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Abstract
We show how to round any half-integral solution to the subtour-elimination relaxation for

the TSP, while losing a less-than-1.5 factor. Such a rounding algorithm was recently given by
Karlin, Klein, and Oveis Gharan based on sampling from max-entropy distributions. We build
on an approach of Haddadan and Newman to show how sampling from the matroid intersection
polytope, and a new use of max-entropy sampling, can give better guarantees.

1 Introduction

The (symmetric) traveling salesman problem asks: given an graph G = (V,E) with edge-lengths
ce ≥ 0, find the shortest tour that visits all vertices at least once. The Christofides-Serdyukov
algorithm [Chr76, Ser78] gives a 3/2-approximation to this APX-hard problem; this was recently
improved to a (3/2−ε)-approximation by the breakthrough work of Karlin, Klein, and Oveis Gharan,
where ε > 0 [KKO20b]. A related question is: what is the integrality gap of the subtour-elimination
polytope relaxation for the TSP? Wolsey had adapted the Christofides-Serdyukov analysis to show
an upper bound of 3/2 [Wol80] (also [SW90]), and there exists a lower bound of 4/3. Building on
their above-mentioned work, Karlin, Klein, and Oveis Gharan gave an integrality gap of 1.5− ε′ for
another small constant ε′ > 0 [KKO21], thereby making the first progress towards the conjectured
optimal value of 4/3 in nearly half a century.

Both these recent results are based on a randomized version of the Christofides-Serdyukov algorithm
proposed by Oveis Gharan, Saberi, and Singh [OSS11]. This algorithm first samples a spanning
tree (plus perhaps one edge) from the max-entropy distribution with marginals matching the LP
solution, and adds an O-join on the odd-degree vertices O in it, thereby getting an Eulerian spanning
subgraph. Since the first step has expected cost equal to that of the LP solution, these works then
bound the cost of this O-join by strictly less than half the optimal value, or the LP value. The
proof uses a cactus-like decomposition of the min-cuts of the graph with respect to the values xe,
like in [OSS11].

Given the 3/2 barrier has been broken, we can ask: what other techniques can be effective here?
How can we make further progress? These questions are interesting even for cases where the LP
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has additional structure. The half-integral cases are particularly interesting due to the Schalekamp,
Williamson, and van Zuylen conjecture, which says that the integrality gap is achieved on instances
where the LP has optimal half-integral solutions [SWvZ14]. The team of Karlin, Klein, and Oveis
Gharan first used their max-entropy approach to get an integrality gap of 1.4998 for half-integral
LP solutions [KKO20a], before they moved on to the general case in [KKO20b] and obtained an
integrality gap of 1.5 − ε; the latter improvement is considerably smaller than in the half-integral
case. It is natural to ask: can we do better for half-integral instances?

In this paper, we answer this question affirmatively. We show how to get tours of expected cost
at most 1.4983 times the linear program value using an algorithm based on matroid intersection.
Moreover, some of these ideas can be used to strengthen the max-entropy sampling approach in the
half-integral case. The matroid intersection approach and the strengthened max-entropy approach
each yield improvements over the bound in [KKO20a]. Combining the techniques gives our final
quantitative improvement:

Theorem 1.1. Let x be a half-integral solution to the subtour elimination polytope with cost
c(x). There is a randomized algorithm that rounds x to an integral solution whose cost is at most
(1.5− ε) · c(x), where ε = 0.001695.

We view our work as showing a proof-of-concept of the efficacy of combinatorial techniques (matroid
intersection, and flow-based charging arguments) in getting an improvement for the half-integral
case. We hope that these techniques, ideally combined with max-entropy sampling techniques, can
give further progress on this central problem.

Our Techniques The algorithm is again in the Christofides-Serdyukov framework. It is easiest
to explain for the case where the graph (a) has an even number of vertices, and (b) has no (non-
trivial) proper min-cuts with respect to the LP solution values xe—specifically, the only sets for
which x(∂S) = 2 correspond to the singleton cuts. Here, our goal is that each edge is “even” with
some probability: i.e., both of its endpoints have even degree with probability p > 0. In this case
we use an idea due to Haddadan and Newman [HN19]: we shift and get a {1/3, 1}-valued solution
y to the subtour elimination polytope KTSP . Specifically, we find a random perfect matching M in
the support of x, and set ye = 1 for e ∈ M , and 1/3 otherwise, thereby ensuring E[y] = x. To pick
a random tree from this shifted distribution y, we do one of the following:

1. We pick a random “independent” set M ′ of matching edges (so that no edge in E is incident
to two edges of M ′). For each e′ ∈M ′, we place partition matroid constraints enforcing that
exactly one edge is picked at each endpoint—which, along with e′ itself, gives degree 2 and
thereby makes the edge even as desired. Finding spanning trees subject to another matroid
constraint can be implemented using matroid intersection.

2. Or, instead we sample a random spanning tree from the max-entropy distribution, with
marginals being the shifted value y. (In contrast, [KKO20a] sample trees from x itself; our
shifting allows us to get stronger notions of evenness than they do: e.g., we can show that every
edge is “even-at-last” with constant probability, as opposed to having at least one even-at-last
edge in each tight cut with some probabiltiy.)

(Our algorithm randomizes between the two samplers to achieve the best guarantees.) For the O-
join step, it suffices to give fractional values ze to edges so that for every odd cut in T , the z-mass
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leaving the cut is at least 1. In the special case we consider, each edge only participates in two min-
cuts—those corresponding to its two endpoints. So set ze = xe/3 if e is even, and xe/2 if not; the only
cuts with z(∂S) < 1 are minimum cuts, and these cuts will not show up as O-join constraints, due to
evenness. For this setting, if an edge is even with probability p, we get a (3/2− p/6)-approximation!

It remains to get rid of the two simplifying assumptions. To sample trees when |V | is odd (an open
question from [HN19]), we add a new vertex to fix the parity, and perform local surgery on the
solution to get a new TSP solution and reduce to the even case. The challenge here is to show that
the losses incurred are small, and hence each edge is still even with constant probability.

Finally, what if there are proper tight sets S, i.e., where x(∂S) = 2? We use the cactus decomposition
of a graph (also used in [OSS11, KKO20a]) to sample spanning trees from pieces of G with no proper
min-cuts, and stitch these trees together. These pieces are formed by contracting sets of vertices in
G, and have a hierachical structure. Moreover, each such piece is either of the form above (a graph
with no proper min-cuts) for which we have already seen samplers, or else it is a double-edged cycle
(which is easily sampled from). Since each edge may now lie in many min-cuts, we no longer just
want an edge to have both endpoints be even. Instead, we use an idea from [KKO20a] that uses
the hierarchical structure on the pieces considered above. Every edge of the graph is “settled” at
exactly one of these pieces, and we ask for both of its endpoints to have even degree in the piece
at which it is settled. The ze value of such an edge may be lowered in the O-join without affecting
constraints corresponding to cuts in the piece at which it is settled.

Since cuts at other levels of the hierarchy may now be deficient because of the lower values of ze,
we may need to increase the zf values for other “lower” edges f to satisfy these deficient cuts. This
last part requires a charging argument, showing that each edge e has ze that is strictly smaller than
xe/2 in expectation. For our samplers, the naïve approach of distributing charge uniformly as in
[KKO20a] does not work, so we instead formulate this charging as a flow problem.

2 Notation and Preliminaries

Given a multigraph G = (V,E), and a set S ⊆ V , let ∂S denote the cut consisting of the edges
connecting S to V \ S; S and S̄ := V \ S are called shores of the cut. (For a singleton set {v}, we
write ∂v instead of ∂{v}.) A subset S ⊆ V is proper if 1 < |S| < |V | − 1; a cut ∂S is called proper
if the set S is a proper subset. A set S is tight if |∂S| equals the size of the minimum edge-cut in
G. Two sets S and S′ are crossing if S ∩ S′, S \ S′, S′ \ S, and V \ (S ∪ S′) are all non-empty.

Define the subtour elimination polytope KTSP (G) ⊆ R|E|:

x(∂v) = 2 ∀v ∈ V (LP-TSP)

x(∂S) ≥ 2 ∀ proper S
x ≥ 0.

Let x be half-integral and feasible for (LP-TSP). W.l.o.g. we can focus on solutions with xe = 1/2 for
each e ∈ E, doubling edges if necessary. The support graph G is then a 4-regular 4-edge-connected
(henceforth 4EC) multigraph.

The spanning tree polytope KspT (G) ⊆ R|E(G)| for a multigraph G is:

x(E(S)) ≤ |S| − 1 ∀S ⊆ V (G) (LP-spT)
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x(E(V (G))) = |V (G)| − 1

x ≥ 0.

where E(S) is the set of edges with both endpoints in S. This is the graphic matroid polytope, and
the convex hull of the spanning trees.

Definition 2.1 (r-Trees). Given a multigraph G and “root” vertex r ∈ V (G), an r-tree T is a
connected subgraph with n edges: the vertex r has degree exactly 2, and the subgraph restricted to
the other vertices V (G) \ {r} is a spanning tree on them. This is a matroid, though we do not use
this fact.

The (integral) perfect matching polytope KPM ⊆ R|E(G)| is defined as follows:

x(∂v) = 1 ∀v ∈ V (LP-PM)

x(∂S) ≥ 1 ∀S with |S| odd
x ≥ 0.

The (integral) O-join dominator polytope Kjoin(G,O) is defined as follows. Let O ⊆ V , |O| even.

z(∂(S)) ≥ 1 ∀S ⊆ V, |S ∩O| odd
z ≥ 0

Fact 2.2. For any solution x ∈ KTSP (G), it holds that x|E(V (G)\{r}) ∈ KspT (G[V (G) \ {r}]),
x/2 ∈ KPM (G) (when |V (G)| is even), and x/2 ∈ Kjoin(G,O) for O ⊆ V (G), |O| even.

Lemma 2.3. Consider a sub-partition P = {P1, P2, . . . , Pt} of the edge set of G. Let x be a
fractional solution to (LP-spT) that satisfies x(Pi) ≤ 1 for all i ∈ [t]. Then we can efficiently
sample from a probability distribution D over spanning trees which contain at most one edge from
each of the parts Pi, such that PrT←D[e ∈ T ] = xe.

Proof. This follows from the integrality of the matroid intersection polytope.

2.1 The Max-Entropy Distribution over Spanning Trees

Definition 2.4 (Strong Rayleigh Distributions, [BBL09]). Let µ be a probability distribution on
spanning trees. The generating polynomial for µ is p(z) =

∑
T∈T P(e ∈ T )

∏
e∈T ze. We say µ is

strongly Rayleigh (SR) if p is a real stable polynomial (i.e., p(z) 6= 0 if z lies in the upper half
plane).

A distribution µ over spanning trees is called λ-uniform or weighted uniform if there exist non-
negative weights λ : E → R such that P(T ) ∝

∏
e∈T λ(e). Borcea et al. [BBL09] showed that

λ-uniform spanning tree distributions are SR.

Theorem 2.5 ([OSS11]). There exists a λ-uniform distribution µ over spanning trees such that
given z in the spanning tree polytope of G = (V,E),∑

T3e
Pµ(T ) = ze.
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The max-entropy distribution, which is the distribution µ on spanning trees maximizing the entropy
of µ subject to preserving the marginals ze (that is, Pµ(e ∈ T ) = ze), is one such distribution.

Asadpour et al [AGM+17] showed that we can find weights λ̃ : E → R+ which approximately
respect the marginals given by a vector z in the spanning tree polytope in polynomial time.

Theorem 2.6 ([AGM+17]). Given z in the spanning tree polytope of G = (V,E) and some ε > 0,
values λ̃e for e ∈ E can be found such that, for all e ∈ E , the λ̃-uniform distribution µ satisfies∑

T3e
Pµ(T ) ≤ (1 + ε)ze.

The running time is polynomial in |V |, log 1/mine ze and log 1/ε.

Fact 2.7 ([BBL09]). Let µ be an SR distribution. Let F ⊂ E be a subset of edges. Then the
projection of µ onto F , i.e., µ|F (A) =

∑
S:S∩F=A µ(S), is also SR. Moreover, for any edge e ∈ E,

conditioning on e ∈ T or on e 6∈ T preserves the SR property.

Theorem 2.8 (Negative Correlation, [OSS11]). Let µ be an SR distribution on spanning trees.

1. Let S be a set of edges and XS = |S ∩ T |, where T ∼ µ. Then, XS ∼
∑|S|

i=1 Yi, where the Yi
are independent Bernoulli random variables with success probabilities pi and

∑
i pi = E[XS ] .

2. For any set of edges S and e 6∈ S,
(i) Eµ[XS ] ≤ Eµ[XS | Xe = 0] ≤ Eµ[XS ] + Pµ(e ∈ T ), and
(ii) Eµ[XS ]− 1 + Pµ(e ∈ T ) ≤ Eµ[XS | Xe = 1] ≤ Eµ[XS ].

Theorem 2.9 ([Hoe56], Corollary 2.1). Let g : {1, . . . ,m} → R and let 0 ≤ p ≤ m. Let
B1, . . . , Bm be Bernoulli random variables with probabilities p∗1, . . . , p

∗
m that maximize (or minimize)

E[g(B1 + · · ·+Bm)] over all possible success probabilities pi for Bi for which p1 + · · · + pm = p.
Then {p∗1, . . . , p∗m} ∈ {0, x, 1} for some x ∈ (0, 1).

3 Samplers

In this section, we describe the MaxEnt and MatInt samplers for graphs that contain no proper
min-cuts. We give bounds on certain correlations between edges that will be used in §5 to prove
that every edge is “even” with constant probability. The samplers for the case where the graph has
an odd number of vertices are more technical and are deferred to Appendix B.

Suppose the graph H = (V,E) is 4-regular and 4-edge-connected (4EC), contains at least four
vertices, and has no proper min-cuts.1 This means all proper cuts have six or more edges. We are
given a dedicated external vertex r ∈ V (H); the vertices I := V \ {r} that are not external are
called internal. (In future sections, this vertex r will be given by a cut hierarchy.) Call the edges
in ∂r external edges; all other edges are internal. An internal vertex is called a boundary vertex if
it is adjacent to r. An edge is said to be special if both of its endpoints are non-boundary vertices.

We show two ways to sample a spanning tree on H[I], the graph induced on the internal vertices,
being faithful to the marginals xe, i.e., PT (e ∈ T ) = xe for all e ∈ E(H) \ ∂r. Moreover, we want

1This implies that H is a simple graph: since parallel edges between u, v means that ∂({u, v}) is a proper min-cut;
we use this simplicity of the graph often in the arguments of this section.
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that for each internal edge, both its endpoints have even degree in T with constant probability. This
property will allow us to lower the cost of the O-join in §6. While both samplers will satisfy this
property, each will do better in certain cases. The MatInt sampler targets special edges; it allows
us to randomly “hand-pick” edges of this form and enforce that both of its endpoints have degree 2
in the tree. The MaxEnt sampler, on the other hand, relies on maximizing the randomness of the
spanning tree sampled (subject to being faithful to the marginals); negative correlation properties
allow us to obtain the evenness property, and in particular, better probabilities than MatInt for
non-special edges, and a worse probability for the special edges.

Our samplers will depend on the parity of |V |: when |V | is even, the MatInt sampler is the one
given by [HN19, Theorem 13], which we describe in §3.1. They left the case of odd |V | as an open
problem, and in Appendix B we extend their procedure to the odd case.

3.1 Samplers for Even |V (H)|

Since H is 4-regular and 4EC and |V (H)| is even, setting a value of 1/4 = xe/2 on each edge gives a
solution to the perfect matching polytope KPM (H) by Fact 2.2.

1. Sample a perfect matching M such that P(e ∈M) = 1/4 = xe/2 for all e ∈ E(H).

2. (Shift) Define a new fractional solution y (that depends on M): set ye = 1 for e ∈ M , and
ye = 1/3 otherwise. We have y ∈ KTSP (H) (and hence y|I ∈ KspT (H[I]) by Fact 2.2): indeed,
each vertex has y(∂v) = 1 + 3 · 1/3 = 2 because M is a perfect matching. Moreover, every
proper cut U in H has at least six edges, so y(∂U) ≥ |∂U | · 1/3 ≥ 2. Furthermore,

EM [ye] = 1/4 · 1 + 3/4 · 1/3 = 1/2 = xe. (1)

3. Sample a spanning tree faithful to the marginals y, using one of two samplers:

(a) MaxEnt Sampler: Sample from the max-entropy distribution on spanning trees with
marginals y.

(b) MatInt Sampler:

i. Color the edges of M using 7 colors such that no edge of H is adjacent to two
edges of M having the same color; e.g., by greedily 7-coloring the 6-regular graph
H/M . Let M ′ be one of these color classes picked uniformly at random. Hence,
P(e ∈M ′) = 1/28, and P(∂v ∩M ′ 6= ∅) = 1/7.

ii. For each edge e = uv ∈ M ′, let Luv and Ruv be the sets of edges incident at u and
v other than e. Note that |Luv| = |Ruv| = 3. Place partition matroid constraints
y(Luv) ≤ 1 and y(Ruv) ≤ 1 on each of these sets. Finally, restrict the partition
constraints to the internal edges of H; this means some of these constraints are no
longer tight for the solution y.

(c) Given the sub-matching M ′ ⊆ M , and the partition matroid M on the internal edges
defined using M ′, use Lemma 2.3 to sample a tree on H[V \ {r}] (i.e., on the internal
vertices and edges of H) with marginals ye, subject to this partition matroidM.

Conditioned on the matchingM , we have P(e ∈ T |M) = ye; now using (1), we have P(e ∈ T ) = xe
for all e ∈ (E \ ∂r).
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Figure 1: The matching M consists of all highlighted edges (both brown and green), one possible
choice of M ′ has edges {a, c} highlighted in brown, and the constraints are placed on the edges
adjacent to those in M ′ (marked in gray).

3.2 Correlation Properties of Samplers

Let T be a tree sampled using either the MatInt or the MaxEnt sampler. The following claims will
be used to prove the evenness property in §5. Each table gives lower bounds on the corresponding
probabilities for each sampler. The proofs for |V (H)| odd are in Appendix B.

Lemma 3.1. If f, g are internal edges incident to a vertex v, then

Probability Statement MatInt MaxEnt
P(|T ∩ {f, g}| = 2) 1/9 1/9

P(T ∩ {f, g} = {f}) 1/9 12/72

Lemma 3.2. If edges e, f, g, h incident to a vertex v are all internal, then

Probability Statement MatInt MaxEnt
P(|T ∩ {e, f, g, h}| = 2) 2/21 8/27

P(|T ∩ {e, f}| = |T ∩ {g, h}| = 1) 4/63 16/81

Lemma 3.3. For an internal edge e = uv:

(a) if both endpoints are non-boundary vertices, then

Probability Statement MatInt MaxEnt
P(|∂T (u)| = |∂T (v)| = 2) 1/36 128/6561

(b) if both u, v are boundary vertices, then

Probability Statement MatInt MaxEnt
P(exactly one of u, v has odd degree in T ) 1/9 5/18
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3.2.1 Correlation Properties: |V (H)| even

We now prove the correlation properties for the even case: the numerical bounds for the even case
are better than those claimed above (which will be dictated by the proofs of the odd case; see
Appendix B).

Proof of Lemma 3.1, Even Case. To prove P(|T ∩ {f, g}| = 2) ≥ 1/9, we need only knowledge of
the marginals and not the specific sampler. If one of f, g lies in M (which happens w.p. 1/2), then
its y-value equals 1 and it belongs to T w.p. 1, and the other edge is chosen w.p. 1/3, making the
unconditional probability 1/2 · 1/3 = 1/6 ≥ 1/9. Similarly, conditioned on f lying in M and hence
belonging to T , edge g is not chosen w.p. 1− ye = 2/3, so P(T ∩ {f, g} = {f}) ≥ 1/4 · 2/3 = 1/6 ≥ 1/9.

The MaxEnt claim: It remains to show that P(T ∩{f, g} = {f}) ≥ 12/72. Conditioned on f ∈M ,
we have g 6∈ T w.p. 2/3. Now condition on neither f nor g inM (happens w.p. 1/2). By Theorem 2.8,

1/3 ≤ E[f ∈ T | g 6∈ T ]

By Theorem 2.9, P(f ∈ T | g 6∈ T ) ≥ 1/3, so P(f ∈ T ∧ g 6∈ T ) ≥ 1/3 · 2/3 = 2/9. Putting all of this
together, we get

P(f ∈ T ∧ g 6∈ T ) ≥ 1/4 · 2/3 + 1/2 · 2/9 = 5/18 ≥ 12/72.

Proof of Lemma 3.2, Even Case. The MatInt claims: Each perfect matching M contains one of
these four edges in ∂v. Say that edge is e. If e also belongs to M ′ (w.p. 1/7), then T contains
exactly one of {f, g, h}. Since 1/7 ≥ 2/21, this gives us the first bound in Lemma 3.2. Moreover,
the probability of this edge in T belonging to the other pair (in this case, {g, h}) is 2/3. Hence
P(|T ∩ {e, f}| = 1 ∧ |T ∩ {g, h}| = 1) ≥ 2/21 > 4/63, giving us the other bound in Lemma 3.2 for the
MatInt sampler.

The MaxEnt claims: For the first bound in Lemma 3.2, we have that one of the four edges must
be in M and have y-value 1. W.l.o.g., call that edge e. The other three, f, g, h, will be 1/3-valued
edges. Since E[Xf,g,h] = 1, we may apply Theorem 2.9 and obtain a lower bound of

P(Xf,g,h = 1) ≥ 3 · 1/3 · (2/3)2 = 4/9 ≥ 8/27.

For the second bound in Lemma 3.2, call S1 = {e, f} and S2 = {g, h}. W.l.o.g., we once again label
e ∈M . Then, P(f 6∈ T ) = 2/3. So for S2, we condition on f 6∈ T . Then by Theorem 2.8,

2/3 ≤ E[XS2 | f 6∈ T ] ≤ 2/3 + 1/3 = 1.

Hence, we use Theorem 2.9 again and obtain P(XS2 = 1 | f 6∈ T ) ≥ 2 · 1/3 · 2/3 = 4/9. In total, we
obtain

P(|T ∩ {e, f}| = |T ∩ {g, h}| = 1) ≥ 2/3 · 4/9 = 8/27 ≥ 16/81.

Proof of Lemma 3.3a, Even Case. The MatInt claims: The event happens when e ∈ M ′, which
happens w.p. 1/28, which is at least 1/36.

The MaxEnt claims: Condition on e ∈ M . Let S1 = ∂(u) \ e and S2 = ∂(v) \ e. Denote
S1 = {a, b, c}. Lower bound P(|S1 ∩ T | = 1) using Theorem 2.9: E[|S1 ∩ T |] = 3 · 1/3 = 1, so
P(|S1 ∩ T | = 1) ≥ 3 · 1/3 · (2/3)2/3 = 4/9. Consider the distribution over the edges in S2 conditioned
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on a ∈ T ; this distribution is also SR. By Theorem 2.8, 1/3 ≤ E[XS2 | Xa = 1] ≤ 1. Applying
Theorem 2.8 twice more,

1/3 ≤ E[XS2 | Xa = 1, Xb,c = 0] ≤ 1 + 1/3 + 1/3 = 5/3.

By Theorem 2.9, P(XS2 = 1 | Xa = 1, Xb,c = 0) ≥ 3 · 1/9 · (8/9)2 = 64/243. Using symmetry, we obtain
P(XS2 = 1 ∧XS1 = 1 ∧ e ∈M) ≥ 64/243 · 4/9 · 1/4 ≥ 128/6561.

Proof of Lemma 3.3b, Even Case. The MatInt claims: For part (b), suppose e ∈ M (w.p. 1/4),
then each of u, v have two other internal edges, each with y-value 1/3. Let us say the good cases are
when exactly one of these four is chosen; exactly one of u, v has degree 2 and the other has degree
1 in these cases. We cannot choose zero of these four edges, because of the connectivity of T , so all
bad cases choose at least two of these four. Given the y-values of 1/3 on all four edges, the expected
number of these edges chosen are 4/3, so the the probability of a bad case at most 1/3. This means
that with probability at least 1/4 · (1 − 1/3) = 1/6, exactly one of u, v has odd degree in T . Since
1/6 ≥ 1/9, we have proven (b).

The MaxEnt claims: Observe that the edge e will always contribute either: 0 to both the degree
of u in T and the degree of v in T OR 1 to both of these degrees. Let a, b be the two internal edges
incident to u and c, d be the two edges incident to v.

1. Case 1: e ∈ M . This implies a, b, c, d are all 1/3-valued edges, so E[Xa,b,c,d] = 4/3. Note that
we must have Xa,b,c,d ≥ 1. Therefore, P(Xa,b,c,d = 1) ≥ 2/3.

2. Case 2: e 6∈M , exactly two of a, b, c, d are in M . W.l.o.g., say a, c ∈M , so a and c are in T .
E[Xb,d] = 2/3, which implies (by Theorem 2.9) that P(Xb,d = 1) ≥ 4/9.

3. Case 3: e 6∈M , exactly one of a, b, c, d is in M . W.l.o.g., say a ∈M , so we have E[Xb,c,d] = 1.
We condition on e 6∈ T , which happens w.p. 2/3. Since we sample a spanning tree on the
internal vertices, this means that at least one of c, d is in T . W.l.o.g., say c ∈ T . So in order
to bound the probability that the internal parities of u, v are different, equivalently we would
like to bound P(Xb,d = 1 | e 6∈ T ). Since 2/3 ≤ E[Xb,d | e 6∈ T ] ≤ 2/3 + 1/3, Theorem 2.9 implies
that P(Xb,d = 1 | e 6∈ T ) ≥ 4/9. So removing the conditioning on e 6∈ T gives a lower bound of
2/3 · 4/9 = 8/27.

Taking the minimum of the bounds 2/3, 4/9, and 8/27 in the three cases gives

P(exactly one of u, v has odd degree in T ) ≥ 8/27 ≥ 5/18.

4 Sampling Algorithm for General Solutions; and Cut Hierarchy

Now that we can sample a spanning tree from a graph with no proper min-cuts, we introduce the
algorithm to sample an r0-tree from a 4-regular, 4EC graph, perhaps with proper min-cuts.

4.1 The Algorithm

Assume that the graph G = (V,E) has a set of three special vertices {r0, u0, v0}, with each pair
r0, u0 and r0, v0 having a pair of edges between them. This is without loss of generality (used in line
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Algorithm 1 Sampling Algorithm for a Half-Integral Solution
1: let G be the support graph of a half-integral solution x.
2: let T = ∅.
3: while there exists a proper tight set of G that is not crossed by another proper tight set do
4: let S be a minimal such set (and choose S such that r0 6∈ S).
5: Define G′ = G/(V \ S).
6: if G′ is a double cycle then
7: Label S a cycle set.
8: sample a random edge from each set of partner edges in G[S]; add these edges to T .
9: else // G′ has no proper min-cuts (Claim 4.2).

10: Label S a degree set.
11: if G′ = K5 then
12: sample a random path on G[S]
13: else
14: W.p. λ, let µ be the MaxEnt distribution over E(S)
15: W.p. 1− λ, let µ be the MatInt distribution.
16: sample a spanning tree on G[S] from µ and add its edges to T .
17: let G = G/S

18: Due to r0, u0, v0, at this point G is a double cycle (Claim 4.1). Sample one edge between each
pair of adjacent vertices in G.

18). Define a double cycle to be a cycle graph in which each edge is replaced by a pair of parallel
edges, and call each such pair partner edges.

The sampling algorithm appears as Algorithm 1, and is very similar to that in [KKO20a]: they
refer to the sets in line 4 as critical sets. Since G is a 4-regular, 4EC graph at every stage of the
algorithm, if |S| = 2 or 3, then S must be a cycle set, whereas if |S| ≥ 4, then S may be a degree
or cycle set. The following two claims are proved in Appendix A.1, and show that Algorithm 1 is
well-defined.

Claim 4.1. The graph remaining at the end of the algorithm (line 18) is a double cycle.

Claim 4.2. In every iteration in Algorithm 1, G′ is either a double cycle or a graph with no proper
min-cuts.

We will prove the following theorem in §6. This in turn gives Theorem 1.1.

Theorem 4.3. Let T be the r0-tree chosen from Algorithm 1, and O be the set of odd degree vertices
in T . The expected cost of the minimum cost O-join for T is at most (1/2− ε) · c(x).

4.2 The Cut Hierarchy

Recall our ultimate goal is to create a low cost, feasible solution in the O-join polytope, where
O is the set of odd degree vertices in our sampled tree T . We start with the fractional solution
z = x/2 and then reduce the ze value of some edges. In the process, we may violate some constraints
corresponding to min-cuts. To fix these cuts, we need a complete description of the min-cuts of a
graph. This is achieved by the implicit hierarchy of critical sets that Algorithm 1 induces.

10



Figure 2: A portion of the cut hierarchy T and the local multigraph G〈〈S〉〉.

The hierarchy is given by a rooted tree T = (VT , ET ).2 The vertex set VT corresponds to all critical
sets found by the algorithm, along with a root node and leaf nodes representing the vertices in
VG \ {r0}. If S is a critical set, we label the node in VT with S, where we view S ⊆ VG and not
VG′ . The root node is labelled VG \ {r0} and each leaf nodes is labelled by the vertex in VG \ {r0}
corresponding to it. Now we define the edge set ET . A node S is a child of S′ if S ⊂ S′ and S′ is
the first superset of S contracted after S in the algorithm. In addition, the root node is a parent
of all nodes corresponding to critical sets that are not strictly contained in any other critical set
(i.e., the critical sets corresponding to the vertices in the graph G from line 17 when the while loop
terminates). Finally, each leaf node is a child of the smallest critical set that contains it (or if no
critical set contains it, is a child of the root node). Thus by construction, vertex sets labelling the
children of a node are a partition of the vertex set labelling that node. A node in VT is a cycle or
degree node if the corresponding critical set labelling it is a cycle or degree set, respectively. We say
the root node is a cycle node (since the graph G in line 18 is a double cycle), and accordingly call
VG \ {r0} a cycle set. (The leaf nodes are not labelled as degree or cycle nodes.)

Definition 4.4 (Local multigraph). Let S ⊆ VG be a set labelling a node in T . Define the local
multigraph G〈〈S〉〉 to be the following graph: take G and contract the subsets of VG labelling the
children of S in T down to single vertices and contract S̄ to a single vertex vS̄. Remove any self-
loops. The vertex vS̄ is called the external vertex; all other vertices are called internal vertices.
An internal vertex is called a boundary vertex if it is adjacent to the external vertex. The edges
in G〈〈S〉〉 \ vS̄ are called internal edges. Observe that G〈〈S〉〉 is precisely the graph G′ in line 5 of
Algorithm 1 when S is a critical set, and is a double cycle when S = VG \ {r0}.

Properties of T :

1. Let G be a 4-regular, 4EC graph with associated hierarchy T . Let S ⊆ VG be a set labelling
a node in T . If S is a degree node in T , then G〈〈S〉〉 has at least five vertices and no proper
min-cuts, and hence every proper cut in G〈〈S〉〉 has at least 6 edges. If S is a cycle node in T ,
then G〈〈S〉〉 is exactly a double cycle.

These follow from Claim 4.2 and the equivalence between G′ and G〈〈S〉〉.

2. Algorithm 1 can be restated as follows: For each non-leaf and non-root node S in T , sample
a random path on G〈〈S〉〉 \ vS̄ if it is a double cycle or K5, and otherwise use the MaxEnt or

2Since there are several graphs under consideration, the vertex set of G is called VG. Moreover, for clarity, we
refer to elements of VG as vertices, and elements of VT as nodes.
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MatInt samplers w.p. λ and 1− λ, respectively, on G〈〈S〉〉 \ vS̄ . Sample a uniformly random
cycle on the double cycle in line 18.

3. For a degree set S, the graph G〈〈S〉〉 having no proper min-cuts implies that it has no parallel
edges. In particular, no vertex has parallel edges to the external vertex in G〈〈S〉〉. Hence we
get the following:

Corollary 4.5. For a set S labeling a non-leaf node in T and any internal vertex v ∈ G〈〈S〉〉: if S
is a cycle set then |∂v ∩ ∂S| ∈ {0, 2}, and if S is a degree set then |∂v ∩ ∂S| ∈ {0, 1}.

Finally, we show how the hierarchy T allows us to characterize the min-cut structure of G. The
cactus representation of min-cuts ([FF09]) is a compact representation of the min-cuts of a graph,
and it can be constructed from the cut hierarchy; we defer the details to Appendix A.2. In turn we
obtain the following complete characterization of the min-cuts of G in terms of local multigraphs.

Claim 4.6. Any min-cut in G is either (a) ∂S for some node S in T , or (b) ∂X where X is
obtained as follows: for some cycle set S in T , X is the union of vertices corresponding to some
contiguous segment of the cycle G〈〈S〉〉.

5 Analysis Part I: The Even-at-Last Property

The proof of Theorem 4.3 proceeds in two parts:

(1) In this section, we show that each edge e is “even-at-last” with constant probability. (This is
an extension of the property that both of its endpoints have even degree.)

(2) Then we construct the fractional O-join. As always, z = x/2 is a feasible join, but we show
how to save a constant fraction of the LP value for an edge when it is even-at-last. This savings
causes other cuts to be deficient, so other edges raise their z values in response. However, a
charging argument shows that the z-value for an edge does decrease by a constant factor, in
expectation. This argument appears in §6.

To address part (1), let us define a notion of evenness for every edge in G. In the case where G
has no proper min-cuts, we called an edge even if both of its endpoints were even in T . Now, the
general definition of evenness will depend on where an edge belongs in the hierarchy T .

Definition 5.1. We say an edge e ∈ E(G) is settled at S if S is the (unique) set such that e is an
internal edge of G〈〈S〉〉; call S the last set of e. If S is a degree or cycle set, we call e a degree edge
or cycle edge, respectively.

Definition 5.2 (Even-at-Last). Let S be the last set of e, and T 〈〈S〉〉 be the restriction of T to
G〈〈S〉〉.

1. A degree edge e is called even-at-last (EAL) if both of its endpoints have even degree in T 〈〈S〉〉.

2. For a cycle edge e = uv, the graph G〈〈S〉〉 \ {vS̄} is a chain of vertices v`, . . . , u, v, . . . , vr,
with consecutive vertices connected by two parallel edges. Let C := {v`, . . . , u}, and C ′ :=

{v, . . . , vr} be the partition of this chain. The cuts ∂C and ∂C ′ are called the canonical cuts
for e. Cycle edge e is called even-at-last (EAL) if both canonical cuts are crossed an even
number of times by T 〈〈S〉〉; in other words, if there is exactly one edge in T 〈〈S〉〉 from each of
the two pairs of external partner edges leaving v` and vr.
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Informally, a degree edge is EAL in the general case if it is even in the tree at the level at which it
is settled. Also note that cycle edges settled at the same (cycle) set are either all EAL or none are
EAL.

Definition 5.3 (Special and Half-Special Edges). Let e be settled at a degree set S. We say that e
is special if both of its endpoints are non-boundary vertices in G〈〈S〉〉 and half-special if exactly one
of its endpoints is a boundary vertex in G〈〈S〉〉.

We now prove a key property used in §6 to reduce the z-values of edges in the fractional O-join.

Theorem 5.4 (The Even-at-Last Property). The table below gives lower bounds on the probability
that special, half-special, and all other types of degree edges are EAL in each of the two samplers.

special half-special other degree edges
MatInt 1/36 1/21 1/18
MaxEnt 128/6561 4/27 1/12

Moreover, a cycle edge is EAL w.p. at least λ · 1/12 + (1− λ) · 1/18.

Proof. Let e be settled at S. Let TS be the spanning tree sampled on the internal vertices of G〈〈S〉〉
(in the notation of Algorithm 1, the spanning tree sampled on G[S]).

First, assume that S is a degree set:

1. If none of the endpoints of e are boundary vertices in G〈〈S〉〉 (i.e., e is special), then it is EAL
exactly when both its endpoints have even degree in TS . By Lemma 3.3(a), this happens w.p.
1/36 for the MatInt sampler and w.p. 128/6561 for the MaxEnt sampler.

2. Now suppose that e is half-special, so that exactly one of the endpoints of e = uv (say u) is
a boundary vertex in G〈〈S〉〉, with edge f incident to u leaving S. By Lemma 3.2, the other
endpoint v is even in TS w.p. 2/21 for the MatInt sampler and 8/27 for the MaxEnt sampler.
Moreover, the edge f is chosen at a higher level than S and is therefore independent of TS ,
and hence can make the degree of u even w.p. 1/2. Thus e is EAL w.p. 1/21 for the MatInt
sampler and 4/27 for the MaxEnt sampler.

3. Suppose both endpoints of e are boundary vertices of S, with edges f, g leaving S. Let q= be
the probability that the degrees of vertices u, v in the tree TS chosen within S have the same
parity, and q 6= = 1− q=. Now, when S is contracted and we choose a r0-tree T ′ on the graph
G/S consistent with the marginals, let p= be the probability that either both or neither of
f, g are chosen in T ′, and p 6= = 1− p=. Hence

Pr[e EAL] = qoop11 + qoep10 + qeop01 + qeep00 = 1/2(p=q= + p6=q 6=), (2)

where qoo, qoe, qeo and qee correspond to different parity combinations of u and v in TS and
p00, p01, p10, p11 correspond to whether f and g are chosen in T ′. The second inequality follows
from Claim D.1 applied to the random r0-tree T ′.

(a) If f, g are settled at different levels, then they are independent. This gives p= = p 6= = 1/2,
and hence Pr[e EAL] = 1/4 regardless of the sampler.
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(b) If f, g have the same last set which is a degree set, then by Lemma 3.1 each of the quanti-
ties p11, p01, p10 ≥ 1/9. By Claim D.1, p00 ≥ 1/9 as well. Hence, (2) gives Pr[e EAL] ≥ 1/9.

(c) If f, g have the same last set which is a cycle set, then first consider the case where
f, g are partners, in which case p6= = 1. Now (2) implies that Pr[e EAL] = q6=/2, which
by Lemma 3.3(b) is ≥ 1/2 · 1/9 = 1/18 in the MatInt sampler, and 1/2 · 5/18 = 5/36 in the
MaxEnt sampler.
If f, g are not partners, then they are chosen independently, in which case again p= =

p 6= = 1/2, and hence Pr[e EAL] = 1/4.

Next, let S be a cycle set. Let e = uv be an edge inside the cycle, and let {a, b}, {c, d} be the four
edges crossing ∂S. Let vS be the vertex obtained by contracting down S (whose incident edges are
then {a, b, c, d}). Now in order for e to be EAL, one each of {a, b} and {c, d} must belong to T ; call
this event E . We again consider cases based on where these edges are settled. Let node P be the
parent of node S, and let vS be the vertex in G〈〈P 〉〉 obtained from contracting S.

1. If all four edges are settled at P , and P is a degree set, then Lemma 3.2 says that for
the MatInt sampler, we have Pr[E ] ≥ 4/63. In contrast, the MaxEnt sampler gives us
Pr[E ] ≥ 16/81.

2. If all four edges are settled at P , and P is a cycle set, then no matter how these four edges
are distributed, Pr[E ] ≥ 1

2 .

3. If three of them {a, b, c} are settled at P , and the fourth (say d) at a higher level, then since
P has a vertex vS with a single edge leaving it, P must be a degree set. Now exactly one
of {a, b} is chosen in T w.p. at least 1/9 in the MatInt sampler and 12/72 in the MaxEnt
sampler, by Lemma 3.1. And since d is independently picked at a different level, exactly one
of {c, d} is chosen in T w.p. 1/2, giving an overall probability of 1/18 in the MatInt sampler
and 1/12 in the MaxEnt sampler.

4. Finally, if only two edges are settled at P , and two others go to higher levels, then P is a cycle
set by Corollary 4.5. In this case, exactly one of the two edges that are settled in P is chosen.
Now we want a specific one of the edges going to a higher level to be chosen into T (and the
other to not be chosen), which in the worst case happens w.p. at least 1/9, due to Lemma 3.1.

6 Analysis Part II: The O-Join and Charging

To prove Theorem 4.3 and thereby finish the proof, we construct an O-join for the random tree T ,
and bound its expected cost via a charging argument. The structure here is similar to [KKO20a];
however, we use a flow-based argument to perform the charging instead of the naive one, and also
use our stronger notion of evenness (EAL).

Let O denote the (random set of) odd-degree vertices in T . The dominant of the O-join polytope
Kjoin(G,O) is given by

x(∂S) ≥ 1 ∀S ⊆ V, |S ∩O| odd.
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This polytope is integral, so it suffices to exhibit a fractional O-join solution z ∈ Kjoin(G,O),
with low expected cost. (The expectation is taken over O.) Note that |S ∩ O| odd if and only if
|∂S ∩ T | odd.

Now Theorem 4.3 follows from the claim below, which we will prove in this section.

Lemma 6.1. There is an ε > 0 such that if the r0-tree T is sampled using the procedure described
in Algorithm 1, and O is the set of odd-degree vertices in T , then there is a fractional solution
z ∈ Kjoin(G,O) where E[ze] ≤ (1/2− ε)xe for all edges e ∈ E(G).

6.1 Construction of the Fractional O-join

The construction of the fractional O-join z goes as follows: We start with the solution z = x/2.
Notice that z(∂S) ≥ 1 is a tight constraint in this initial solution when S is a min-cut. Now we
describe how to reduce the ze values.

Define
pMI
sp := 1/36, pMI

hs := 1/21, pMI := 1/18, pME
sp := 128/6561, pME := 1/12

psp := λpME
sp + (1− λ)pMI

sp , phs := λpME + (1− λ)pMI
hs , p := λpME + (1− λ)pMI .

Let psp(e), phs(e), and pd(e) denote the probabilities that e is EAL if e is a special degree edge,
half-special degree edge, or other degree edge, respectively. Let pc(e) denote the probability that a
cycle edge e is EAL. By Theorem 5.4,

psp(e) ≥ psp, phs(e) ≥ phs, pd(e) ≥ p, pc(e) ≥ p.

(We do not distinguish the half-special case in the MaxEnt sampler, as the half-special bound of
4/27 in Theorem 5.4 is greater than pME .) Call an edge e a K5 degree edge if e is settled at a degree
set S where G〈〈S〉〉 is a K5. By the inequalities above, the random variables below are well-defined.

1. Define a Bernoulli random variable for each edge e:

(a) If e is a special degree edge, set Be ∼ Ber(psp/psp(e)).

(b) If e is a half-special degree edge, set Be ∼ Ber(phs/phs(e)).

(c) If e is any other degree edge, set Be ∼ Ber(p/pd(e)).

(d) If e is a cycle edge, set Be ∼ Ber(p/pc(e)). Further, if e and f are partners, perfectly
correlate their coin flips, i.e., set Be = Bf .

2. If e is EAL and Be = 1, reduce ze by

(a) τ if e is a non-K5 degree edge.

(b) γ if e is a K5 degree edge.

(c) β if e is a cycle edge.

3. We enforce that τ ≤ γ ≤ β ≤ 1/12, β ≥ 2τ , and β ≥ 2γ. We will optimize τ, γ, and β via a
linear program later.

The purpose of the Bernoulli coin flips is to flatten the probability that an edge is reduced down to
the lower bound on the probability that it is EAL from Theorem 5.4:
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Observation 6.2. If e is a special, half-special, other degree, or cycle edge, then ze is reduced with
probability exactly psp, phs, p, or p, respectively.

This reduction scheme may make z infeasible for the O-join polytope. We now discuss how to
maintain feasiblity.

6.2 Maintaining Feasibility of the Fractional O-join via Charging

Suppose f is EAL and that we reduce edge zf (per its coin flip Bf ). Say f is settled at S. If S is a
degree set, then the only min-cuts of G〈〈S〉〉 are the degree cuts. So the only min-cuts that the edge
f is part of in G〈〈S〉〉 are the degree cuts of its endpoints, call them U, V , in G〈〈S〉〉 (U and V are
vertices in G〈〈S〉〉 representing sets U and V in G). But since |∂U ∩ T | and |∂V ∩ T | are both even
by definition of EAL, we need not worry that reducing zf causes z(∂U) ≥ 1 and z(∂V ) ≥ 1 to be
violated. Likewise, if S is a cycle set, then by definition of EAL all min-cuts S′ in G〈〈S〉〉 containing
e have |∂S′ ∩ T | even, so again we need not worry.

Since f is only an internal edge for its last set S, the only cuts S′ for which the constraint z(∂S′) ≥ 1,
|∂S′ ∩ T | odd, may be violated as a result of reducing zf are cuts represented in lower levels of the
hierarchy. Specifically, lef f be an external edge for someG〈〈X〉〉 (meaningX is lower in the hierarchy
T than S) and S′ be a min-cut of G〈〈X〉〉 (either a degree cut or a canonical cut). By Claim 4.6, cuts
of the form S′ are the only cuts that may be deficient as a result of reducing zf . Call the internal
edges of ∂S′ lower edges. When zf is reduced and |∂S′ ∩ T | is odd, we must distribute an increase
(charge) over the lower edges totalling the amount by which zf is reduced, so that z(∂S′) = 1. We
say these lower edges receive a charge from f . How the charge is distributed will depend on whether
the lower edges are degree edges or cycle edges (see §6.3 and §6.4 below).

We claim that this procedure maintains feasibility of the O-join solution z. Indeed, by Claim 4.6,
no constraint corresponding to a min-cut in the O-join polytope is violated. Further, by capping
the amount an edge can be reduced at 1/4− 1/6 = 1/12, we will ensure that none of the constraints
are violated, since every other cut has at least 6 edges.

To prove Lemma 6.1, we will lower bound the expected decrease to ze, using different strategies for
charging e when e is a cycle edge versus a degree edge. In particular, when e is a cycle edge, we
distribute charge from an external edge evenly between e and its partner. When e is a degree edge,
charge will be distributed according to a maximum-flow solution.

6.3 Charging of Cycle Edges

We now analyze the expected net decrease for each edge, starting with cycle edges. The expected
decrease for a cycle edge starts off as exactly p·β by Observation 6.2. However, we need to control the
amount of charge the edge receives from edges settled at higher levels. Note that in the calculations,
we assume the worst-case scenario that such edges settled at higher levels are reduced w.p. exactly
p. The special/half-special edges are reduced with lower probability, which is only better for us
because the expected amount of charge will be lower in these cases. Note also that throughout the
calculations we may assume that an edge settled at a higher level is a cycle edge. This will follow
from the assumption that β ≥ 2τ, 2γ.

Consider a cycle edge e that is settled at set S. Let its partner on the cycle be e′, and let the
four external edges for S be {a, b} (leaving the vertex u) and {c, d} (leaving vertex v). When S is
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contracted, vertex vS has these four edges {a, b, c, d} incident to it. Let P be S’s parent node in
T . Moreover, let C and C ′ be the canonical cuts, as in the figure below. We consider the following
cases as in [KKO20a].

u

ve

S

a
b P

V

C

C ′

d

c

Figure 3: Case (i)
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S

a db

c
P

V

C

C ′

Figure 4: Case (ii)

(i) Two of the four edges incident to vS also leave P—and therefore P is a cycle set by Corol-
lary 4.5. Of the two edges leaving P , one must be from {a, b} and one from {c, d}. To see
this, say both c and d (leaving node u) both did not leave P . Consider the set of vertices S′

which c and d lead to. S′ ∪ u is a proper min cut which crosses S; however, this contradicts
the fact that S is a critical set (namely S is not supposed to be crossed by another proper
min cut).

Suppose {a, d} are the external edges for P , and {b, c} are internal (and hence partners in this
cycle set).

Now, consider the event that b is reduced; the important observation is that c is also reduced,
because both are EAL at the same time and their coins are perfectly correlated. Not only
that, the event that b is reduced implies that |δ(S) ∩ T | is even. This means that both cuts
C,C ′ are deficient by the same amount and at the same time, due to this event of reducing
b, c, and raising e helps both of them. This means the net expected charge to e is at most

p
β

2

(
Pr[C odd | b reduced] + Pr[C odd | a reduced] + Pr[C ′ odd | d reduced]

)
.

(Note that there is no term for c here because of the discussion above; moreover, the β/2 term
reflects that the charge of β is split between e, e′.)

Since a and b are settled at different levels, the parity of cut C is unbiased, even either
conditioned on choices within P , or else conditioned on choices outside P . The same holds
for the parity of C ′, so each of the probabilities above is at most 1/2, making the net expected
decrease

p(β − β/2 · 3 · 1/2) = pβ/4 . (3)

(ii) Only one of the edges incident to vS , say edge a, is external for P . By Corollary 4.5, P is a
degree set, and in the worst case, a K5 degree set since γ ≥ τ . The charge is maximized when
a is a cycle edge, in which case the expected charge to e is at most

p
(
β/2 Pr[C odd | a reduced] + γ/2 Pr[C odd | b reduced] + 2 · γ/2

)
.
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Since a and b are settled at different levels, the parity of the cut C is unbiased, either condition-
ing on the process inside P or else outside P , which makes the above expression p(β/4 + 5γ/4),
and the net expected decrease to be

p(β − β/4− 5γ/4) = p(3β/4− 5γ/4) . (4)
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Figure 5: Case (iii)
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Figure 6: Case (iv)

(iii) All four of the edges are internal to P , which is a cycle set. The partners must now be one
edge from each of the two pairs {a, b} and {c, d}—let’s say {a, d} and {b, c} are partners (using
an argument similar to that in (i)). The cut C is odd in S if and only if C ′ is odd; indeed, C
is odd means we choose both or neither of {a, b}, and since {c, d} are the partners of {a, b},
we choose both or neither of them. Hence, increasing e fixes both cuts at the same time,
similar to the argument in (i), so we focus only on the increase due to cut C. Since a and b
belong to different pairs and are chosen independently into the tree T , Pr[C odd] = 1/2. This
means both a and b can give a expected charge of p(β/2) · 1/2 to e. The net expected decrease
is p(β − 2 · β/2 · 1/2) = pβ/2, which is no worse than (3).

(iv) All four of the edges are internal to P , and P is a degree set. Note that G〈〈P 〉〉 cannot be a
K5 since the vertex vS has four internal edges incident to it. We simply bound the charge due
to each edge by τ/2, and hence get net expected decrease of

p(β − 4 · τ/2) = p(β − 2τ) , (5)

6.4 Charging Degree Edges: Max-Flow Formulation

So far we have shown that no cycle edge will receive too much charge. We did this by considering
four different configurations for the external edges of S, and distributing charge evenly between
a cycle edge and its partner. Before showing that no degree edge receives too much charge, we
will define a charging scheme for degree edges that achieves better bounds than distributing charge
uniformly.

Let G〈〈S〉〉 be the local multigraph for some degree set S, so G〈〈S〉〉 is 4-regular and has no proper
min-cuts. For an external edge e, let ue denote the internal boundary vertex to which e is incident.
We create a bipartite graph H = (B,F,E) from G〈〈S〉〉 as follows. The vertices of B are labelled
with the external edges of G〈〈S〉〉. The vertices of F are labelled with the internal edges of G〈〈S〉〉.
So |B| = 4. Place an edge between e ∈ B and f ∈ F in the edge set E if e and f share ue as an
endpoint. Set be = 1 for all e ∈ B. We call H the bipartization of G〈〈S〉〉.
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The following lemma follows from the Max-Flow Min-Cut theorem:

Lemma 6.3. Given a bipartite graph G = (B,F,E) with positive integers bu for each u ∈ B, and
c ≥ 0, there exists x : B × F → R+ satisfying∑

f∈∂u x(u, f) = bu for all u ∈ B, (6)∑
u∈∂f x(u, f) ≤ c for all f ∈ F (7)

if and only if
|N(R)| ≥ b(R)

c for all R ⊆ B (8)

where b(R) =
∑

u∈R bu.

Lemma 6.3 now gives the following result, which follows from straightforward casework.

Lemma 6.4. Let H = (B,F,E) be the bipartization of G〈〈S〉〉, as described above. If G〈〈S〉〉 is not
a K5, then the smallest c satisfying (8) is given by c = 1/2. If G〈〈S〉〉 is a K5, then the smallest c
satisfying (8) is given by c = 2/3.

The fact that we may achieve a value of c = 1/2 instead of c = 2/3 as long as G〈〈S〉〉 is not a K5

motivates why we utilize a different sampler forK5. In fact, c = 2/3 onK5 is achieved by distributing
uniform charge over internal edges.

6.5 Charging of non-K5 Degree Edges

We now analyze the expected net decrease for degree edges. By Observation 6.2, the expected
decrease for a non-special degree edge starts off as at least phs · τ or phs · γ, since phs ≤ p. We will
analyze the charge on non-K5 degree and K5 degree edges separately, as a different sampler is used
when G〈〈S〉〉 = K5. We begin with the former.

6.5.1 Charging of non-special edges

1. Case 1: All external edges are non-K5 degree edges. Let x : B × F → R+ be any
function satisfying the constraints in Lemma 6.3 for c = 1/2 (by Lemma 6.4 such an x exists,
and can be found efficiently using max-flow min-cut). The charging scheme is as follows: for
each external edge e and boundary vertex ue, if the cut δ(u) is odd and the edge e is reduced,
charge each internal edge f incident to ue by τ · x(e, f). The constraint (6) ensures that
the charge neutralizes the reduction of e by τ . For any internal edge f , let δ(f) denote the
external edges with which f shares an endpoint, i.e., the neighbors of f in the bipartization
H = (B,F,E). We have

E[charge to f ] =
∑
e∈δ(f)

τ · x(e, f) · P(ue odd ∧ e reduced)

≤ τ · c · P(ue odd | e reduced) · P(e reduced) (9)

Using the naive bound that P(ue odd | e reduced) ≤ 1, we obtain that the the expected

decrease is at least phsτ −
τ

2
· p.
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2. Case 2: All external edges are K5 degree edges. An analogous argument shows that

the expected decrease is at least phsτ −
γ

2
· p.

3. Case 3: All external edges are cycle edges. We have that P(ue odd | e reduced) = 1
2 in

this case, since f ∈ T is independent of whether f is reduced since f has a partner edge. So

the expected decrease is at least phsτ −
β

2
· 1

2
· p.

4. Case 4: The external edges are a combination of non-K5 degree edges, K5 degree
edges, and cycle edges. In this case, we use an averaging argument to show that the
expected charge is no worse than p ·max{ τ2 ,

γ
2 ,

β
4 }. See Appendix C for details.

6.5.2 Charging of special edges

These edges are never charged, as their endpoints are both non-boundary. Also, these cannot be
K5 degree edges by definition. So the expected decrease is equal to the expected reduction, which

is at least pspτ =
τ

36
.

6.6 Charging of K5 Degree Edges

K5 degree edges have an initial decrease of exactly pγ, as they are neither special nor half-special.
We will use the following lemma, whose proof is straightforward.

Lemma 6.5. Let G〈〈S〉〉 = K5. Let f be an external edge and u be the boundary vertex that is one
of its endpoints. Then

Pr(u odd | f reduced) =
1

2
.

We will factor in this probability into the charging of K5 degree edges below.

1. All external edges are non-K5 degree edges. Since the edge being charged is a K5

edge, Lemma 6.4 gives us a worst-case expected charge of p · 2τ
3 . However, factoring in

Pr(u odd | f reduced) = 1
2 for every external edge f , we have a worst-case expected charge

of p · 2τ
3 ·

1
2 , which by (9) gives us an expected net decrease of at least

pγ − pτ
3
.

2. All external edges are K5 degree edges. Using similar reasoning as above, we have a
worst-case expected charge of p · 2γ

3 ·
1
2 , which gives us an expected net decrease of at least

pγ − pγ
3
.

3. All external edges are cycle edges. Using the same reasoning as above, we get an
expected net decrease of at least

pγ − pβ
3
.

20



4. The external edges are a combination of non-K5 degree edges, K5 degree edges,
and cycle edges. An averaging argument as in the previous section shows that the three
cases above are the only possible worst cases.

6.7 Setting the Parameters

For fixed λ, finding the optimal values of β, γ, τ can be done with a linear program. In particular,
we maximize the minimum expected decrease δ, which is the minimum of the boxed expressions in
§6.3 and §6.4. The additional constraints are that τ ≤ γ ≤ β, β ≤ 1/12, β ≥ 2τ , and β ≥ 2γ. We
then optimize over λ. This gives λ = 0.4715, β = 1/12, γ = 0.0401, τ = 0.0355, and δ = 0.0008475.
We have ε = 2δ = 0.001695, proving Theorem 4.3.
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A Details of the Cut Hierarchy Construction

A.1 The Algorithm

Fact A.1 (Lemma 2 in [FF09]). Let k ≥ 1 be an integer, H = (W,F ) be a 4-regular, 4EC graph in
which there is a proper min-cut, and every proper min-cut is crossed by some proper min-cut. Then
H is a double cycle.

Proof of Claim 4.1. Let Gf refer to the graph in the claim, and G refer to the input to the algorithm.

Case 1: There is no proper tight set in Gf . Let u be the vertex in Gf such that the two edges that
between r0 and u0 in G are between r0 and u in Gf . Then either Gf is a graph on 2 vertices with
four parallel edges (i.e., a double cycle on 2 vertices), or {r0, u} is a tight set in Gf . In the latter
case, since {r0, u} is not proper, Gf is a double cycle with 3 vertices. Case 2: There is a proper
tight set in Gf , and every proper tight set is crossed by another proper tight set. By Fact A.1, Gf
is a double cycle.

Proof of Claim 4.2. Let vS̄ denote the vertex corresponding to the contraction of V \ S in G′.
Suppose G′ has a proper min-cut. Let S′ be the shore of this min-cut not containing vS̄ . Then
S′ ⊂ S. But by minimality of S, S′ is crossed by another proper tight set. Since this must be true
for every proper min-cut S′ in G′, by Fact A.1, G′ must be a double cycle.

A.2 Cactus Representation of Min-Cuts

Claim 4.6. Any min-cut in G is either (a) ∂S for some node S in T , or (b) ∂X where X is
obtained as follows: for some cycle set S in T , X is the union of vertices corresponding to some
contiguous segment of the cycle G〈〈S〉〉.

To prove the above claim, we recall the cactus representation of min-cuts (see, for e.g., [FF09], for
a full exposition). The key idea to prove Claim 4.6 is that Algorithm 1 implicitly constructs the
cactus representation of min-cuts.

Definition A.2. A cactus is a loopless, 2EC graph in which each edge belongs to exactly one cycle.

Note that this includes cycles on two vertices, containing exactly two parallel edges. The min-cuts
of a cactus are obtained by cutting any two edges belonging to the same cycle.

Theorem A.3 (Cactus Representation of Min-Cuts, [FF09], Theorem 7). Let G be a 4-regular,
4EC graph. There is a cactus C = (U,F ) and a mapping φ : V → U so that if U1 and Ū1 are two
shores of a min-cut in C, then φ−1(U1) and φ−1(Ū1) are two shores of a min-cut in G. Further,
every min-cut in G can be obtained this way for some U1.

Proof sketch of Claim 4.6. Construct a cactus C = (U,F ) as follows. Create a vertex uS in U for
every node S in the hierarchy. If S is a cycle node, make a cycle between uS and the vertices uT
for all nodes T which are children of S. If S is a degree node, include two parallel edges from uS
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Figure 7: Construction of the cactus C from the hierarchy T in the proof of Claim 4.6.

to each uT for which T is a child of S. See Figure 7. All of the terminal vertices in U , except for
uVG\r0 , correspond to all of the leaf nodes in T , which in turn correspond to all of the vertices in
VG \{r0}. We identify the vertex uVG\r0 in U with the vertex r0 in VG. In other words, the mapping
φ in Theorem A.3 can be defined as φ(v) = uv for all v ∈ VG \ r0, and φ(r0) = uVG\r0 .

Since the construction of the cactus in the proof of Theorem A.3 given in [FF09] and the construction
of C above are equivalent, φ satisfies the conclusions of Theorem A.3. Since the min-cuts of a cactus
are obtained by cutting any two edges belonging to the same cycle, Claim 4.6 follows.

B Samplers for Odd |V (H)|
The main change from the case where V (H) is even is that x = 1/2 · 1 is not a point in the perfect
matching polytope: in fact, H has no perfect matchings because it has an odd number of vertices.

To fix this, split the external vertex r into two external vertices r1, r2, each incident to some two of
the edges in ∂r, and then add two parallel edges between r1, r2. Call this multigraph Ĥ. Again, all
vertices and edges between vertices in V \ {r1, r2} are called internal, vertices in {r1, r2} and edges
in ∂r1 ∪ ∂r2 are external, and internal vertices adjacent to external vertices are boundary vertices.

Fact B.1. The graph Ĥ is also 4-regular and 4EC; it has an even number of vertices. However,
it contains a single proper min-cut separating the internal vertices I := V \ {r1, r2} from the two
external vertices. Any perfect matching M of Ĥ contains either zero or two edges in ∂I.

The sampling procedure for trees on H[I] = Ĥ[I] is conceptually similar to the one above, but with
some crucial changes because of the proper min-cut.

1. Since Ĥ is 4-regular and 4EC, and |V (Ĥ)| is even, setting 1/4 = xe/2 on each edge gives a
solution KPM (Ĥ) in the perfect matching polytope. Sample a perfect matching M such that
for each edge e, we have Pr[e ∈M ] = 1/4. Again define the fractional solution

ye = 1/3 + 1(e∈M) · 2/3.

This ensures E[y] = x, but y|I may no longer be in the spanning tree polytope KspT (Ĥ[I]).
Indeed, y(∂I) ∈ {4/3, 8/3} depending on whether M has zero or two edges crossing the cut, so
y(E(I)) ∈ {|I| − 2/3, |I| − 4/3} and not |I| − 1 as required. Hence we cannot directly sample a
spanning tree on Ĥ[I], as we did above. We fix this in step 3 below.
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2. Pick a random induced sub-matching M ′ of M , and define partition matroid constraints on
the sets Luv, Ruv incident on the endpoints of edges uv in this sub-matching M ′ exactly as in
steps 3(b)i and 3(b)ii of the sampling procedure for the even-size case above.

3. We now address that y|I is not in the spanning tree polytope by locally changing the fractional
solution as follows:

(a) (Local Decrease) If M ∩ ∂I = ∅, then y(E(I)) = |I| − 2/3 and y(∂I) = 4/3. Hence y|I
is not a solution to KspT (Ĥ[I]). To fix this, pick a random edge e ∈ ∂I, pick a random
edge f ∈ E(I) adjacent to e, and reduce the y-value of f by 1/3 to get solution ŷ. (Note
this may reduce either a 1-edge to 2/3, or a 1/3-edge to zero.)

(b) (Local Increase) If |M ∩ ∂I| = 2, then y(E(I)) = |I| − 4/3, and hence y|I 6∈ KspT (Ĥ[I]).
To fix this, pick a random edge e from the two matching edges in M ∩∂I, pick a random
edge f ∈ E(I) adjacent to e, and increase the y-value of f by 1/3 to get solution ŷ. (Note
this increases one 1/3 edge to 2/3.)
Suppose this edge f is contained in some matroid constraint, say on set P of edges:

i. If all three edges f, g, h of this constraint are in E(I), pick a random one of {g, h},
say h, and redefine P ← {f, g}. Note that ŷf + ŷg = 1 and the constraint is tight.

ii. If f belongs to a constraint P = {f, g}, that used to be {f, g, h} but the third
edge h was in ∂I and hence was dropped, retain the constraint P = {f, g}. Again
ŷf + ŷg = 1.

The following claims show that ŷ|I has the right marginals, and that it belongs to the spanning tree
polytope. So now we can sample a spanning tree T from it (subject to the partition matroidM).
Then we show, in §B.2, that this tree also satisfies negative correlation properties.

B.1 Feasibility of the Solution ŷ

Claim B.2 (Marginal Preserving). E[ŷe] = xe = 1/2 for all e ∈ E(I).

Proof. Since E[ye] = 1/2 for all e, we focus on the expected difference E[ŷe − ye]. We only need
to worry about internal edges incident to boundary vertices, since those are the only edges whose
y-values are changed.

• Let e be an edge incident only on one boundary vertex v, that has a boundary edge f . Now
consider choosing M randomly. When M ∩ ∂I = ∅, which happens w.p. 1/2, e is decreased
w.p. 1/12, since the total internal degree of boundary vertices is 12. On the other hand, when
f ∈M (w.p. 1/4, and this implies the event |M ∩ ∂I| = 2), e is increased with probability 1/6,
since the total internal degree of the boundary vertices incident to internal endpoints of M is
6.

• Let e = uv such that both u, v are boundary vertices with edges f, g ∈ ∂I respectively. Now,
when M ∩ ∂I = ∅, which happens w.p. 1/2, e is decreased w.p. 1/6 (since e is counted from
both ends). When f ∈ M (w.p. 1/4, and this implies the event |M ∩ ∂I| = 2), e is increased
with probability 1/6 “through f ”. And same happens for g. Therefore, regardless of how f and
g are correlated, e is increased with probability 2 · 1/4 · 1/6 = 1/12.

In both cases, the expected difference is zero, giving the proof.
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Claim B.3 (Feasible). The solutions ŷ|I belong to the spanning tree polytope.

Proof. The equality constraint
∑

e∈I ŷe = |I| − 1 is satisfied by design, so we need to check that∑
e∈E[S′] ŷe ≤ |S′|−1 for all proper subsets S′ ( I. Recall that ∂HS′ has at least six edges, including

the edges leaving I. Let a := |EH(S′, I \ S′)| and b := |EH(S′, V \ I)| so that a+ b ≥ 6.

Observe that∑
e∈E[S′]

ye =
1

2

(∑
v∈S′

∑
e∈∂Hv

ye −
∑

e∈∂HS′

ye

)
≤ 1

2

(
2|S′| − (a+ b)/3

)
≤ |S′| − 1. (10)

• In a local decrease, since we decrease y to get ŷ, the constraint is still satisfied.

• In a local increase, since we increase only one edge by 1/3, we only need to consider the case
when (10) is tight, which implies that every edge going out of S′ has value exactly 1/3. In
particular, every vertex in S′ is matched inside S′. By construction, the edge whose y-value
we increase must have a neighboring edge matched by M outside I. This M -edge cannot be
incident to S′, so we are safe.

B.2 Correlation Properties: |V (H)| odd

To prove the correlation properties in the odd case, we observe that each of the proofs from §3.2.1
focuses on a small set of edges. Hence, if we can show that with constant probability the frac-
tional solution for these edges is unchanged, the proofs go through with small changes (and weaker
constants). A more careful case-analysis is likely to give better constants.

We will often make arguments that condition on certain sets of edges not being perturbed by a
local increase or decrease. The following lemma gives lower bounds on the probabilities that these
desired events occur.

Lemma B.4. Let f, g be internal edges incident to vertex v. Then, if f or g lies in M , yf and
yg remain untouched by a local increase or decrease w.p. at least 2/3. Similarly, if v is an internal
vertex with internal edges e, f, g, h, the four edges remain untouched with probability at least 2/3

Proof. If one of f, g lies in M (which happens w.p. 1/2), then its y value equals 1 and it belongs to
T w.p. 1. If there is a local increase, then the increase can only affect the edge not in M (through
its other endpoint), so the y-value remains unchanged w.p. 2/3. If there is a local decrease, both
edges f, g may have both endpoints that are boundary vertices in worst case, giving a 4/12 chance of
being decreased, and hence a 8/12 = 2/3 chance of y-values of these two edges remaining unchanged.

The second statement follows from the fact that there are three internal edges adjacent to an external
edge.

We move on to the proofs of the correlation properties. We restate the lemmas here for convenience.

Lemma 3.1. If f, g are internal edges incident to a vertex v, then

Probability Statement MatInt MaxEnt
P(|T ∩ {f, g}| = 2) 1/9 1/9

P(T ∩ {f, g} = {f}) 1/9 12/72
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Proof of Lemma 3.1, Odd Case. The MatInt claims: As in the even case, to prove P(|T ∩{f, g}| =
2) ≥ 1/9, we need only knowledge of the marginals and not the specific sampler. If one of f, g lies in
M (which happens w.p. 1/2) y-values of these two edges remaining unchanged with probability at
least 2/3, due to Lemma B.4. Now, conditional on these y-values remaining unchanged, the other
edge (not inM) is chosen with probability 1/3, making the unconditional probability 1/2·2/3·1/3 = 1/9,
as desired. Similarly, conditioned on f lying in M and hence belonging to T , edge g is not chosen
w.p. 1−ye = 2/3, giving a probability at least 1/4·2/3·2/3 = 1/9, proving the second part of Lemma 3.1
for the MatInt sampler.

The MaxEnt claim: It remains to show that P(T ∩{f, g} = {f}) ≥ 12/72. In the case that f ∈M ,
we once again have a probability of at least 2/3 that f and g are untouched, due to Lemma B.4.
Sincce P(g 6∈ T ) = 2/3 in this case, we have

P(T ∩ {f, g} = {f} ∧ f ∈M) ≥ 1/4 · 2/3 · 2/3 = 1/9.

In the case that neither f nor g is in M , the probability f or g is chosen in a local decrease is at
most 1/3 and the probability f or g is chosen in a local increase is at most 1/2. (For the first bound,
the worst case is when each of the three endpoints of f, g is incident to an external edge. Then the
probability that neither f nor g is chosen for a local decrease is at least 1/2 · 2/3 + 1/4 · 1/3 + 1/4 = 2/3.
For the second bound, the worst case is when each edge in M ∩ ∂I is incident to an endpoint
of f , w.l.o.g. Then the probability that neither f nor g is chosen for a local increase is at least
1/2 · 2/3 + 1/2 · 1/3 = 1/2.) Hence, the edges remain untouched with probability at least 1/2. In total,
this gives

P(T ∩ {f, g} = {f} ∧ f, g 6∈M) ≥ 1/2 · 1/2 · 2/9 = 4/72

where the bound P(T ∩ {f, g} = {f} | f, g 6∈ M) ≥ 1/9 was computed in the even case (3.2.1).
Hence,

P(T ∩ {f, g} = {f}) ≥ 1/9 + 4/72 = 12/72.

Lemma 3.2. If edges e, f, g, h incident to a vertex v are all internal, then

Probability Statement MatInt MaxEnt
P(|T ∩ {e, f, g, h}| = 2) 2/21 8/27

P(|T ∩ {e, f}| = |T ∩ {g, h}| = 1) 4/63 16/81

Proof of Lemma 3.2, Odd Case. The MatInt claims: Each perfect matching M contains one of
these four edges in ∂v. Say that edge is e. The vertex v has no external edges, so regardless of
whether we do a local increase or decrease, these four edges remain untouched w.p. 2/3, due to
Lemma B.4. If this happens, and if e also belongs to M ′ (w.p. 1/7), tree T contains exactly one of
{f, g, h}, which gives us the bound 2/21. Moreover, the probability of this edge in T belonging to
the other pair (in this case, {g, h}) is 2/3, giving the bound 4/63.

The MaxEnt claims: Since v is not a boundary vertex, none of e, f, g, h are picked for a local
increase or decrease w.p. at least 2/3, due to Lemma B.4. Conditioning on e, f, g, h remaining
untouched, we have the same analysis as that of the even case (3.2.1). Hence, we obtain

P(|T ∩ {e, f, g, h}| = 2) ≥ 2/3 · 4/9 = 8/27
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and
P(|T ∩ {e, f}| = |T ∩ {g, h}| = 1) ≥ 2/3 · 8/27 = 16/81.

Lemma 3.3. For an internal edge e = uv:

(a) if both endpoints are non-boundary vertices, then

Probability Statement MatInt MaxEnt
P(|∂T (u)| = |∂T (v)| = 2) 1/36 128/6561

(b) if both u, v are boundary vertices, then

Probability Statement MatInt MaxEnt
P(exactly one of u, v has odd degree in T ) 1/9 5/18

Proof of Lemma 3.3a, Odd Case. The MatInt claims: In this proof, we will often use that G is a
simple graph. Suppose e ∈M ′, which happens w.p. 1/28. Call the edges (∂u ∪ ∂v) \ {e} interesting
edges. Condition on the matching M (which decides whether the change is a local increase or a
decrease), and the edge f in ∂I whose incident internal edge is increased/decreased. At most two
of the three internal edges incident to f can be interesting. Since u, v are non-boundary vertices,
the value of e is never changed by the alteration.

First suppose it is a local decrease, then with probability at least 1/3 a non-interesting edges is
reduced, and hence the matroid constraint ensures we always succeed. With probability at most 2/3

an interesting edge is reduced, in which case we still have a 2/3 chance of getting degree 2 at both
u and v. So we have 1/3 + 2/3 · 2/3 = 7/9 of success, conditioned on the choice of the edge.

Else, suppose it is a local increase; the argument is similar. With probability at least 1/3 a non-
interesting edges is increased, and hence the matroid constraint ensures we always succeed. With
probability at most 2/3 an interesting edge is increased, in which case we change the matroid con-
straint to drop one of the other interesting edges. This dropped edge can be added in with its
ŷ-value 1/3, and hence we have a 2/3 probability of getting degree 2 at both u and v. Again, the
probability of success is 1/3 + 2/3 · 2/3 = 7/9 of success. Removing the conditioning on e ∈ M ′, the
net probability of success is 1/28 · 7/9 = 1/36.

The MaxEnt claims: Let U = δ(u) \ {e} and V = δ(v) \ {e}. Condition on e ∈M . Since u, v are
both non-boundary vertices, the value of e will remain unchanged regardless of whether there is a
local increase or decrease, so we will have ye = 1 always. Recall that y is changed at a single edge
when the local increase or decrease is performed. We take cases on whether a local increase or local
decrease occurs.

A local decrease occurs. If none of the edges in U ∪ V are decreased, then (conditioned on e ∈M)
the analysis from the even case (3.2.1) gives

P(XU = 1 ∧XV = 1) ≥ 256/2187.

Now consider the case that an edge in U ∪ V is decreased. Let S1 = U and let S2 = {a, b} denote
the set of two nonzero edges in V \ {e} (see Figure 8). Applying Theorem 2.9 and the fact that
E(|S2 ∩ T |) = 2/3, we have P(|S2 ∩ T | = 1) ≥ 2 · 2/3 · 1/3 = 4/9. By Theorem 2.8,

1/3 = 1− 2/3 ≤ E(|S1 ∩ T | | a ∈ T, b 6∈ T ) ≤ 1 + 1/3 = 4/3.
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Figure 8: The decrease case in Lemma 3.3a, labelled with y-values after the decrease is performed.

We apply Theorem 2.9 again to lower bound P(|S1 ∩ T | = 1 | a ∈ T, b 6∈ T ) by

P(|S1 ∩ T | = 1 | a ∈ T, b 6∈ T ) ≥ 3 · 1/9 · (8/9)2 = 64/243.

Since the same calculation may be repeated with b ∈ T and a 6∈ T (as ya = yb), we have

P(XU = 1 ∧XV = 1) ≥ 4/9 · 64/243 = 256/2187.

So comparing both cases, we have that conditioned on e ∈M , if there is a local decrease then

P(XU = 1 ∧XV = 1) ≥ min{256/2187, 256/2187} = 256/2187.

A local increase occurs. We first note that the probability of no edge in U ∪V being increased is at
least 1/3, in which case the analysis from the even case (3.2.1) gives

P(XU = 1 ∧XV = 1) ≥ 256/2187.

Now consider the case that an edge c, say in U , is increased from 1/3 to 2/3. Let U \ {c} = {a, b}.
Since E[Xa,b] = 2/3, by Markov’s inequality we have P(Xa,b = 0) ≥ 1/3. Furthermore, E[Xc | Xa,b =

0] ≥ E[Xc] = 2/3 by Theorem 2.8. In total, P(c ∈ T, a, b 6∈ T ) ≥ 1/3 · 2/3 = 2/9. Applying Theorem 2.8
thrice more, we obtain

1/3 ≤ E(|S2 ∩ T | | c ∈ T, a, b 6∈ T ) ≤ 5/3

which by Theorem 2.9 gives us

P(|S2 ∩ T | = 1 | c ∈ T, a, b 6∈ T ) ≥ 64/243.

This yields, in the case that an edge in U ∪ V is increased,

P(XU = 1 ∧XV = 1) ≥ 64/243 · 2/9 = 128/2187.

Since the probability that no edge in U ∪V is increased is at least 1/3, and 256/2187 > 128/2187, in the
worst case we have that, conditioned on e ∈M , if there is a local increase then

P(XU = 1 ∧XV = 1) ≥ 1/3 · 256/2187 + 2/3 · 128/2187 = 512/6561.

Now comparing the cases of local increase and decrease and removing the conditioning of e ∈ M ,
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we obtain in the worst case

P(XU = 1 ∧XV = 1) ≥ 1/4 ·min{256/2187, 512/6561} = 128/6561

which is the bound we sought.

Proof of Lemma 3.3b, Odd Case. The MatInt claims. Fix a matching M such that e ∈ M (w.p.
1/4); each of u, v have two other internal edges, each with y-value 1/3. Call these four interesting
edges. Suppose M ∩ ∂I has two edges, then we perform a local increase step. Condition on the
edge in M ∩ ∂I chosen as part of the local increase: in the worst case it is incident to the endpoint
of two of the interesting edges.

• Then w.p. 2/3 it increases one of the interesting edges from yf = 1/3 to ŷf = 2/3. The total
ŷ-value of interesting edges becomes 5/3. By the same argument as for the even case, the tree
T contains exactly one interesting edge with probability at least 1/3.

• With the remaining probability 1/3, the increase is not to an interesting edge, and hence we
succeed with the original probability 2/3.

The total probability of success is therefore 2/3 · 1/3 + 1/3 · 2/3 = 4/9.

On the other hand, if M ∩ ∂I is empty, then we perform a local decrease step. Condition on
the boundary edge chosen in the first part of the local decrease. In the worst case it is one of
the boundary edges incident to either u or v. One of the interesting edges is reduced w.p. 2/3,
from yf = 1/3 to ŷf = 0. If that happens, the total ŷ-value of interesting edges sums to 1. The
connectivity of the spanning tree means that every tree we sample with these marginals will have
exactly one interesting edge.

Hence, in either case, we have exactly one of these four internal edges and satisfy the condition of
the claim with probability 4/9, conditioned on having e ∈M . The overall probability is therefore at
least 1/4 · 4/9 = 1/9.

The MaxEnt claims. Observe that the edge e will always contribute either: 0 to both the degree
of u in T and the degree of v in T OR 1 to both the degree of u in T and the degree of v in T .
Thus, to lower bound the probability that u and v have different parities in T , we will not need to
consider whether or not e is in T .

Let a, b be the two internal edges in δ(u) \ {e} and c, d be the two internal edges in δ(v) \ {e}. (We
know each set has exactly two edges because u, v are each boundary vertices.) Let f, g be the two
external edges incident to u, v, respectively. We take cases based on (a) whether a local increase
or decrease is performed, (b) whether or not any of a, b, c, d are changed by the local increase or
decrease, and (c) whether or not e ∈M . Note that for (b), we do not take subcases on whether or
not e is changed, by the above paragraph. Also note that for (c), we consider whether e ∈ M in
order to determine the marginals of {a, b, c, d} prior to a local increase or decrease.

Case I.N.1: local increase occurs, {a, b, c, d} not touched, e ∈M . In this case, we obtain the same
bound from Case 1 of the even case in the proof of Lemma 3.3b (see 3.2.1), that is,

P(exactly one of u, v has odd degree in T ) ≥ P(Xa,b,c,d = 1) ≥ 2/3 .
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Case I.N.2: local increase occurs, {a, b, c, d} not touched, e 6∈M . This case includes the two sub-
cases a, c ∈ M and a ∈ M, c 6∈ M , which are cases 2 and 3 in the proof of Lemma 3.3b (see 3.2.1)
and yield lower bounds on the desired probabilitiy of 4/9 and 8/27 , respectively. Finally, there is
one more subcase for the case where |V (H)| is odd, namely, a, c 6∈ T , since we may have f, g ∈M .
Since in this subcase a, b, c, d are all 1/3-valued edges, we have the same bound from Case 1 of the
even case in the proof of Lemma 3.3, namely, 2/3 .

Case I.T.1: local increase occurs, {a, b, c, d} touched, e ∈M . One of the edges a, b, c, d is increased
from 1/3 to 2/3, while the rest are still 1/3-valued, since e ∈M . Hence, E[Xa,b,c,d] = 5/3. Furthermore,
note that we must have Xa,b,c,d ≥ 1. This gives

P(exactly one of u, v has odd degree in T ) ≥ P(Xa,b,c,d = 1) ≥ 1/3 .

Case I.T.2: local increase occurs, {a, b, c, d} touched, e 6∈M . Just as in Case I.N.2., there are three
subcases. First consider the subcase of a, c ∈ M . In this subcase, a, c cannot be increased, so we
know E[Xb,d] = 1/3. By Theorem 2.9, P(Xb,d = 1) ≥ 1/2 .

Next, consider the subcase that only a ∈ M . Then, we have E(Xb,c,d) = 4/3 and hence by Theo-
rem 2.9, P(Xb,c,d = 2) ≥ 2 · 1/3 · 1/3 ≥ 5/18 .

For the final subcase that f, g ∈ M , we have E[Xa,b,c,d] = 5/3 and since Xa,b,c,d ≥ 1, we have
P(Xa,b,c,d = 1) ≥ 1/3 .

This concludes the local increase cases. We move on to the local decrease cases.

Case D.N.1: local decrease occurs, {a, b, c, d} not touched, e ∈M . This is the same case as I.N.1.,

giving a bound of 2/3 .

Case D.N.2: local decrease occurs, {a, b, c, d} not touched, e 6∈M . This is the same case as I.N.2.,
taking only the first subcase (a, c ∈ M), since M ∩ ∂I = ∅ in a local decrease. Thus the lower
bound here is 4/9 .

Case D.T.1: local decrease occurs, {a, b, c, d} touched, e ∈M . Since e ∈M , we know a, b, c, d start
of as 1/3-valued. Then, w.l.o.g., say a is decreased to 0. Then, E[Xb,c,d] = 1. But since Xb,c,d ≥ 1,
this gives P(Xb,c,d = 1) = 1 .

Case D.T.2: local decrease occurs, {a, b, c, d} touched, e 6∈M . Since in a local decrease M ∩ ∂I =

∅, we have w.l.o.g. that a, c ∈M and that a is not decreased. So E(Xb,c,d) = 1 + 2 · 1/3− 1/3 = 4/3.

Since we know a ∈ T , we instead study P(Xb,c,d = 2); by Theorem 2.9, we have P(Xb,c,d = 2) ≥
2 · 1/6 · 5/6 = 5/18 .

The minimum of all the boxed quantities is 5/18. Hence, for the odd case of Lemma 3.3b, we obtain
the desired bound

P(exactly one of u, v has odd degree in T ) ≥ 5/18.

C Charging Proof Details

Proof of Averaging Argument, §6.5.1, Case 4. We will use an averaging argument to show that the
expected charge is no worse than p ·max{ τ2 ,

γ
2 ,

β
4 }. We construct a flow network as in the proof of
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Lemma 6.3 in order to show there exists a function x : B × F → R+ satisfying constraint (7) for
c = max{ τ2 ,

γ
2 ,

β
4 }. Then we can apply a charging scheme like the one described in Case 1 using the

function x. The flow network is as follows: take the graph H = (B,F ) and add a source node s
and a sink node t. Connect s to every vertex b in B, and label (s, b) with capacity τ, γ, or β

2 based
on whether b corresponds to a non-K5 degree, K5 degree, or cycle edge, respectively. To find x

satisfying the properties in the above paragraph, by Lemma 1 we need to show that for each T ⊆ B,

|N(T )| ≥
τ · nτ + γ · nγ + 1

2 · β · nβ
max{ τ2 ,

γ
2 ,

β
4 }

where nτ , nγ , and nβ are the numbers of vertices in T corresponding to non-K5 degree, K5 degree,
and cycle edges, respectively. Note nτ + nγ + nβ = |T |.

Lemma 6.4 showed that

|N(T )| ≥ τ · |T |
τ
2

≥ τ · |T |
max{ τ2 ,

γ
2 ,

β
4 }

|N(T )| ≥ γ · |T |
γ
2

≥ γ · |T |
max{ τ2 ,

γ
2 ,

β
4 }

|N(T )| ≥
1
2 · β · |T |

β
4

≥
1
2 · β · |T |

max{ τ2 ,
γ
2 ,

β
4 }
.

Now taking a convex combination of the three inequalities above we obtain:

|N(T )| = nτ
|T |
· |N(T )|+ nγ

|T |
· |N(T )|+

nβ
|T |
· |N(T )|

≥
τ · nτ + γ · nγ + 1

2 · β · nβ
max{ τ2 ,

γ
2 ,

β
4 }

which is precisely what we sought to show. This concludes Case 4.

D Symmetry Lemma

Claim D.1 (Symmetry Lemma). For any graph H with each edge e having xe = 1/2, let T be a
random set of edges faithful to the marginals, i.e., Pr[e ∈ T ] = xe. For any two edges f, g, let
p00, p10, p01, p11 denote the probabilities of T ∩ {f, g} being ∅, {f}, {g}, {f, g} respectively. Then
p00 = p11 and p01 = p10.

Proof. Observe that p00+p01+p10+p11 = 1. Moreover, p01+p10+2p11 = E[|T∩{f, g}|] = xf+xg = 1.
Hence, p00 = p11, proving the first statement. Now, p10+p11 = xf = xg = p01+p11, giving p10 = p01,
proving the second.
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