Skip to main content

Asymptotically Quasi-Optimal Cryptography

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13275))

Abstract

The question of minimizing the computational overhead of cryptography was put forward by the work of Ishai, Kushilevitz, Ostrovsky and Sahai (STOC 2008). The main conclusion was that, under plausible assumptions, most cryptographic primitives can be realized with constant computational overhead. However, this ignores an additive term that may depend polynomially on the (concrete) computational security parameter \(\lambda \). In this work, we study the question of obtaining optimal efficiency, up to polylogarithmic factors, for all choices of n and \(\lambda \), where n is the size of the given task. In particular, when \(n=\lambda \), we would like the computational cost to be only \(\tilde{O}(\lambda )\). We refer to this goal as asymptotically quasi-optimal (AQO) cryptography.

We start by realizing the first AQO semi-honest batch oblivious linear evaluation (BOLE) protocol. Our protocol applies to OLE over small fields and relies on the near-exponential security of the ring learning with errors (RLWE) assumption. Building on the above and on known constructions of AQO PCPs, we design the first AQO zero-knowledge (ZK) argument system for Boolean circuit satisfiability. Our construction combines a new AQO ZK-PCP construction that respects the AQO property of the underlying PCP along with a technique for converting statistical secrecy into soundness via OLE reversal. Finally, combining the above results, we get AQO secure computation protocols for Boolean circuits with security against malicious parties under RLWE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Throughout this paper, the security parameter \(\lambda \) refers to bits of concrete security, requiring that no adversary of circuit size \(2^{\lambda }\) can gain better than \(2^{-\lambda }\) advantage. This is a natural and robust notion of concrete security. An alternative notion that settles for negligible advantage is not as robust, analogously to relaxing standard security definitions by requiring that every polynomial-time adversary has o(1) advantage (rather than negligible in the sense of sub-polynomial).

  2. 2.

    We remark that the statements we want are proofs (of knowledge) of a short secret s such that \(As=t\) over a ring. On the other hand, the second type of protocols prove that there is a short secret s such that As equals a short multiple of t.

  3. 3.

    Recall that Batch-OT/OLE refers to multiple OT/OLE instances carried out in parallel.

  4. 4.

    We denote the Ring-LWE dimension by k, and the OLE batch-size by n.

  5. 5.

    We typically pick q to be a multiple of p so the rounding is not necessary.

  6. 6.

    The product of the first n primes is \(e^{O(n{\mathsf {log}}n)}\).

  7. 7.

    For example, in the classic MPC-in-the-head based ZKPCP [IKOS07], the verifier queries a random t subset out of n. Here Q contains all t subsets of [n].

References

  1. Applebaum, B., Haramaty, N., Ishai, Y., Kushilevitz, E., Vaikuntanathan, V.: Low-complexity cryptographic hash functions. In: ITCS 2017, vol. 67, pp. 7:1–7:31 (2017)

    Google Scholar 

  2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: CCS 2017, pp. 2087–2104. ACM (2017)

    Google Scholar 

  3. Applebaum, B., Ishai, Y., Kushilevitz, E.: On pseudorandom generators with linear stretch in NC0. Comput. Complex. 17, 38–69 (2008)

    Article  Google Scholar 

  4. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_8

    Chapter  Google Scholar 

  5. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29

    Chapter  Google Scholar 

  6. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 669–699. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_23

    Chapter  Google Scholar 

  7. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_23

    Chapter  Google Scholar 

  8. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_12

    Chapter  Google Scholar 

  9. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators from ring-LPN. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 387–416. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_14

    Chapter  Google Scholar 

  10. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of probabilistically-checkable proofs. In: STOC 2013 (2013)

    Google Scholar 

  11. Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_18

    Chapter  Google Scholar 

  12. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_4

    Chapter  Google Scholar 

  13. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_2

    Chapter  Google Scholar 

  14. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_14

    Chapter  Google Scholar 

  15. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption: rate-1 fully-homomorphic encryption and time-lock puzzles. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 407–437. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_16

    Chapter  Google Scholar 

  16. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_11

    Chapter  Google Scholar 

  17. Baum, C., Escudero, D., Pedrouzo-Ulloa, A., Scholl, P., Troncoso-Pastoriza, J.R.: Efficient protocols for oblivious linear function evaluation from ring-LWE. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 130–149. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_7

    Chapter  Google Scholar 

  18. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness indistinguishability and secure computation in the plain model from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_10

    Chapter  MATH  Google Scholar 

  19. Block, A.R., Gupta, D., Maji, H.K., Nguyen, H.H.: Secure computation using leaky correlations (asymptotically optimal constructions). In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 36–65. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_2

    Chapter  Google Scholar 

  20. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: ITCS (2012)

    Google Scholar 

  21. Baron, J., Ishai, Y., Ostrovsky, R.: On linear-size pseudorandom generators and hardcore functions. Theor. Comput. Sci. 554, 50–63 (2014)

    Article  MathSciNet  Google Scholar 

  22. Boneh, D., Ishai, Y., Passelègue, A., Sahai, A., Wu, D.J.: Exploring crypto dark matter: new simple PRF candidates and their applications. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 699–729. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_25

    Chapter  Google Scholar 

  23. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear multi-prover interactive proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 222–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_8

    Chapter  Google Scholar 

  24. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-knowledge proofs for commitments from learning with errors over rings. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 305–325. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_16

    Chapter  Google Scholar 

  25. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A Non-PCP approach to succinct quantum-safe zero-knowledge. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 441–469. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_16

    Chapter  Google Scholar 

  26. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_7

    Chapter  Google Scholar 

  27. Block, A.R., Maji, H.K., Nguyen, H.H.: Secure computation with constant communication overhead using multiplication embeddings. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 375–398. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-9_20

    Chapter  Google Scholar 

  28. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 62–89. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_3

    Chapter  Google Scholar 

  29. Ben-Sasson, E., Sudan, M.: Short PCPS with polylog query complexity. SIAM J. Comput. 38(2), 551–607 (2008)

    Article  MathSciNet  Google Scholar 

  30. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS (2011)

    Google Scholar 

  31. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  32. Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity of information-theoretically secure MPC revisited. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 395–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_14

    Chapter  Google Scholar 

  33. Chase, M., et al.: Reusable non-interactive secure computation. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 462–488. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_15

    Chapter  Google Scholar 

  34. Chiesa, A., Yogev, E.: Subquadratic SNARGs in the random oracle model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 711–741. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_25

    Chapter  MATH  Google Scholar 

  35. de Castro, L., Juvekar, C., Vaikuntanathan, V.: Fast vector oblivious linear evaluation from ring learning with errors. In: WAHC (2021)

    Google Scholar 

  36. Dwork, C., Feige, U., Kilian, J., Naor, M., Safra, M.: Low communication 2-prover zero-knowledge proofs for NP. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 215–227. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_15

    Chapter  Google Scholar 

  37. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 3–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_1

    Chapter  Google Scholar 

  38. Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_23

    Chapter  Google Scholar 

  39. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MathSciNet  Google Scholar 

  40. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4

    Book  MATH  Google Scholar 

  41. Ducas, L., Stehlé, D.: Sanitization of FHE ciphertexts. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 294–310. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_12

    Chapter  Google Scholar 

  42. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

    Article  MathSciNet  Google Scholar 

  43. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) STOC 2009, pp. 169–178. ACM (2009)

    Google Scholar 

  44. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37

    Chapter  Google Scholar 

  45. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 438–464. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_17

    Chapter  Google Scholar 

  46. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to constructing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_18

    Chapter  Google Scholar 

  47. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_28

    Chapter  Google Scholar 

  48. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and rerandomizable Yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 155–172. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_9

    Chapter  Google Scholar 

  49. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to additive attacks with applications to secure computation. In: STOC (2014)

    Google Scholar 

  50. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: ICS (2010)

    Google Scholar 

  51. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC (1987)

    Google Scholar 

  52. Goldreich, O.: Candidate one-way functions based on expander graphs. Electron. Colloquium Comput. Complex. (90) (2000)

    Google Scholar 

  53. Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  54. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19

    Chapter  Google Scholar 

  55. Hazay, C., Ishai, Y., Marcedone, A., Venkitasubramaniam, M.: Leviosa: lightweight secure arithmetic computation. In: CCS 2019, pp. 327–344. ACM (2019)

    Google Scholar 

  56. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using symmetric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_2

    Chapter  Google Scholar 

  57. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: an efficient authentication protocol based on ring-LPN. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 346–365. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5_20

    Chapter  Google Scholar 

  58. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: CCC 2007, pp. 278–291 (2007)

    Google Scholar 

  59. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A., Wullschleger, J.: Constant-rate oblivious transfer from noisy channels. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 667–684. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_38

    Chapter  Google Scholar 

  60. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: STOC (2007)

    Google Scholar 

  61. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant computational overhead. In: STOC (2008)

    Google Scholar 

  62. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Extracting correlations. In: FOCS (2009)

    Google Scholar 

  63. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

    Article  MathSciNet  Google Scholar 

  64. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

    Chapter  Google Scholar 

  65. Ishai, Y., Weiss, M.: Probabilistically checkable proofs of proximity with zero-knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 121–145. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_6

    Chapter  MATH  Google Scholar 

  66. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: STOC 1992, pp. 723–732 (1992)

    Google Scholar 

  67. Lindell, Y.: Fast cut-and-choose-based protocols for malicious and covert adversaries. J. Cryptol. 29(2), 456–490 (2016)

    Article  MathSciNet  Google Scholar 

  68. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_13

    Chapter  Google Scholar 

  69. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  70. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3

    Chapter  Google Scholar 

  71. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation efficiently with security against malicious adversaries. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3_2

    Chapter  MATH  Google Scholar 

  72. Lombardi, A., Schaeffer, L.: A note on key agreement and non-interactive commitments. Cryptology ePrint Archive, Report 2019/279 (2019)

    Google Scholar 

  73. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclotomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 204–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_8

    Chapter  MATH  Google Scholar 

  74. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. In: FOCS (2002)

    Google Scholar 

  75. Moody, D.: Post-quantum crypto: NIST plans for the future (2016)

    Google Scholar 

  76. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. In: FOCS 2004, pp. 372–381. IEEE Computer Society (2004)

    Google Scholar 

  77. Micciancio, D., Sorrell, J.: Simpler statistically sender private oblivious transfer from ideals of cyclotomic integers. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 381–407. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_13

    Chapter  Google Scholar 

  78. Miles, E., Viola, E.: Substitution-permutation networks, pseudorandom functions, and natural proofs. J. ACM 62(6), 46:1-46:29 (2015)

    Article  MathSciNet  Google Scholar 

  79. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Rao Kosaraju, S. (ed.) SODA, pp. 448–457 (2001)

    Google Scholar 

  80. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_8

    Chapter  Google Scholar 

  81. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_31

    Chapter  Google Scholar 

  82. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. JCSS 43(3), 425–440 (1991)

    MathSciNet  MATH  Google Scholar 

  83. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC (2005)

    Google Scholar 

  84. Ron-Zewi, N., Rothblum, R.: Proving as fast as computing: Succinct arguments with constant prover overhead. In: ECCC, p. 180 (2021)

    Google Scholar 

  85. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In: ACM CCS (2017)

    Google Scholar 

  86. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_14

    Chapter  Google Scholar 

  87. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 733–764. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_24

    Chapter  Google Scholar 

  88. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: 2020 IEEE Symposium on Security and Privacy (2020)

    Google Scholar 

Download references

Acknowledgements

We thank Henry Corrigan-Gibbs for helpful comments and Hemanta Maji for answering our questions on [BGMN18]. C. Hazay was supported by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office, and by ISF grant No. 1316/18. Y. Ishai was supported in part by ERC Project NTSC (742754), BSF grant 2018393, and ISF grant 2774/20. L. de Castro and V. Vaikuntanathan were supported by grants from MIT-IBM Watson AI Labs and Analog Devices, by a Microsoft Trustworthy AI grant, and by DARPA under Agreement No. HR00112020023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo de Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Castro, L., Hazay, C., Ishai, Y., Vaikuntanathan, V., Venkitasubramaniam, M. (2022). Asymptotically Quasi-Optimal Cryptography. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13275. Springer, Cham. https://doi.org/10.1007/978-3-031-06944-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06944-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06943-7

  • Online ISBN: 978-3-031-06944-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics