinite sequence (i being the number of times the
looping transition was taken). (We assume all clocks and parameters to be non-
negative and, for sake of brevity, constraints of the form x ≥ 0 may be omitted.)

Computation problems Given a class of decision problems P (reachability,
liveness, etc.), we consider the problem of synthesizing the set (or part of it)
of parameter valuations v such that v(A) satisfies ϕ. Here, we mainly focus on
reachability (i.e., “does there exist a run that reaches some given location?”)
and liveness (i.e., “does there exist a run that visits a given location infinitely
often?”).

3 M - and ~M -extrapolation for bounded PTAs

3.1 Recalling M-extrapolation

In this subsection, we recall some results from [Beh+06; ALR15], where the
classical “k-extrapolation” used for the zone-abstraction of TAs is adapted to
PTAs. While this part is not clearly a contribution of the current manuscript,
we redefine some concepts from [ALR15], and provide several original examples.

Maximal constant of a bounded PTA First, let us formally define the
maximal constant of a bounded PTA. The maximal constant M is the maximum
value that can appear in the guards and invariants of the PTA. When those
constraints are parametric expressions, we compute the maximum value that
the expression can take over any parameter valuation within the (bounded)
parameter domain D (this maximal value is unique since expressions are linear).

Given a simple clock guard g of the form x ./
∑

1≤i≤K αipi + z we define
Cmaxg(g) =

∑
1≤i≤K αiγi + z where

1. γi = D−(pi) if αi < 0,

7



y

x

0

1

0 1 5

(a) A convex clock zone.

y

x

0

1

0 1 5

(b) Its non-convex extrapolation.

Fig. 2: Example illustrating the non-convex parametric extrapolation.

2. γi = D+(pi) if αi > 0, and
3. γi = 0 otherwise.

Example 3. Consider the simple clock guard g : x ≤ 2p1− p2 + 1 and p1 ∈ [2, 5],
and p2 ∈ [−3, 4]; then Cmaxg(g) = 2× 5− (−3) + 1 = 14.

Definition 6 (Maximal constant). Given a bounded PTA A, for
any clock x ∈ X, the maximal constant for clock x is Cx

max (A) =
maxg∈Gx(A) Cmaxg(g) furthermore, the maximal constant of the PTA is
Cmax (A) = maxg∈G(A) Cmaxg(g).

Example 4. Consider again Fig. 1a (recall that 0 ≤ p ≤ 5). Then, Cx
max (A) = 5,

Cy
max (A) = 1 and Cmax (A) = 5.

Bisimulation and largest constant in TAs Let us recall from [Beh+06] the
notion of bisimulation based on the maximal constant M :

Lemma 1 ([Beh+06, Lemma 1]). Let A be a TA. Given clock x, let M(x)
be an integer constant greater than or equal to Cx

max (A). Let w,w′ be two clock
valuations. Let ≡M be the relation defined as w ≡M w′ iff ∀x ∈ X: either w(x) =
w′(x) or (w(x) > M(x) and w′(x) > M(x)). The relation R =

{(
(`, w), (`, w′)

)
|

w ≡M w′
}

is a bisimulation relation.

Example 5. Let us recall the motivation for the use of an extrapolation, through
the PTA A in Fig. 1a. After i times through the loop, we get constraints in `0 of
the form y − x ≤ i. The maximal constant of the model is Cmax (A) = 5. After
five loops, y can be greater than 5. Therefore, we can apply on y the classical
k-extrapolation used for TAs (from [Beh+06]) of the corresponding zone. More
specifically, we consider that when y > k, the bounds on y can be ignored. The
obtained polyhedron is non-convex, but can be split into two convex ones, one
where y ≤ k (the part without extrapolation) and one with y > k (the part with
extrapolation). This is depicted in Fig. 2 where Fig. 2a is the original clock zone
(formally y ≤ x+ 5∧ x ≤ 1∧ x ≤ y) and Fig. 2b is its non-convex extrapolation
(formally (x ≤ y ≤ 5 ∧ x ≤ 1) ∨ (y ≥ 5 ∧ 0 < x ≤ 1)).

Let us now formally recall from [ALR15] the concept of M -extrapolation for
PTAs. First, we need to recall the cylindrification operation, which is a usual
operation that consists in unconstraining variable x.
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Definition 7 (Cylindrification [ALR15]). For a polyhedron C and vari-
able x, we denote by Cylx(C) the cylindrification of C along variable x, i.e.,
Cylx(C) = {w | ∃w′ ∈ C, ∀x′ 6= x,w′(x′) = w(x′) and w(x) ≥ 0}.

The (M,x)-extrapolation is an operation that splits a polyhedron into two
polyhedra such that clock x is either less than or equal to M , or is strictly greater
than M while being independent from the other variables.

Definition 8 ((M,x)-extrapolation [ALR15]). Let C be a polyhedron. Let
M ∈ N be a non-negative integer constant and x be a clock. The (M,x)-
extrapolation of C, denoted by ExtMx (C), is defined as:

ExtMx (C) =
(
C ∩ (x ≤M)

)
∪
(
Cylx

(
C ∩ (x > M)

)
∩ (x > M)

)
.

Given s = (`, C), we write ExtMx (s) for ExtMx
(
C
)
.

We can now consistently define the M -extrapolation operator.

Definition 9 (M-extrapolation [ALR15]). Let M ∈ N be a non-negative
integer constant and X be a set of clocks. The (M,X)-extrapolation operator
ExtMX is defined as the composition (in any order) of all ExtMx , for all x ∈ X.
When clear from the context we omit X and only write M -extrapolation.

[ALR15, Lemma 1] shows that the order of composition of (M,x)-
extrapolation does not impact its results, i.e., ExtMx

(
ExtMy (C)

)
=

ExtMy
(
ExtMx (C)

)
, and [ALR15, Lemma 5] shows that given a symbolic

state s of a PTA and a non-negative integer M greater than the maximal
constant of the PTA Cmax (A), for any clock x and parameter valuation v such
that (`, w) ∈ v(ExtMx (s)) is a concrete state, there exists a state (`, w′) ∈ v(s)
such that (`, w) and (`, w′) are bisimilar.

3.2 Synthesis with extrapolation

We now recall the reachability-synthesis algorithm, that was formalized
in [JLR15], and then enhanced with extrapolation (and “integer hull”—unused
here) in [ALR15]. We adapt here to our notations a version of reachability-
synthesis with the extrapolation, and write a full proof of correctness (absent
from [ALR15]), also because we will use it and improve it in the remainder of
the paper.

The goal of EEF given in Algorithm 1 (“E” stands for “extrapolation”,
“EF” denotes reachability) is to synthesize parameter valuation solutions to the
reachability-synthesis problem, i.e., the valuations for which there exists a run
eventually reaching a location in T . EEF proceeds as a post-order traversal of
the symbolic reachability tree, and collects all parametric constraints associated
with the target locations T . In contrast to the classical reachability-synthesis
algorithm EF formalized in [JLR15], it recursively calls itself (line 6) with the
extrapolation of the successor of the current symbolic state (this difference is
highlighted in yellow in Algorithm 1).
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Algorithm 1: EEF(A, s, T,P)

input : A PTA A, a symbolic state s = (`, C), a set of target locations T , a
set P of passed states on the current path

output : Constraint K over the parameters

1 if ` ∈ T then K ← C↓P ;
2 else
3 K ← ⊥;
4 if s /∈ P then
5 for each outgoing e from ` in A do
6 K ← K ∪ EEF

(
A,ExtMX

(
Succ(s, e)

)
, T,P ∪ {s}

)
;

7 return K

In order to prove the soundness and completeness of Algorithm 1, we induc-
tively define, as in [JLR15], the symbolic reachability tree of A as the possibly
infinite directed labeled tree T∞ such that:

– the root of T∞ is labeled by the initial symbolic state s0;
– for every node n of T∞, if n is labeled by some symbolic state s, then for all

edges e of A, there exists a child n′ of n labeled by Succ(s, e) iff Succ(s, e) is
not empty.

Algorithm EEF is a post-order depth-first traversal of some prefix of that
tree.

In addition, before we prove Theorem 1, we need the following lemmas
(adapted from [ALR15]).

We first recall the following lemma ([ALR15, Lemma 4]):

Lemma 2 ([ALR15, Lemma 4]). For all parameter valuation v, non-negative
integer constants M , clock x and valuations set C, v(ExtMx (C)) = ExtMx (v(C)).

Lemma 3 ([ALR15, Lemma 5]). Let A be a PTA and s be a symbolic state
of A. Let x be a clock, M ∈ N an integer constant greater than or equal to
Cmax (A), v be a parameter valuation and (`, w) ∈ v(ExtM(x)

x (s))) be a concrete
state. There exists a state (`, w′) ∈ v(s) such that (`, w) and (`, w′) are bisimilar.

Remark 1. Lemma 9 is the equivalent of Lemma 3 for the ~M -extrapolation.

We then prove the following Lemma 4:

Lemma 4. Let A be a PTA. For all symbolic states s and s′, non-negative inte-
ger M greater than the maximal constant of the PTA Cmax (A), and parameter
valuation v, such that v(ExtMX (s)) = v(ExtMX (s′)), for all states (`, w) ∈ v(s),
there exists a state (`, w′) ∈ v(s′) such that (`, w) and (`, w′) are bisimilar.

Proof. This is a direct consequence of Lemmas 2 and 3.
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Algorithm 1 is correct (i.e., sound and complete):

Theorem 1. Let A be a PTA with initial symbolic state s0, and T ⊆ L a set of
target locations. Assume EEF(A, s0, T, ∅) terminates. We have:

1. Soundness: If v ∈ EEF(A, s0, T, ∅) then T is reachable in v(A);
2. Completeness: For all v, if T is reachable in v(A) then v ∈ EEF(A, s0, T, ∅).

Proof. We reuse here large parts of the proof of [ALR15, Theorem 2], as that
theorem proves the correctness of a synthesis algorithm using both extrapolation
and integer hulls—while we use here only extrapolation. We give it in full details
though, as our formal result will be modified for our subsequent definitions of
extrapolations (e.g., Propositions 1 and 2).

1. Soundness: this part of the proof is almost exactly the same as in [JLR15]
so we do not repeat it. The only difference is that, with the same proof, we
actually have a slightly stronger result that holds for any finite prefix of T∞

instead of exactly the one computed by EF:

Lemma 5. Let Tree be a finite prefix of T∞, on which we apply algorithm
EEF. Let n be a node of Tree labeled by some symbolic state s, and such that
the subtree rooted at n has depth N . We have: v ∈ EEF(A, s, T,M), where
M contains the symbolic states labeling nodes on the path from the root, iff
there exists a state (`, w) in v(s) and a run ρ in v(A), with less than N
discrete steps, that starts in (`, w) and reaches T .

Soundness is a direct consequence of Lemma 5.
2. Completeness: The proof of this part follows the same general structure as

that of EF in [JLR15] but with additional complications due to the use of
the extrapolation. We reuse the proof of the result of [ALR15], to only cope
with extrapolation (without the integer hull defined and used in [ALR15]).
Before we start, let us just recall two more results from [JLR15]:

Lemma 6 ([JLR15, Lemma 1]). For all parameter valuation v, symbolic
state s and edge e, we have Succ

(
v(s), v(e)

)
= v((Succ(s, e))).

Lemma 7 ([JLR15, Corollary 2]). For each parameter valuation v,
reachable symbolic state s, and state s, we have s ∈ v(s) if and only if
there is a run of v(A) from the initial state leading to s.

Now, the algorithm having terminated, it has explored a finite prefix Tree
of T∞. Let v be a parameter valuation. Suppose there exists a run ρ in v(A)
that reaches T . Then ρ is finite and its last state has a location belonging
to T . Let e1, . . . , ep be the edges taken in ρ and consider the branch in the
tree Tree obtained by following this edge sequence on the labels of the arcs
in the tree as long as possible. If the whole edge sequence is feasible in Tree,
then the tree Tree has depth greater than or equal to the size of the sequence
and we can apply Lemma 5 to obtain that v ∈ EEF(A, s0, T, ∅). Otherwise,
let s = (`, C) be the symbolic state labeling the last node of the branch, ek

11



be the first edge in e1, . . . , ep that is not present in the branch and (`, w)
be the state of ρ just before taking ek. Since (`, w) has a successor via ek,
then Succ

(
v(s), v(ek)

)
is not empty; then using Lemma 6, v(Succ(s, ek)) is

not empty; therefore, Succ(s, ek) is not empty. Since the node labeled by s
has no child in Tree, it follows that either ` ∈ T or there exists another node
on the branch that is labeled by s′ such that ExtMX (s) = ExtMX (s′).

In the former case, we can apply Lemma 5 to the prefix of ρ ending in (`, w)
and we obtain that v ∈ EEF(A, s0, T, ∅).
In the latter case, we have v(ExtMX (s)) = v(ExtMX (s′)). Using now Lemma 4,
there exists a state (`, w′) ∈ s′ that is bisimilar to (`, w).

Also, by Lemma 7, (`, w′) is reachable in v(A) via some run ρ1 along edges
e1 . . . em, with m < k. Also, since (`, w′) and (`, w) are bisimilar, there exists
a run ρ2 that takes the same edges as the suffix of ρ starting at (`, w). Let
ρ′ be the run obtained by merging ρ1 and ρ2 at (`, w′). Run ρ′ has strictly
less discrete actions than ρ and also reaches T . We can thus repeat the same
reasoning as we have just done. We can do this only a finite number of times
(because the length of the considered run is strictly decreasing) so at some
point we have to be in some of the other cases and we obtain the expected
result.

3.3 Extending the M-extrapolation to individual bounds

Our first technical contribution is to extend the extrapolation from [ALR15] to
individual clock bounds, instead of a global one, in the line of what has been
proposed for non-parametric TAs [Beh+06].

Definition 10 ( ~M-extrapolation). Let X = {x1, . . . , xH} the set of clocks

of the PTA. Let ~M = {M(x1), . . . ,M(xH)} be a set of non-negative integer

constants. The ~M -extrapolation, denoted by Ext
~M
X , is the composition (in any

order) of all ExtM(x)
x for all x ∈ X.

All we need to do for the results from [ALR15] to hold on the ~M -extrapolation
is to adapt [ALR15, Lemmas 1 and 5].

Lemma 8. For all polyhedra C, integers M(x),M(x′) ≥ 0 and clock variables

x and x′, we have ExtM(x)
x

(
Ext

M(x′)
x′ (C)

)
= Ext

M(x′)
x′

(
ExtM(x)

x (C)
)
.

Proof. The result comes from the following facts:

1. Cylx
(
Cylx′(C)

)
= Cylx′

(
Cylx(C)

)
;

2. for x 6= x′,Cylx(C) ∩ (x′ ./ M(x′)) = Cylx
(
C ∩ (x′ ./ M(x′))

)
for ./ ∈ {<,≤

,≥, >}.

We now extend [ALR15, Lemma 5] to Ext
~M :
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(`0, x = y ≤ 1)

(`0, x ≤ y ≤ x + 1 ∧ x ≤ 1) (`1, 0 < p ≤ 5)

(`0, x ≤ y ≤ x + 2 ∧ x ≤ 1)

(`0, x ≤ y ≤ x + 3 ∧ x ≤ 1)

(`0, x ≤ y ≤ x + 4 ∧ x ≤ 1)

x ≤ y ≤ 5 ∧ x ≤ 1
`0, ∪

5 < y ∧ 0 < x ≤ 1

x ≤ y ≤ 5 ∧ x ≤ 1
`0, ∪

5 < y ∧ x ≤ 1

(a) Simplified state space of Fig. 1a
with M -extrapolation.

(`0, x = y ≤ 1)

x ≤ y ≤ 1
`0, ∪

1 < y ∧ 0 < x ≤ 1
(`1, 0 < p ≤ 5)

x ≤ y ≤ 1
`0, ∪

1 < y ∧ x ≤ 1

(b) Simplified state space of Fig. 1a
with ~M -extrapolation where M(x) = 5
and M(y) = 1. As ~M -extrapolation
differentiates the maximal constant of
each clock, the extrapolation is applied
on y after only one loop.

Fig. 3: Comparison between M -extrapolation and ~M -extrapolation.

Lemma 9 ( ~M and bisimilarity). Let A be a PTA and s be a symbolic state
of A. Let x be a clock, M(x) ∈ N an integer constant greater than or equal to

Cx
max (A), v be a parameter valuation and (`, w) ∈ v(ExtM(x)

x (s))) be a concrete
state. There exists a state (`, w′) ∈ v(s) such that (`, w) and (`, w′) are bisimilar.

Proof. If (`, w|v) ∈ s, then the results holds trivially. Otherwise, it means that
there exists some clock x such that (`, w|v) ∈ Cylx(s∩(x > M(x)))∩(x > M(x)).
This implies that v(s(x > M(x))) 6= ∅ and w(x) > M(x). Therefore, and using
the definition of Cylx, there exists (`, w′|v) ∈ s ∩ (x > M(x)) such that for all
x′ 6= x,w′(x′) = w(x′). We also have w′(x) > M(x), which means that w′ ≡M w
and by Lemma 1, we obtain the expected result.

Given M ∈ N, given a vector ~M , note that, whenever ~M(x) ≤ M for all

x ∈ X, then the ~M -extrapolation is necessarily coarser than theM -extrapolation.
Let ~M be such that, for all x, ~M(x) = Cx

max (A). Let ~EEF denote the modifi-

cation of EEF where ExtMX is replaced with Ext
~M
X (line 6 in Algorithm 1). That is,

instead of computing the M -extrapolation of each symbolic state, we compute
its ~M -extrapolation. Fig. 3 illustrates its effect on the state space of Fig. 1a.

Proposition 1. Let A be a PTA with initial symbolic state s0, and T ⊆ L a set
of target locations. Assume ~EEF(A, s0, T, ∅) terminates. We have:

1. Soundness: If v ∈ ~EEF(A, s0, T, ∅) then T is reachable in v(A);

2. Completeness: For all v, if T is reachable in v(A) then v ∈ ~EEF(A, s0, T, ∅).
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Proof. The result follows immediately from the proof of Theorem 1, by applying
Lemma 9 instead of Lemma 4.

4 ~M -extrapolation on unbounded PTAs

In this section, we extend the ~M -extrapolation to subclasses of (unbounded)
PTAs. This requires to be able to identify for each clock x ∈ X a constant M(x)
such that given a symbolic state s and a parameter valuation v, for any concrete
state in v(ExtM(x)

x (s)) there exists a bisimilar state in v(s), i.e., Lemma 9 holds
true.

We will consider

1. L-PTAs and U-PTAs (Section 4.1),
2. bounded PTAs with additional unbounded lower-bound or upper-bound pa-

rameters (Section 4.2), and
3. the full class of PTAs to which we apply extrapolation only on bounded

parameters (Section 4.3).

4.1 ~M-extrapolation on unbounded L-PTAs and U-PTAs

Recalling L-PTAs and U-PTAs We will use results from [BL09], where
the authors propose a constant N for unbounded parameters such that any
parameter valuation greater than N will exhibit similar behaviors in regard of
infinite accepting runs. Specifically, a (different) constant N can be computed
on unbounded L-PTAs and U-PTAs, which are subset of the general PTAs.

First, let us recall the definitions of L-PTAs and U-PTAs [BL09]. An L-PTA
(respectively U-PTA) is a PTA where each parameter always appears as a lower-
(respectively upper-)bound when compared to a clock.

Definition 11 (L-PTA and U-PTA [BL09]). A PTA A is an L-PTA (resp.
U-PTA) if, for each guard x ./

∑
1≤i≤K αipi + z of G(A), for all i:

– αi = 0, or
– αi > 0 and ./ ∈ {≥, >} (respectively ./ ∈ {<,≤}), or
– αi < 0 and ./ ∈ {<,≤} (respectively ./ ∈ {≥, >}).

L-PTAs and U-PTAs feature a well-known monotonicity property: enlarging
a parameter valuation in a U-PTA (resp. decreasing in an L-PTA) can only add
behaviors, as recalled in the following lemma:

Lemma 10 ([BL09]). Given a U-PTA (resp. L-PTA) A, given two valuations
v1, v2 with v1 ≤ v2 (resp. v1 ≥ v2), then Runs(v1(A)) ⊆ Runs(v2(A)).

For any L-PTAA, as per [BL09, Theorem 3], there exists a constant boundN ,
such that for all valuations v1, v2 with v1 ≥ v2 ≥ vN (where vN denotes the
parameter valuation assigning N to each parameter), if v2(A) provides an infinite
accepting run then so does v1(A). Since A is an L-PTA, v2(A) includes all the
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possible executions of v1(A), which is given by Lemma 10. That is, if v1(A)
yields an infinite accepting run, then so does v2(A). Therefore, for any valuations
v ≥ vN and v′ ≥ vN , v(A) yields an infinite accepting run iff v′(A) yields an
infinite accepting run.

A dual result is shown for U-PTAs in [BL09, Theorem 6]. For any U-PTA
A, there exists a constant bound N such that for all valuations v1, v2 with
v1 ≥ v2 ≥ vN , if v1(A) yields an infinite accepting run then so does v2(A).
As A is a U-PTA, v1(A) includes all the possible executions of v2(A), hence if
v2(A) yields an infinite accepting run then so does v1(A). Therefore, for a given
valuation v ≥ vN , if v(A) yields an infinite accepting run, then so does v′(A) for
any v′ ≥ vN . Formally:

Lemma 11 ([BL09, Theorems 3 and 6]). Given a U-PTA (resp. L-PTA) A
with N the constant bound defined in [BL09], given two valuations v1 ≥ vN and
v2 ≥ vN , there exists an infinite accepting run in v1(A) iff there exists an infinite
accepting run in v2(A).

Computation of N̂ Given an L-PTA (respectively U-PTA) A, the value given
in [BL09] is N = k(R+1)+c+1 (respectively N = 8k(R+1)+c+1), where k is
the number of parametric clocks of A, R is the number of clock regions obtained
when the parameter valuation is 0 for all parameters, and c is the greatest non-
parametric constant in absolute value among all linear expressions. More pre-
cisely, all linear expression being of the form

∑
1≤i≤H αixi +

∑
1≤j≤K βjpj +d ./

0, c is the maximum over all |d|. Although k and c are obtained syntactically, R
needs to be computed. As N acts as a lower bound, using an over-approximation
of R would still guarantee the correctness of Lemma 11. From [AD94, Lemma

4.5], the number of clock regions is bounded by R̂ = 2|X||X|!
∏

x∈X(2cx + 2) with
X the set of clocks and cx the greatest constant over x (either as a upper or

lower bound)—which can both be obtained syntactically. We define N̂ as the

constant defined in [BL09] for an L-PTA (resp. U-PTA) A, where we use R̂ (the
aforementioned over-approximation of the number of clock regions) instead of
their actual number R.

Formal results We first adapt Lemma 11 to our new constant N̂ :

Lemma 12. Given a U-PTA (resp. L-PTA) A, given two valuations v1 ≥ vN̂
and v2 ≥ vN̂ , there exists an infinite accepting run in v1(A) iff there exists an
infinite accepting run in v2(A).

Proof. From the fact that we use in the computation of N̂ an over-approximation
on the number of clock regions (with R ≤ R̂), giving N ≤ N̂ .

We can now prove the correctness of extrapolation for unbounded L-PTAs
and U-PTAs.

Let M̂ = {M(x1), . . . ,M(xH)} such that M(xi) is the maximal constant of

clock xi when bounding all unbounded parameters with N̂ . Let ÊEF denote the
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`0 `1

x ≤ 1 y ≤ p

x = 1;x← 0

y ≥ 1

(a) Unbounded U-PTA

`0 `1

x ≤ 1

x← 0

1 < y ∧ x = p

(b) Unbounded PTA

`0 `1
x ≤ 1 ∧ y ≤ p

x = 1;x← 0

a b
y ≤ p

(c) Unbounded U-PTA

Fig. 4: Three toy PTAs

(`0, x = y ≤ 1) (`1, p ≥ 1)

(`0, y = x + 1 ∧ x ≤ 1) (`1, p ≥ 1)

(`0, y = x + i ∧ x ≤ 1) (`1, p ≥ i)

(a) Simplified state space of
Fig. 4a.

(`0, x = y ≤ 1) (`1, p ≥ 1)

(`0, y = x + 1 ∧ x ≤ 1) (`1, p ≥ 1)

(`0, y = x + 1033 ∧ x ≤ 1) (`1, p ≥ 1033)

y = 1034 ∧ x = 0
`0, ∪

y > 1034 ∧ 0 < x ≤ 1
`1, p ≥ 1034

`0, y > 1034 ∧ x ≤ 1 `1, p > 1034

(b) Simplified state space of Fig. 4a with the M̂ -extrapolation where M(x) = 1

and M(y) = 1034, computed using N̂ . The dashed link represents a succession
of 1031 intermediate states where the value of y grows from x + 1 to x + 1033.

Fig. 5: Example of an unbounded PTA generating an infinite state space.

modification of EEF where ExtMX is replaced with ExtM̂X (line 6 in Algorithm 1).
That is, instead of computing the ExtM -extrapolation of each symbolic state, we

compute its ExtM̂ -extrapolation.

Example 6. Fig. 5 illustrates the effects of the M̂ -extrapolation on the un-
bounded U-PTA of Fig. 4a. Fig. 5a displays its (simplified) infinite state space.
The valuation of parameter p can be any value in Q+. Fig. 5b shows the state

space obtained with the M̂ -extrapolation. Note that the state space is now finite.

Proposition 2. Let A be an L-PTA or U-PTA with initial symbolic state s0,
and T ⊆ L a set of target locations. Assume ÊEF(A, s0, T, ∅) terminates. We
have:

1. Soundness: If v ∈ ÊEF(A, s0, T, ∅) then T is reachable in v(A);

2. Completeness: For all v, if T is reachable in v(A) then v ∈ ÊEF(A, s0, T, ∅).

We first prove the following lemma, which adapts Lemma 1 to L-PTAs and
U-PTAs.
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Lemma 13. Let A be an L-PTA or a U-PTA. Given clock x, let M(x) be an in-
teger constant greater than or equal to the maximal constant Cx

max (A) of clock x

when bounding all unbounded parameters with N̂ . For a given parameter valua-
tion v(A) of A, let w,w′ be two clock valuations. Let ≡M be the relation defined as
w ≡M w′ iff ∀x ∈ X: either w(x) = w′(x) or (w(x) > M(x) and w′(x) > M(x)).

The relation R̂ =
{(

(`, w), (`, w′)
)
| w ≡M w′

}
is a bisimulation relation.

Proof. Any valuation w(x) > M(x) implies a parameter valuation v greater
than or equal to vN̂ . And we know by Lemma 12 that either for all valuation
v ≥ vN̂ , v(A) accepts an infinite accepting run, or for all valuation v ≥ vN̂ ,
v(A) does not accept an infinite accepting run. As checking infinite accepting
run can be used to reachability (for instance, by introducing an unguarded self-
loop on each location matching the accepting condition), this implies that any
reachable location can be reached with a clock valuation w such that for any xi,
w(xi) ≤ M(xi). As a result, relation R̂ preserve the bisimilarity of relation R
from Lemma 1.

We then prove the following lemma, equivalent to Lemma 9.

Lemma 14 (M̂ and bisimilarity). Let A be an L-PTA or a U-PTA and s
be a symbolic state of A.

Let x be a clock, M(x) ∈ N an integer constant greater than or equal to the
maximal constant Cx

max (A) of clock x when bounding all unbounded parameters

with N̂ , v be a parameter valuation and (`, w) ∈ v(ExtM(x)
x (s))) be a concrete

state. There exists a state (`, w′) ∈ v(s) such that (`, w) and (`, w′) are bisimilar.

Proof. The result follows immediately from the proof of Lemma 9, by applying
Lemma 13 instead of Lemma 1.

We can proceed with the proof of Proposition 2:

Proof. The result follows immediately from the proof of Theorem 1, by applying
Lemma 14 instead of Lemma 4.

4.2 ~M-extrapolation on PTAs with unbounded lower or upper
bound parameters

The method described previously can be adapted to a subclass of PTAs that can
be turned into L-PTAs or U-PTAs (only) for the sake of computing the constant

bound N̂ . Let us first define this subclass:

Definition 12 (bPTA+L and bPTA+U). Let A be a PTA. A is a bounded
PTA with unbounded lower-(resp. upper-)bound parameters, or bPTA+L (resp.
bPTA+U), if for each guard x ./

∑
1≤i≤K αipi + z of G(A), for all i:

– D(pi) ∈ Q×Q (i.e., pi is bounded), or
– αi = 0, or
– αi > 0 and ./ ∈ {≥, >} (respectively ./ ∈ {<,≤}), or
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`0 `1

x ≤ 1 y ≤ p

x = 2− q
x← 0

y ≥ q

(a) bPTA+U A (1 ≤ q ≤ 2)

`0 `1

x ≤ 1 y ≤ p

x = 1
x← 0

y ≥ 2

(b) Bounded valuation A′ of A

Fig. 6: A bPTA+U and its bounded valuation.

– αi < 0 and ./ ∈ {<,≤} (respectively ./ ∈ {≥, >}).

Let A be a bPTA+L (resp. bPTA+U). We denote by A the L-PTA (resp.
U-PTA) obtained from A by valuating the bounded parameters as follows: we
replace each bounded parameter pi within a guard or invariant with its lower
bound D−(pi) if it appears negatively (αi < 0) or with its upper bound D+(pi)
otherwise. Clearly, if A is a bPTA+L (resp. bPTA+U) then A is an L-PTA
(resp. U-PTA).

We first valuate bounded parameters to turn a bPTA+L (resp. bPTA+U) A
into an L-PTA (resp. U-PTA). This is obtained by transforming A such that, in
every guard and invariant, any bounded parameter of positive coefficient αi is
replaced with its upper bound and any bounded parameter of negative coefficient
αi with its lower bound.

Definition 13 (Bounded valuation of a bPTA+L or bPTA+U). Let A
be a bPTA+L (resp. bPTA+U). Let A be the modification of A where for each
guard x ./

∑
1≤i≤K αipi + z ∈ G(A), for each bounded pi ∈ P,

1. if αi < 0, pi is replaced by D−(pi),
2. if αi > 0, pi is replaced by D+(pi), and
3. pi is replaced with 0 otherwise.

Example 7. To illustrate Definition 12 we modify Fig. 4a by adding a bounded
parameter. Fig. 6a is a bPTA+U A with q bounded between 1 and 2, and p
unbounded. Fig. 6b is the bounded valuation A′ of A, as defined in Definition 13.
Note that in this example A′ does not describe a behavior that belongs to A, as
parameter q is valuated to 1 in the guard where it occurs with a negative sign,
while it is valuated to 2 in the guard where it occurs with a positive sign. It will
nevertheless be useful to determine a constant bound for A.

Correctness of the transformation Trivially, we get that the PTA A is an
L-PTA (or U-PTA).

Lemma 15. Let A be a bPTA+L (resp. bPTA+U). Then A is an L-PTA
(resp. U-PTA).
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Proof. Assume A is a bPTA+L (resp. bPTA+U). When building A, any oc-
currence of a bounded parameter is replaced by its constant bounds. In ad-
dition, all unbounded parameters from A are, by Definition 12, lower-bound
(resp. upper-bound) parameters. Therefore, the only remaining parameters in
A are lower-bound (resp. upper-bound) parameters. Therefore, A is an L-PTA
(resp. U-PTA).

Method Our method is then as follows: given a bPTA+L (resp. bPTA+U) A,

1. we construct the L-PTA (resp. U-PTA) A, and

2. we then compute the bound N̂ on the obtained L-PTA (resp. U-PTA) A
(using the technique given in Section 4.1).

Let N denote this result.
Let M = {M(x1), . . . ,M(xH)} such that M(xi) is the maximal constant

of clock xi when bounding in A all unbounded parameters with N . Let EEF

denote the modification of EEF where ExtMX is replaced with ExtMX (line 6 in
Algorithm 1). That is, instead of computing the ExtM -extrapolation of each

symbolic state, we compute its ExtM -extrapolation, where M was obtained us-
ing the N computed on the L-PTA (or U-PTA) when valuating the bounded
parameters with their bounds.

Correctness

Proposition 3. Let A be a bPTA+L or bPTA+U with initial symbolic state s0,
and T ⊆ L a set of target locations. Assume EEF(A, s0, T, ∅) terminates. We
have:

1. Soundness: If v ∈ EEF(A, s0, T, ∅) then T is reachable in v(A);
2. Completeness: For all v, if T is reachable in v(A) then v ∈ EEF(A, s0, T, ∅).

Lemma 16. The bounded valuation A of a PTA A guarantees for each con-
straint in the model to give the greatest possible constant bound for all valuations
in the set of bounded parameters of A.

Proof. In any given guard, as each upper bounded parameter of positive sign is
set to its upper bound and each lower bounded parameter of negative sign is set
to its lower bound, there can be no other valuation of bounded parameters such
that any guard or invariant displays a greater constant part.

Note thatAmight not even be in the set of PTA obtained when setting values
for bounded parameters, as it is possible that a given parameter is replaced by its
lower bound in some guard, and by its upper bound in some other. It guarantees,
however, that the value of the constant bound for any of the PTA obtained by
valuating bounded parameters is no greater than N .

We can proceed with the proof of Proposition 3:
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Proof. Let A′ be any bounded valuationof A. By definition, A′ is either an L-
PTA or a U-PTA. From Lemma 16, we know that N is greater than the constant
bound of A′. By Proposition 2, we know that the extrapolation of A′ is sound
and complete when defining M(x) as the maximal constant of clock x when

bounding all unbounded parameters with N̂ . As N > N̂ , the extrapolation is
still sound and complete for any bounded valuationof A.

4.3 Partial ~M-extrapolation on general PTAs

Finally, it is possible to perform a partial extrapolation on any PTA A, by
extrapolating only the clocks that are only compared to the set of bounded
parameters Pbound of A. That is, for a given guard or invariant g of the form
x ./

∑
1≤i≤K αipi + z, the maximum value Cmaxg(g) =

∑
1≤i≤K αiγi + z where

1. γi = D−(pi) if αi < 0,
2. γi = D+(pi) if αi > 0, and
3. γi = 0 otherwise.

Note that γi may be∞ or −∞ if pi is not an unbounded parameter. As a result,
the maximal constant of any clock xi ∈ X compared to unbounded parameter
is equal to ∞. Therefore, M(xi) ∈ ~M = ∞—which amounts to never applying
extrapolation on xi.

Let Xb denote the set of clocks compared to no unbounded parameter (i.e.,
compared in guards and invariants only to constants or bounded parameters).

Let ~M b = {M(x1), . . . ,M(xH)} such that M(xi) is the maximal constant of
clock xi (i.e., ∞ if xi /∈ Xb). Let ExtMXb

denote the composition (in any order)

of all ExtM(x)
x , for all x ∈ Xb. Let pEEF (“p” stands for “partial”) denote the

modification of EEF where ExtMX is replaced with ExtMXb
(line 6 in Algorithm 1).

Proposition 4. Let A be a PTA with initial symbolic state s0, and T ⊆ L a set
of target locations. Assume pEEF(A, s0, T, ∅) terminates. We have:

1. Soundness: If v ∈ pEEF(A, s0, T, ∅) then T is reachable in v(A);
2. Completeness: For all v, if T is reachable in v(A) then v ∈ pEEF(A, s0, T, ∅).

Proof. The proof is the same as for Proposition 1.

Example 8. In Fig. 4b (with p being unbounded), which is a variation of Fig. 1a
where p is now equal to x in the transition to `1, x is compared to the unbounded
parameter p which is neither a lower bound nor an upper bound parameter.
Therefore, this PTA is not in any of the previous classes on which it is possible
to compute a constant bound. However, we can apply a partial extrapolation, i.e.,
the extrapolation is only applied on y, for which there exists a maximal constant
Cy

max (A) < ∞. The analysis using IMITATOR returns quickly (in < 0.1 s) the
expected result p ∈ [0, 1], while it cannot be solved with a standard exploration
(i.e., the algorithm would not terminate).

Of course, we have even less guarantee of termination in the case where only
some clocks are extrapolated, but this can still help termination when comparing
to the case without any extrapolation.
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5 Beyond reachability in bPTA+L and bPTA+U

We saw in Section 4 that it was possible to apply extrapolation on unbounded
PTAs, thanks to a result from [BL09], notably unbounded L-PTAs and U-PTAs
with additional bounded parameters. However, we only proved correctness of
this method for reachability properties. In this section, we study liveness and
trace preservation properties.

5.1 Liveness

In the context of unbounded parameters, the M̂ -extrapolation cannot be used
directly to check liveness properties, as it might produce false positives. The
U-PTA in Fig. 4c exemplifies why the parametric extrapolation is not correct
for cycle synthesis on unbounded PTAs. With this automaton, the state space
is infinite with y growing without bound: after i loops, we have y = x + i ≤ p.
The expected result of a cycle synthesis is ⊥ (no valuation yields a cycle), but
an exploration of the state space would not terminate. If we try applying the
M̂ -extrapolation, we obtain M(x) = 1 and M(y) = 522 as greatest constants,

computed using N̂ (Section 4.1). After 522 loops, the valuation of y can be
greater thanM(y), and we obtain a self-looping state where y > 522 and p > 523.

As a result, the M̂ -extrapolation will synthesize a cycle for p > 523, while there
should be none. This behavior is due to the invariant y ≤ p being removed by the
cylindrification of clock y. Note that this is not possible with bounded parameters
(or general TAs) because any invariant y ≤ t, with t a given constant, would
necessarily contradict the constraint y > M . Indeed, M being by definition the
greatest constant of clock y, M ≥ t and thus y > M ∩ y ≤ t = ∅.

Observe that the model in Fig. 4c is a U-PTA. From [BL09, Theorem 6], we

know that there exists a maximal constant (similar to our N̂ computed in Sec-
tion 4.1) such that there exists no accepting cycle for any parameter valuation

whenever the TA obtained from the U-PTA by valuating its parameters with N̂
yields no accepting cycle. This is not a contradiction with our example: in our
method, we do not only use N̂ to valuate parameters, but we also apply extrap-
olation, which involves cylindrification (Definition 8). This is the cylindrification
operator which is responsible for the incorrectness of the extrapolation.

A solution to fix that issue is to ensure the invariant is not ignored, by bound-
ing p by the constant N̂ (522 in this case). In general, bounding all parameters

by N̂ ensures no false positive are present, but might include false negative in
the form of upper bounds (those we introduced to bound the parameters). How-
ever, we know from [BL09, Theorems 3 and 6] that in an L-PTA or a U-PTA,

if there is an infinite accepting run for a parameter valuation v with v(p) ≥ N̂ ,

then this run exists for all valuations v′ with v(p) ≥ N̂ . Therefore, in a U-PTA,

the upper bound on p can be removed on any results that contains “p = N̂”.
This method can be applied on the classes of models on which we have defined
a extrapolation using the constant bound N̂ (i.e., bPTA+L and bPTA+U).
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In the case of our example from Fig. 4c, this means constraining the model
with p ≤ 522. As a result, the M̂ -extrapolation will synthesize no cycles, which
is correct. Now, imagine a model with the same constant bound over parameter
N̂ = 522, but such that the expected result is 400 < p. The M̂ -extrapolation on
the constrained model will synthesize 400 < p ≤ 522—which contains p = 522.
We can then remove the upper bound on p and obtain the correct result, i.e.,
400 < p.

6 Experiments

We implemented all aforementioned extrapolations in IMITATOR [And21]; all
operations on parametric zones are computed by polyhedral operations, us-
ing PPL [BMZ08]. We consider the full class of PTAs, over (potentially un-
bounded) rational-valued parameters. We applied the extrapolation on the
bPTA+L/bPTA+U subclass from Section 4.2 when it was possible, and the

partial ~M -extrapolation from Section 4.3 otherwise (i.e., extrapolation is ap-
plied to each clock whenever possible), to a library of standard PTA bench-
marks [AMP21]. Experiments were performed using an Intel Core i5-4690K with
a clock rate of 4 GHz.2

We tabulate our results in Table 1. The first and main outcome is the two
lines for “all models” (in bold): on the entire benchmark set (119 models and
177 properties), the average execution time is 954 s without extrapolation, and
824 s with; in addition, the normalized average (always taking 1 for the slowest
of both algorithms and rescaling the second one accordingly) is 0.89 without and
0.91 with. Both metrics are complementary, as the average favors models with
large verification times, while normalized average gives the same weight to all
models, including those of very small verification times. The outcome is that the
extrapolation decreases the average time by 14 %, and increases the normalized
average time by 1.5 %, which remains near-to-negligible. On the larger models
(> 5 s), extrapolation allows for a very similar decrease of 14 % in average, and
even a small decrease of 0.6 % for the normalized average time.

We only tabulate in Table 1 results with the most significant difference, i.e.,
with a gap of more than 1 s with a ratio min

max > 2 (and only one property per
model). Put it differently, other models show little difference between both ver-
sions. “reach” denotes reachability synthesis; “liveness” denotes the synthesis
of valuations leading to at least one infinite run.

Recall that, even on the most restrictive syntactic subclass of PTAs we
considered (L-PTAs and U-PTAs), synthesis over rational-valued parameters
is intractable, and therefore our algorithms (including with extrapolation) come
with no guarantee of termination. On the entire benchmarks set, 39 properties
(over 33 models) do not terminate without extrapolation; this figure reduces

2 Source, benchmarks, raw results and full table are available on the long-term archiv-
ing platform Zenodo at doi.org/10.5281/zenodo.5824264. We used a fork of IM-
ITATOR 3.1 “Cheese Artichoke” extended with extrapolation functions (exact ver-
sion: v3.1.0+extrapolation).
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Table 1: Execution times (in seconds) for our experiments. T.O. denotes an
execution unfinished after 3,600 seconds. (We therefore use this value for means
computation.) Normalized mean is the ratio to the worst execution times. Cells
color represents the difference in performance for a given row: the lighter the
better.

Model Property No extrapolation (s) M-extrapolation (s)
FischerPS08-4 safety 10.6 4.8
FMTV 2 reach 0.7 2.3
fischerPAT3 safety 1.9 0.8
SLAF14 5 safety 12.6 74.4
spsmall safety 0.4 19.3
SSLAF13 test2 safety 2869.8 1399.1
synthRplus reach T.O. 0.2

Cycle1 liveness T.O. 0.001
infinite-5 liveness T.O. 0.006
infinite-5 6 liveness T.O. 0.004
exU noloop acc liveness 1.1 7.7

Mean (models from Table 1 only) 1572.5 137.1
Normalized mean (models from Table 1 only) 0.697 0.490
Mean (all models) 954.4 823.8
Normalized mean (all models) 0.891 0.905

to 33 properties (over 29 models) when applying extrapolation. (No analysis
terminating without extrapolation would lead to non-termination when adding
extrapolation.)

On the models where there is a significant difference between with and with-
out extrapolation, tabulated in Table 1, the extrapolation is sometimes signif-
icantly faster, sometimes significantly slower. Most importantly, extrapolation
allows termination of some so far unsolvable models. The slower cases are due
to the fact that our implementation in IMITATOR needs to keep each symbolic
state convex—this is required by the internal polyhedral structure. Therefore,
when a clock is extrapolated, this increases the number of states in the state
space (a given extrapolated symbolic state can be potentially split into up to
2|X| new symbolic states via a single outgoing transition).

These experiments highlight the main drawback of our implementation, that
is, extrapolated symbolic states have to be split into convex sub-states, some-
times ended up doing more computation in the process than without any extrap-
olation. (We will discuss it in the conclusion.) Despite that drawback, the extrap-
olation can still significantly decrease computation time. Furthermore, a main
benefit of our extrapolation is that it can lead to a better termination, allowing
to turn infinite state spaces into finite ones; this allows us to solve previously
unsolvable benchmarks (synthRplus, Cycle1, infinite-5, infinite-5 6).

All in all, our experiments suggest that, despite a few models (tabulated
in Table 1) where the presence or absence of extrapolation has a significant
difference of execution time, adding extrapolation remains overall harmless, with
even an average decrease of 14 % in the execution time. Most importantly, it
allows to solve so far unsolvable benchmarks—which we consider as the main
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outcome. This suggests to use extrapolation by default for parameter synthesis
in PTAs using IMITATOR.

7 Conclusion and perspectives

7.1 Conclusion

In this paper, we proposed several definitions of zone extrapolation for para-
metric timed automata. We notably improve the parametric M -extrapolation
from [ALR15] by allowing each clock to have its own bound and combining it
with results from [BL09] in order to address unbounded subclasses of PTAs. We
proposed a first implementation (in IMITATOR), and showed that, while extrap-
olation is harmless for most models, it can also decrease the computation time
of larger models and, most importantly, can lead to termination (with exact
synthesis) of previously unsolvable benchmarks. Considering the difficulty of pa-
rameter synthesis for timed models, we consider it a non-trivial and promising
step.

7.2 Future works

We now discuss future works.
A main limitation of our implementation in IMITATOR (discussed in Sec-

tion 6) is that it only handles convex parametric zones. Using the non-convex
polyhedral structures offered by PPL [BMZ08] may dramatically reduce the
number of symbolic states. However, they are much more costly than their con-
vex counterparts—this should be experimentally compared.

Another perspective on implementation concerns the computation of the con-
stant bounds N̂ , for which one needs to compute the number R of clock regions.
Our current implementation uses its over-approximation R̂. Computing the ac-
tual number of clock regions before applying the extrapolation may considerably
reduce the analysis time for larger models.

The main limitation of parametric extrapolation is that termination of syn-
thesis for PTAs cannot be guaranteed, even for bounded PTAs. Although the
motivation behind extrapolation is to replace infinite sequences by cycles, this is
not possible for parameters converging towards a constant. A perspective would
be to exhibit a subclass of PTAs for which it is possible to extrapolate on pa-
rameters themselves the constant towards which they converge.

Finally, we plan to go beyond this work by adapting the LU -extrapolation
from [Beh+06] to PTAs, a theoretically coarser abstraction for which implemen-
tation is not trivial. Algorithms from [HSW16] may prove useful to this purpose.
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[JLR15] Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. “Integer Param-

eter Synthesis for Real-Time Systems”. In: IEEE Transactions on Software
Engineering 41.5 (2015), pp. 445–461. doi: 10.1109/TSE.2014.2357445
(cit. on pp. 2, 3, 9–11).

[Li09] Guangyuan Li. “Checking Timed Büchi Automata Emptiness Using LU-
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