Skip to main content

A Survey of Consensus Mechanism Based on Reputation Model

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13340))

Abstract

The reputation models may be used to evaluate the reputation of blockchain nodes, and the consensus mechanisms can use the reputation models to quantify the credibility or dependability of nodes. The consensus mechanisms and the reputation models have been coupled by researchers with the goal of improving the performance and security of consensus mechanisms. We summarized the consensus mechanism based on the reputation model (reputation consensus) in this paper. To begin, we’ve classified the many types of reputation consensuses and explained the benefits of each one. Second, we suggest a new performance assessment criterion for reputation consensuses based on the experimental section of the literatures, and we evaluate the performance of current reputation consensuses using the provided performance evaluation criterion. After that, we ran a statistical investigation on the security of reputation consensuses. Finally, we summed up the reputation consensuses in order to better grasp present research issues and future research directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev. 21260 (2008)

    Google Scholar 

  2. Sanka, A.I., Cheung, R.C.: A systematic review of blockchain scalability: issues, solutions, analysis and future research. J. Netw. Comput. Appl. 195, 103232 (2021)

    Google Scholar 

  3. Jamil, F., Qayyum, F., Alhelaly, S., Javed, F., Muthanna, A.: Intelligent microservice based on blockchain for healthcare applications. CMC-Comput. Mater. Contin 69, 2513–2530 (2021)

    Google Scholar 

  4. Huang, J., Tan, L., Li, W., Yu, K.: Ron-enhanced blockchain propagation mechanism for edge-enabled smart cities. J. Inf. Sec. Appli. 61, 102936 (2021)

    Google Scholar 

  5. Alam, S., et al.: Blockchain-based initiatives: current state and challenges. Comput. Netw. 198, 108395 (2021)

    Google Scholar 

  6. Hong, G.W., Kim, J.W., Chang, H.: Blockchain technology based information classification management service. CMC-Comput. Mater. Continua 67, 1489–1501 (2021)

    Google Scholar 

  7. Mazzoni, M., Corradi, A., di Nicola, V.: Performance evaluation of permissioned blockchains for financial applications the consensys quorum case study. Blockchain Res. Appli. 3(1), 100026 (2021)

    Google Scholar 

  8. Bera, B., Vangala, A., Das, A.K., Lorenz, P., Khan, M.K.: Private blockchain-envisioned drones-assisted authentication scheme in IOT-enabled agricultural environment. Computer Stan. Interfaces 80, 103567 (2022)

    Google Scholar 

  9. Pavithran, D., Al-Karaki, J.N., Shaalan, K.: Edge-based blockchain architecture for event-driven IOT using hierarchical identity based encryption. Inf. Proc. Manage. 58(3), 102528 (2021)

    Google Scholar 

  10. Centobelli, P., Cerchione, R., Vecchio, P.D., Oropallo, E., Secundo, G.: Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Inf. Manage. 103508 (2021)

    Google Scholar 

  11. Zhang, L., Peng, M., Wang, W., Su, Y., Kim, S.: Secure and efficient data storage and sharing scheme based on double blockchain. CMC Tech, Sci. Press 66(1), 499–515 (2020)

    Google Scholar 

  12. Bouraga, S.: A taxonomy of blockchain consensus protocols: a survey and classification framework. Expert Syst. Appl. 168, 114384 (2021)

    Google Scholar 

  13. Aslam, T., et al.: Blockchain based enhanced ERP transaction integrity architecture and poet consensus. CMC-Comput. Mater. Continua 70(1), 1089–1109 (2022)

    MathSciNet  Google Scholar 

  14. Liu, J., Sun, X., Song, K.: A food traceability framework based on permissioned blockchain. J. Cybersecurity 2(2), 107 (2020)

    Google Scholar 

  15. Ferdous, M.S., Chowdhury, M.J.M., Hoque, M.A.: A survey of consensus algorithms in public blockchain systems for crypto-currencies. J. Netw. Comput. Appl. 182, 103035 (2021)

    Google Scholar 

  16. Cheng, J., Yang, Y., Tang, X., Xiong, N., Zhang, Y., Lei, F.: Generative adversarial networks: a literature review. KSII Trans. Inter. Inf. Syst. 14(12), 4625–4647 (2020)

    Google Scholar 

  17. Almasoud, A.S., Hussain, F.K., Hussain, O.K.: Smart contracts for blockchain-based reputation systems: a systematic literature review. J. Netw. Comput. Appl. 170, 102814 (2020)

    Google Scholar 

  18. Braga, D.D.S., Niemann, M., Hellingrath, B., Neto, F.B.D.L.: Survey on computational trust and reputation models. ACM Comput. Surv. 51(5), 1–40 (2018)

    Google Scholar 

  19. Hendrikx, F., Bubendorfer, K., Chard, R.: Reputation systems: a survey and taxonomy. J. Parallel Distrib. Comput. 75, 184–197 (2015)

    Google Scholar 

  20. Cheng, J., Liu, J., Xu, X., Xia, D., Liu, L., Sheng, V.S.: A review of Chinese named entity recognition. KSII Trans Inter. In. Syst. (TIIS) 15(6), 2012–2030 (2021)

    Google Scholar 

  21. Zhuang, Q., Liu, Y., Chen, L., Ai, Z.: Proof of reputation: A reputation-based consensus protocol for blockchain based systems. In: Proceedings of the 2019 International Electronics Communication Conference, IECC 2019, pp. 131–138. Association for Computing Machinery, New York (2019)

    Google Scholar 

  22. Kang, J., Xiong, Z., Niyato, D., Ye, D., Kim, D.I., Zhao, J.: Toward secure blockchain-enabled internet of vehicles: optimizing consensus management using reputation and contract theory. IEEE Trans. Veh. Technol. 68(3), 2906–2920 (2019)

    Google Scholar 

  23. Guan, Z., Lu, X., Yang, W., Wu, L., Wang, N., Zhang, Z.: Achieving efficient and privacy-preserving energy trading based on blockchain and ABE in smart grid. J. Parallel Distrib. Comput. 147, 34–45 (2021)

    Google Scholar 

  24. Yu, J., Kozhaya, D., Decouchant, J., Esteves-Verissimo, P.: Repucoin: your reputation is your power. IEEE Trans. Comput. 68(8), 1225–1237 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Qiao, G., Leng, S., Chai, H., Asadi, A., Zhang, Y.: Blockchain empowered resource trading in mobile edge computing and networks. In: ICC 2019–2019 IEEE International Conference on Communications, ICC, pp. 1–6 (2019)

    Google Scholar 

  26. Qin, D., Wang, C., Jiang, Y.: RPchain: a blockchain-based academic social networking service for credible reputation building. In: Chen, S., Wang, H., Zhang, L.-J. (eds.) ICBC 2018. LNCS, vol. 10974, pp. 183–198. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94478-4_13

    Chapter  Google Scholar 

  27. Gai, F., Wang, B., Deng, W., Peng, W.: Proof of reputation: a reputation-based consensus protocol for peer-to-peer network. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10828, pp. 666–681. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91458-9_41

    Chapter  Google Scholar 

  28. Wang, K., et al.: A trusted consensus fusion scheme for decentralized collaborated learning in massive IOT domain. Inf. Fusion 72, 100–109 (2021)

    Google Scholar 

  29. Wang, E.K., Sun, R., Chen, C.M., Liang, Z., Kumari, S., Khurram Khan, M.: Proof of x-repute blockchain consensus protocol for IOT systems. Comput. Secur. 95, 101871 (2020)

    Google Scholar 

  30. Shyamsukha, S., Bhattacharya, P., Patel, F., Tanwar, S., Gupta, R., Pricop, E.: Porf: Proof-of-reputation-based consensus scheme for fair transaction ordering. In: 2021 13th International Conference on Electronics, Computers and Artificial Intelligence, ECAI, pp. 1–6 (2021)

    Google Scholar 

  31. Sun, Y., Xue, R., Zhang, R., Su, Q., Gao, S.: Rtchain: a reputation system with transaction and consensus incentives for e-commerce blockchain. ACM Trans. Internet Technol. 21(1), 1–24 (2020)

    Google Scholar 

  32. Zhao, Q., Sun, Y., Zhang, P.: Design of trust blockchain consensus protocol based on node role classification. In: 2019 IEEE International Conference on Service Operations and Logistics, and Informatics, SOLI, pp. 104–109 (2019)

    Google Scholar 

  33. Xuan, S., et al.: Ecbcm: a prestige-based edge computing blockchain security consensus model. Trans. Emerg. Telecommun. Technol. 32(6), e4015 (2021)

    Google Scholar 

  34. Shala, B., Trick, U., Lehmann, A., Ghita, B., Shiaeles, S.: Novel trust consensus protocol and blockchain-based trust evaluation system for m2m application services. Internet of Things 7, 100058 (2019)

    Google Scholar 

  35. Lei, K., Zhang, Q., Xu, L., Qi, Z.: Reputation-based byzantine fault-tolerance for consortium blockchain. In: 2018 IEEE 24th International Conference on Parallel and Distributed Systems, ICPADS, pp. 604–611 (2018)

    Google Scholar 

  36. Chen, J., Zhang, X., Shangguan, P.: Improved PBFT algorithm based on reputation and voting mechanism. J. Phys. Conf. Ser. 1486(3), 032023 (2020)

    Google Scholar 

  37. Xiaohui, Z., Xianghua, M.: A reputation-based approach using consortium blockchain for cyber threat intelligence sharing (2021). arXiv preprint, arXiv:2107.06662

  38. de Oliveira, M.T., Reis, L.H., Medeiros, D.S., Carrano, R.C., Olabarriaga, S.D., Mattos, D.M.: Blockchain reputation-based consensus: a scalable and resilient mechanism for distributed mistrusting applications. Comput. Netw. 179, 107367 (2020)

    Google Scholar 

  39. Wang, E.K., Liang, Z., Chen, C.M., Kumari, S., Khan, M.K.: Porx: a reputation incentive scheme for blockchain consensus of IOT. Futur. Gener. Comput. Syst. 102, 140–151 (2020)

    Google Scholar 

  40. Hu, Q., Yan, B., Han, Y., Yu, J.: An improved delegated proof of stake consensus algorithm. In: Procedia Computer Science 187, 341–346 (2021), 2020 International Conference on Identification, Information and Knowledge in the Internet of Things, IIKI 2020

    Google Scholar 

  41. Han, X., Yuan, Y., Wang, F.Y.: A fair blockchain based on proof of credit. IEEE Trans. Comput. Soc. Syst. 6(5), 922–931 (2019)

    Google Scholar 

  42. Bou Abdo, J., El Sibai, R., Demerjian, J.: Permissionless proof-of-reputation-x: a hybrid reputation-based consensus algorithm for permissionless blockchains. Trans. Emerg. Telecommun. Technol. 32(1), e4148 (2021)

    Google Scholar 

  43. Bou Abdo, J., El Sibai, R., Kambhampaty, K., Demerjian, J.: Permissionless reputation-based consensus algorithm for blockchain. Internet Technol. Lett. 3(3), e151 (2020), ITL-19-0118.R2

    Google Scholar 

  44. Sun, Y., Zhang, R., Xue, R., Su, Q., Li, P.: A reputation based hybrid consensus for e-commerce blockchain. In: Ku, W.-S., Kanemasa, Y., Serhani, M.A., Zhang, L.-J. (eds.) ICWS 2020. LNCS, vol. 12406, pp. 1–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59618-7_1

    Chapter  Google Scholar 

  45. Yadav, A.S., Agrawal, S., Kushwaha, D.S.: Distributed ledger technology-based land transaction system with trusted nodes consensus mechanism. J. King Saud Univ. Comput. Inf. Sci. 34(5) (2021)

    Google Scholar 

  46. Tong, W., Dong, X., Shen, Y., Zheng, J.: Bc-ran: cloud radio access network enabled by blockchain for 5g. Comput. Commun. 162, 179–186 (2020)

    Google Scholar 

  47. Bahri, L., Girdzijauskas, S.: When trust saves energy: a reference framework for proof of trust (pot) blockchains. In: Companion Proceedings of the the Web Conference WWW 2018, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, pp. 1165–1169 (2018)

    Google Scholar 

  48. Zou, J., Ye, B., Qu, L., Wang, Y., Orgun, M.A., Li, L.: A proof-of-trust consensus protocol for enhancing accountability in crowdsourcing services. IEEE Trans. Serv. Comput. 12(3), 429–445 (2019)

    Google Scholar 

  49. Biryukov, A., Feher, D.: Recon: sybil-resistant consensus from reputation. Pervasive Mob. Comput. 61, 101109 (2020)

    Google Scholar 

  50. Sun, Y., Yan, B., Yao, Y., Yu, J.: Dt-dpos: A delegated proof of stake consensus algorithm with dynamic trust. In: Procedia Computer Science, vol. 187, 371–376 (2021), 2020 International Conference on Identification, Information and Knowledge in the Internet of Things, IIKI 2020

    Google Scholar 

  51. Gao, S., Yu, T., Zhu, J., Cai, W.: T-PBFT: an eigentrust-based practical byzantine fault tolerance consensus algorithm. China Commun. 16(12), 111–123 (2019)

    Google Scholar 

  52. Huang, J., Kong, L., Chen, G., Wu, M.Y., Liu, X., Zeng, P.: Towards secure industrial IOT: blockchain system with credit-based consensus mechanism. IEEE Trans. Industr. Inf. 15(6), 3680–3689 (2019)

    Google Scholar 

  53. Huang, J., Kong, L., Chen, G., Cheng, L., Wu, K., Liu, X.: B-IOT: Blockchain driven internet of things with credit-based consensus mechanism. In: 2019 IEEE 39th International Conference on Distributed Computing Systems, ICDCS, pp. 1348–1357 (2019)

    Google Scholar 

  54. Zhang, J., Huang, Y., Ye, F., Yang, Y.: A novel proof-of-reputation consensus for storage allocation in edge blockchain systems. In: 2021 IEEE/ACM 29th International Symposium on Quality of Service, IWQOS, pp. 1–10 (2021)

    Google Scholar 

  55. Jun-Qing, L.I., Xin, Y.S., Song, C.Q., Zhou, H., Wang, T.J., Deng, H.W.: Reputation-based dynamic authorization pbft consensus mechanism. Comput. Eng. Softw. (2019)

    Google Scholar 

  56. Yuan, X., Luo, F., Haider, M.Z., Chen, Z., Li, Y.: Efficient byzantine consensus mechanism based on reputation in IOT blockchain. In: Wireless Communications and Mobile Computing 2021 (2021)

    Google Scholar 

  57. Tong, W., Dong, X., Zheng, J.: Trust-PBFT: a peertrust-based practical byzantine consensus algorithm. In: 2019 International Conference on Networking and Network Applications, NaNA, pp. 344–349. IEEE (2019)

    Google Scholar 

  58. Aluko, O., Kolonin, A.: Proof-of-reputation: an alternative consensus mechanism for blockchain systems. Int. J. Netw. Secur. Appli. (IJNSA) 13, 23–40 (2021)

    Google Scholar 

  59. Cai, W., Jiang, W., Xie, K., Zhu, Y., Liu, Y., Shen, T.: Dynamic reputation-based consensus mechanism: real-time transactions for energy blockchain. Int. J. Distrib. Sens. Netw. 16(3), 1550147720907335 (2020)

    Google Scholar 

  60. Prabhakar, A., Anjali, T.: Tcon - a lightweight trust-dependent consensus framework for blockchain. In: 2019 11th International Conference on Communication Systems Networks, COMSNETS, pp. 1–6 (2019)

    Google Scholar 

  61. Do, T., Nguyen, T., Pham, H.: Delegated proof of reputation: a novel blockchain consensus. In: Proceedings of the 2019 International Electronics Communication Conference, IECC 2019, pp. 90–98. Association for Computing Machinery, New York (2019)

    Google Scholar 

  62. Tang, H., Sun, Y., Ouyang, J.: Excellent practical byzantine fault tolerance. J. Cybersecurity 2(4), 167–182 (2020)

    Google Scholar 

  63. Lei, F., Cheng, J., Yang, Y., Tang, X., Sheng, V.S., Huang, C.: Improving heterogeneous network knowledge transfer based on the principle of generative adversarial. Electronics 10(13), 1525 (2021)

    Google Scholar 

  64. Tang, X., Tu, W., Li, K., Cheng, J.: Dffnet: an IOT-perceptive dual feature fusion network for general real-time semantic segmentation. Inf. Sci. 565, 326–343 (2021)

    Google Scholar 

  65. Wan, S., Li, M., Liu, G., Wang, C.: Recent advances in consensus protocols for blockchain: a survey. Wireless Netw. 26(8), 5579–5593 (2019). https://doi.org/10.1007/s11276-019-02195-0

    Article  Google Scholar 

  66. Bamakan, S.M.H., Motavali, A., Babaei Bondarti, A.: A survey of blockchain consensus algorithms performance evaluation criteria. Expert Syst. Appli. 154, 113385 (2020)

    Google Scholar 

  67. Zhang, Q., Zhou, C., Tian, Y.C., Xiong, N., Qin, Y., Hu, B.: A fuzzy probability bayesian network approach for dynamic cybersecurity risk assessment in industrial control systems. IEEE Trans. Industr. Inf. 14(6), 2497–2506 (2018)

    Google Scholar 

  68. Bhushan, B., Sinha, P., Sagayam, K.M., Andrew, J.: Untangling blockchain technology: a survey on state of the art, security threats, privacy services, applications and future research directions. Comput. Electr. Eng. 90, 106897 (2021)

    Google Scholar 

  69. Li, X., Jiang, P., Chen, T., Luo, X., Wen, Q.: A survey on the security of blockchain systems. Futur. Gener. Comput. Syst. 107, 841–853 (2020)

    Google Scholar 

  70. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s Peer-to-Peer network. In: 24th USENIX Security Symposium, USENIX Security 2015, pp. 129–144. USENIX Association, Washington, August 2015

    Google Scholar 

  71. Joshi, A.P., Han, M., Wang, Y.: A survey on security and privacy issues of blockchain technology. Math. Found. Comput. 1(2), 121–147 (2018)

    Google Scholar 

  72. Platt, M., McBurney, P.: Sybil attacks on identity-augmented proof-of-stake. Comput. Netw. 199, 108424 (2021)

    Google Scholar 

  73. Karame, G.O., Androulaki, E., Roeschlin, M., Gervais, A., Čapkun, S.: Misbehavior in bitcoin: a study of double-spending and accountability. ACM Trans. Inf. Syst. Secur. 18(1), 1–32 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 62162022 and 62162024), Key Projects in Hainan Province (Grant ZDYF2021GXJS003 and Grant ZDYF2020040), the Major science and technology project of Hainan Province(Grant No. ZDKJ2020012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieren Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Cheng, J., Li, H., Yuan, Y., Sheng, V.S. (2022). A Survey of Consensus Mechanism Based on Reputation Model. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2022. Lecture Notes in Computer Science, vol 13340. Springer, Cham. https://doi.org/10.1007/978-3-031-06791-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06791-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06790-7

  • Online ISBN: 978-3-031-06791-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics