Skip to main content

An SIR Model with Two Kinds of Local Information Based Behavioral Responses in Complex Network

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13339))

Included in the following conference series:

  • 1041 Accesses

Abstract

This paper proposes a novel Susceptible-Infected-Recovered (SIR) model by introducing two kinds of local information from Infected node (I) and Recovered node (R). The Susceptible nodes (S) will take two kinds of individual actions after accepting the information, which will reduce the infection rate. The infection rate for each node S is a function of the number of its infected neighbors and recovered neighbors, thus leading to the heterogeneous and time-varying infection rate because of the nodes’ differences. This paper provides a theoretical formula for the epidemic threshold by cave theory. Simulation results show that the intermediate degree nodes are the most susceptible nodes. The information from node I causes lager influence on the epidemic spreading. Also, it calculates the epidemic threshold by mean field. Through simulation and theoretical analysis, it proves that mean field is not the best method when considering the difference of each node.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei, Z., He, Y., He W., et al.: Information dissemination model based on clustering analysis of information network development. In: 2017 4th International Conference on Information Science and Control Engineering (ICISCE), pp. 403–407 (2017)

    Google Scholar 

  2. Xu, J., Jian, X., Wang, L.: Family-based big medical-level data acquisition system. IEEE Trans. Ind. Inf. 15(4), 2321–2329 (2019)

    Article  Google Scholar 

  3. Hua, Y., Chen, B., Yuan, Y.: An influence maximization algorithm based on the influence propagation range of nodes. J. Internet Things 1(2), 77–88 (2019)

    Article  Google Scholar 

  4. Yamashita, K., Nakamura, R., Ohsaki, H.: A study on robustness of complex networks against random node removals. In: IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), pp. 966–969 (2018)

    Google Scholar 

  5. Mokashi, V.S., Kulkarni, D.B.: A review: scalable parallel graph partitioning for complex networks. In: Second International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1869–1871 (2018)

    Google Scholar 

  6. Xu, J., Liu, Z., Xu, J.: A new ranking algorithm and an evolutionary model based on com-prehensive weighted clique degree for complex network. Appl. Math. Model. 47, 756–764 (2017)

    Article  MathSciNet  Google Scholar 

  7. Zhai, Z., Cao, J., Wang, B.: A new evolutionary algorithm of niches network based on complex networks. In: IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp. 655–658 (2020)

    Google Scholar 

  8. Wei, P., Lu, M.D., Zhang, X.H.: Analysis of flight punctuality rate based on complex network. J. Quant. Comput. 3(1), 13–23 (2021)

    Article  Google Scholar 

  9. He, H., Zhao, Z., Luo, W.: Community detection in aviation network based on k-means and complex network. Comput. Syst. Sci. Eng. 39(2), 251–264 (2021)

    Article  Google Scholar 

  10. Bagnoli, F., Liò, P., Sguanci, L.: Risk perception in epidemic modeling. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1), 61904 (2007)

    Article  Google Scholar 

  11. Valdez, L.D., Macri, P.A., Braunstein, L.A.: Intermittent social distancing strategy for epidemic control Physical. Phys. Rev. E 85(3), 036108 (2012)

    Article  Google Scholar 

  12. Gong, Y.W., Song, Y.R., Jiang, G.P.: Time-varying human mobility patterns with metapopulation epidemic dynamics. Physica A: Stat. Mech. Appl. 392(19), 4242–4251 (2013). https://doi.org/10.1016/j.physa.2013.05.028

    Article  MathSciNet  MATH  Google Scholar 

  13. Shang, Y.: Degree distribution dynamics for disease spreading with individual awareness. J. Syst. Sci. Complexity 28(1), 96–104 (2015). https://doi.org/10.1007/s11424-014-2186-x

    Article  MATH  Google Scholar 

  14. Fu, X., Liu, Z., Small, M.: Epidemic Propagation Dynamics on Complex Networks. Hight Education Press, Beijing (2014)

    Book  Google Scholar 

  15. Zhang, H., Xie, J., Tang, M., et al.: Chaos, Woodbury, N.Y. 24(4), 043106 (2014)

    Google Scholar 

  16. Wang Y., Wang, L.: Interplay between complex contagion of awareness and epidemic spreading in two-layer network. In: 2020 39th Chinese Control Conference (CCC), pp. 765–770 (2020)

    Google Scholar 

  17. Wang, R.: Effects of the self-awareness on epidemic spreading on multiplex networks. In: 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 578–582 (2021)

    Google Scholar 

  18. Li, C., Zhang, Y., Li, X.: Epidemic threshold in temporal multiplex networks with individual layer preference. IEEE Trans. Netw. Sci. Eng. 8(1), 814–824 (2021)

    Article  MathSciNet  Google Scholar 

  19. Adebimpe, O., Oludoun, O., Abiodun O., et al.: Dynamical analysis of an sirs epidemic model with non-linear incidence rate and treatment, In: 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), pp. 1–6 (2020)

    Google Scholar 

  20. Kikuchi, H., Mukaidani H., Saravanakumar, R.: Robust nash strategy for uncertain sir time-delay model. In: 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), 1897–1901 (2020)

    Google Scholar 

  21. Liu, C., Zhou, L., Fan, C., Huo, L., Tian, Z.: Activity of nodes reshapes the critical threshold of spreading dynamics in complex networks. Physica A: Stat. Mech. Appl. 432, 269–278 (2015)

    Article  MathSciNet  Google Scholar 

  22. Ghaffar, A., Alanazi, S., Alruwaili, M., et al.: Multi-stage intelligent smart lockdown using sir model to control covid 19. Intell. Autom. Soft Comput. 28(2), 429–445 (2021)

    Article  Google Scholar 

  23. Dansana, D., Kumar, R., Parida, A., et al.: Using susceptible-exposed-infectious-recovered model to forecast coronavirus outbreak. Comput. Mater. Continua 67(2), 1595–1612 (2021)

    Article  Google Scholar 

  24. Bartlett, J., Plank, M.J.: Epidemic dynamics on random and scale-free networks. ANZIAM J. 54(12), 3–22 (2012)

    Article  MathSciNet  Google Scholar 

  25. Wu, Y., Li, M., Xiao, J., et al.: The impact of discrimination on the spread of infectious diseases in complex networks. New Gener. Comput. 32(3–4), 193–211 (2014)

    Article  Google Scholar 

  26. Ruan, Z.Y., Tang, M., Liu, Z.: Epidemic spreading with information-driven vaccination. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 86, 17–23 (2012)

    Article  Google Scholar 

  27. Shang, Y.: Discrete-time epidemic dynamics with awareness in random networks. Int. J. Biomath. 6(02), 1350007 (2013)

    Article  MathSciNet  Google Scholar 

  28. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 66(1), 016128 (2002)

    Article  MathSciNet  Google Scholar 

  29. Esquivel-GĂłmez, J.D.J., Barajas-RamĂ­rez, J.G.: Efficiency of quarantine and self-protection processes in epidemic spreading control on scale-free networks. Chaos 28(1), 013119 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y. et al. (2022). An SIR Model with Two Kinds of Local Information Based Behavioral Responses in Complex Network. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2022. Lecture Notes in Computer Science, vol 13339. Springer, Cham. https://doi.org/10.1007/978-3-031-06788-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06788-4_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06787-7

  • Online ISBN: 978-3-031-06788-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics