Skip to main content

Infrared Ship Video Target Tracking Based on Cross-Connection and Spatial Transformer Network

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13339))

Included in the following conference series:

Abstract

In this paper, to improve the efficiency of infrared (IR) ship target tracking, an efficient SiamRPN++ method based on AlexNet with cross connection and spatial transformer network is proposed. The cross-connection method integrates the features of shallow layers and the deep layers to increase the spatial information of the output features. To reduce the influence of target rotation and scaling on tracking accuracy, we introduced the spatial transformer network to explicitly learn rotation invariance, which can supplement the implicit rotation invariance learned by convolutional neural network. Moreover, in order to train and evaluate the model more appropriately and to deal with the problem of the lacking IR ship video target tracking data set, we constructed an IR ship video tracking data set including 6725 frames of images. The experimental results show that the proposed method can effectively improve the speed to 63.9 FPS, which is 9.7 times faster than the SIAMRPN++ method under the condition of ensuring the accuracy and the average intersection of union (mIoU).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amirkhani, A., Barshooi, A.A.H.: Ebrahimi: Enhancing the robustness of visual object tracking via style transfer. Comput. Mater. Continua 70(1), 981–997 (2022)

    Article  Google Scholar 

  2. Li, J., Song, Y., Liu, T., Zhao, X.: A preprocessing method for infrared image based on maritime targets tracking performance. Laser Optoelectron. Prog. 57(10), 229–236 (2020)

    Google Scholar 

  3. Yan, P., Zou, J., Li, Z., Yang, X.: Infrared and visible image fusion based on NSST and RDN. Intell. Autom. Soft Comput. 28(1), 213–225 (2021)

    Article  Google Scholar 

  4. Wei, W.: Overview of ship detection technology based on remote sensing images. Telecommun. Eng. 60(9), 1126–1132 (2020)

    Google Scholar 

  5. Wang, J.: Research on long-term robust infrared object tracking. M.S. Dissertation, Nanjing University of Aeronautics and Astronautics (2018)

    Google Scholar 

  6. Wang, Y.: Hybrid efficient convolution operators for visual tracking. J. Artif. Intell. 3(2), 63–72 (2021)

    Google Scholar 

  7. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4293–4302. IEEE (2016)

    Google Scholar 

  8. Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3074–3082. IEEE (2015)

    Google Scholar 

  9. Nummiaro, K., Koller-Meier, E., Gool, L.V.: An adaptive color-based particle filter. Image Vis. Comput. 21(1), 99–110 (2003)

    Article  Google Scholar 

  10. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function with applications in pattern recognition. IEEE Trans. Inf. Theory 21(1), 32–40 (1975)

    Article  MathSciNet  Google Scholar 

  11. Choi, J.Y., Sung, K.S., Yang, Y.K.: Multiple vehicles detection and tracking based on scale-invariant feature transform. In: Proceedings of the 2007 IEEE Intelligent Transportation Systems Conference, pp. 528–533. IEEE (2007)

    Google Scholar 

  12. Bay, H., Tuytelaars, T., Gool, L.V.: Speeded up robust features. In: Proceedings of the European Conference on Computer Vision, pp.404–417, Springer, Berlin(2006)

    Google Scholar 

  13. Yang, Y., Tian, F., Yang, Y., Huang, B.: Infrared small target tracking based on improved mean-shift algorithm. Infrared Laser Eng. 43(07), 2164–2169 (2014)

    Google Scholar 

  14. Zhai, S., Sun, N.: Infrared object tracking algorithm based on mean shift and Kalman filter. Command Inf. Syst. Technol. 5(06), 27–31 (2014)

    Google Scholar 

  15. He, D.C., Wang, L.: Texture unit, texture spectrum, and texture analysis. IEEE Trans. Geosci. Remote Sens. 28(4), 509–512 (1990)

    Article  Google Scholar 

  16. Li, X., Qiao, L., et al.: A multi-view model for visual tracking via correlation filters. Knowl.-Based Syst. 113(1), 88–99 (2016)

    Article  Google Scholar 

  17. Meng, L., Xu, Y.: A survey of object tracking algorithm. Acta Automatica Sinica 45(7), 1244–1260 (2019)

    MATH  Google Scholar 

  18. Wang, L. et al.: Visual tracking with fully convolutional networks. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), pp.3119–3127. KIIT University, IEEE, Bhubaneswar (2015)

    Google Scholar 

  19. Held, D., Thrun, S., Savarese, S.: Learning to track at 100 FPS with deep regression networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 749–765. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_45

    Chapter  Google Scholar 

  20. Tao, R., Gavves, E., Arnold, W.M.: Smeulders.: Siamese instance search for tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1420–1429. IEEE, Las Vegas (2016)

    Google Scholar 

  21. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  22. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440. IEEE (2015)

    Google Scholar 

  23. Bo, L.: High performance visual tracking with siamese region proposal network. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8971–8980. IEEE (2018)

    Google Scholar 

  24. Ren, S., He, K., Girshick, R.: Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  25. Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 103–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_7

    Chapter  Google Scholar 

  26. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, Y.: SiamRPN++: Evolution of siamese visual tracking with very deep networks. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4277–4286 (2019)

    Google Scholar 

  27. Jaderberg, M., Simonyan, K., Zisserman, K.A., Kavukcuoglu: Neural information processing systems, pp. 2017–2025. MIT Press (2015)

    Google Scholar 

  28. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.770–778. IEEE, Las Vegas (2016)

    Google Scholar 

  29. Krizhevsky, A., Sutskever, G.I., Hinton: Imagenet classification with deep convolutional neural networks, pp. 1097–1105. MIT Press (2012)

    Google Scholar 

  30. Corinna, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  31. Felsberg, M., Berg, A., Hager, G.: The thermal IR visual object tracking VOT-TIR2015 challenge results. In: Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 76–88. IEEE (2015)

    Google Scholar 

  32. Felsberg, M.: The thermal IR visual object tracking VOT-TIR2016 challenge results. In: Proceedings of the 14th European Conference on Computer Vision Springer. Springer (2016)

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (61806013, 61906005), General project of Science and Technology Plan of Beijing Municipal Education Commission (KM202110005028), International Research Cooperation Seed Fund of Beijing University of Technology (2021A01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhang .

Editor information

Editors and Affiliations

Ethics declarations

We declare that we have no actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations that can inappropriately influence our work.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., He, J., Zhang, T., Tang, R., Li, Y., Waqas, M. (2022). Infrared Ship Video Target Tracking Based on Cross-Connection and Spatial Transformer Network. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2022. Lecture Notes in Computer Science, vol 13339. Springer, Cham. https://doi.org/10.1007/978-3-031-06788-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06788-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06787-7

  • Online ISBN: 978-3-031-06788-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics