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Abstract. Secure multi-party computation (MPC) protocols that are
resilient to a dishonest majority allow the adversary to get the output
of the computation while, at the same time, forcing the honest parties
to abort. Aumann and Lindell introduced the enhanced notion of secu-
rity with identifiable abort, which still allows the adversary to trigger an
abort but, at the same time, it enables the honest parties to agree on
the identity of the party that led to the abort. More recently, in Euro-
crypt 2016, Garg et al. showed that, assuming access to a simultaneous
message exchange channel for all the parties, at least four rounds of com-
munication are required to securely realize non-trivial functionalities in
the plain model.
Following Garg et al., a sequence of works has matched this lower bound,
but none of them achieved security with identifiable abort. In this work,
we close this gap and show that four rounds of communication are also
sufficient to securely realize any functionality with identifiable abort us-
ing standard and generic polynomial-time assumptions. To achieve this
result we introduce the new notion of bounded-rewind secure MPC that
guarantees security even against an adversary that performs a mild form
of reset attacks. We show how to instantiate this primitive starting from
any MPC protocol and by assuming trapdoor-permutations.
The notion of bounded-rewind secure MPC allows for easier parallel com-
position of MPC protocols with other (interactive) cryptographic prim-
itives. Therefore, we believe that this primitive can be useful in other
contexts in which it is crucial to combine multiple primitives with MPC
protocols while keeping the round complexity of the final protocol low.
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1 Introduction

Secure multi-party computation (MPC) [25, 46] allows a group of mutually dis-
trustful parties to jointly evaluate any function over their private inputs in such
a way that no one learns anything beyond the output of the function. Since its
introduction, MPC has been extensively studied in terms of assumptions, com-
plexity, security definitions, and execution models [2,6,7,11,12,22,25,26,33–35,
37,39,41,45].

One interesting line of research concerns proving the security of MPC pro-
tocols in the case of a dishonest majority. In this model, unfortunately, it is in
general impossible to obtain guaranteed output delivery or even fairness [13],
which are particularly useful properties. The former guarantees that the honest
parties always receive the output of the computation and the latter guarantees
that either all the parties receive the output or none does (not even the cor-
rupted parties). Due to the impossibility of Cleve et al. [13], most of the MPC
protocols proven secure in the dishonest majority setting only satisfy the notion
of unanimous abort. This notion guarantees that either all the honest parties
receive the output, or none of them does. Another recent line of works has es-
tablished that four rounds are both necessary [22] and sufficient [2, 4, 7, 10, 29]
for MPC with unanimous abort (with respect to black-box simulation) while
relying on broadcast.6 However, none of these works study the notion of MPC
with identifiable abort.

The notion of MPC with identifiable abort, which was first considered by
Aumann and Lindell [3], ensures that either the honest parties receive the output
of the computation or they unanimously identify the (corrupted) party that
led to the abort. Subsequently, Ishai, Ostrovsky, and Zikas [32] showed how
to achieve this notion in the information theoretic and computational setting,
and propose a construction (in the computational setting) that does not rely
on any setup assumptions. The work of Ishai et al. led to a sequence of works
that proposed improved protocols realizing security with identifiable abort [5,
8, 9, 16, 43]. All of these works either require a trusted setup (e.g., correlated
randomness) or require more than a constant number of rounds.

Moreover, the new recent lower bounds on MPC with unanimous abort and
the new results on MPC with identifiable abort leave open the following question:

What is the best-possible round complexity for securely evaluating any
function with identifiable abort (with black-box simulation) in the plain
model when the majority of the parties are corrupted and broadcast chan-
nels are assumed?

In this work, we answer the above question7 and match the lower bound
proven in [22] by presenting a four-round protocol with identifiable abort rely-
6 In each round all the parties can send a message. That is, the channel allows for

a simultaneous exchange of messages in each round. Unless otherwise specified we
implicitly refer to this model of communication when referring to broadcast.

7 All our results are with respect to black-box simulation. Hereafter we assume that
this is implicitly stated in our claims.
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ing only on standard polynomial-time cryptographic assumptions (i.e., one-way
trapdoor permutations).8 To the best of our knowledge, prior to our work, no
protocol achieved security with identifiable abort in the plain model in four
rounds of communication.

To achieve this result, we define and construct a four-round bounded-rewind
secure MPC protocol as an intermediate step. A bounded-rewind secure MPC
protocol enjoys the same security as a standard MPC protocol (with unanimous
abort), and is additionally resilient to rewind attacks. More precisely, the proto-
col remains secure even if the adversary is allowed to receive a (bounded) number
of third rounds in response to multiple (adversarially chosen) second-round mes-
sages. The reason why we define (and construct a protocol that satisfies) this
new security notion is to obtain an MPC protocol that can be easily composed in
parallel with other interactive cryptographic primitives. We see this as a result
of independent interest and we believe that this notion is also useful in other
contexts where MPC protocols need to be combined with other interactive prim-
itives (e.g., key distribution protocols, proof-of-knowledge or even other MPC
protocols). This notion becomes instrumental in our construction, since we will
execute an MPC protocol and a zero-knowledge-like protocol in parallel. We give
more details on the notion and the constructions later in this section.

1.1 Our results
As previously mentioned, the stepping stone of our construction is a four-round
bounded-rewind secure MPC protocol. We realize this notion using a compiler
that turns, in a round-preserving manner, any four-round MPC protocol into a
bounded-rewind secure MPC protocol. Our compiler relies on a bounded-rewind
secure oblivious transfer (OT) protocol (similar to the one proposed by Choud-
huri et al. [10]), on Yao’s Garbled Circuits (GC) and public-key encryption.
Unfortunately, we cannot directly use the OT protocol of Choudhuri et al. [10],
since we need the OT to be simulation-based secure against malicious receivers.9
Hence, we also need to prove that such a bounded-rewind secure OT protocol
is indeed simulatable. The bounded-rewind secure OT protocol and the public-
key encryption scheme can be instantiated from trapdoor permutations (TDPs),
and GCs can be based on one-way functions. Given the above, we can claim the
following:

Theorem 1 (informal). Assuming TDPs and the existence of a 4-round MPC
protocol that realizes the function f with unanimous abort over broadcast chan-
nels against a dishonest majority, then there exists a bounded-rewind secure 4-
round MPC protocol that realizes the same function (relying on the same com-
munication channel) with unanimous abort against a dishonest majority.
8 Some of the tools used in our constructions require the trapdoor permutations to be

certifiable. Any time that we refer to trapdoor permutations we implicitly assume
that they are certifiable. Note that such trapdoor permutations can be instantiated
using RSA with suitable parameters [21].

9 We require an additional property on the OT, which we elaborate further in the next
section.
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To finally obtain our round-optimal MPC protocol that is secure with iden-
tifiable abort, we compose the bounded-rewind secure MPC protocol, in paral-
lel, with a combination of two-round witness-indistinguishable proofs, signature
schemes and three-round non-malleable commitment schemes. We provide more
detail regarding this in the next section. To obtain our final construction we re-
quire the bounded-rewind secure MPC protocol to be perfectly correct. Finally,
observing that all the additional tools we need can be based on TDPs, we can
claim the following.

Theorem 2 (informal). Assuming TDPs and the existence of a perfectly
correct 4-round bounded-rewind secure MPC protocol that realizes the function
f with unanimous abort over broadcast channels against a dishonest majority,
then there exists a 4-round MPC protocol that realizes the same function (relying
on the same communication channel) with identifiable abort against a dishonest
majority.

To state our main theorem, we argue that the four-round MPC protocol
proposed in [10] is perfectly correct and that the final bounded-rewind MPC
protocol we obtain from Theorem 1 preserves the perfect correctness of the
input protocol. Given that the protocol of Choudhuri et al. [10] is based on OT,
which in turn can be based on TDPs, we can state the following.

Corollary (informal). Assuming TDPs then there exists a 4-round MPC pro-
tocol that realizes any function f with identifiable abort over broadcast channels
against a dishonest majority.

1.2 Technical Overview

The Challenge of Obtaining MPC with Identifiable abort. Among many
other interesting results, in [32] the authors propose a protocol that realizes
any function with identifiable abort in the plain model. In more detail, Ishai
et al. propose a generic approach to turn any MPC protocol with identifiable
abort, that relies on correlated randomness as a setup assumption, into a secure
MPC protocol with identifiable abort in the plain model. Their compiler is quite
straightforward: the parties use an MPC protocol ΠCR to generate correlated
randomness, which is then used to run the previously mentioned protocol of [32],
which we denote as Π IOZ. In the case that some parties abort during the execu-
tion of Π IOZ the property of identifiable abort is trivially maintained since Π IOZ

is proven secure under the assumption that correlated randomness exists which,
in turn, has been generated using by the protocol ΠCR. On the other hand, if an
abort occurs during the execution of ΠCR then all the parties could simply dis-
close the randomness used to run ΠCR and check which party did not follow the
protocol description. Note that the randomness of the parties can be disclosed
at this stage of the protocol since ΠCR does not require the parties’ input to be
executed and therefore privacy is still guaranteed. However, such an approach
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crucially needs the protocol ΠCR to be secure against adaptive corruptions.10

Indeed, without this property it is not clear how to prove the security of the
protocol. This is due to the fact that, during the simulation of ΠCR, it might
be necessary to output the random coins used by the honest parties, which are
controlled by the simulator. Revealing the random coins of the simulator might
make the simulated execution trivially distinguishable from the real one. Unfor-
tunately, it is not clear how to use such an approach to obtain a constant round
protocol since it has been shown in [23] that it is impossible to achieve security
with adaptive corruptions in a constant number of rounds in the plain model.

Another approach that one could follow is to start from a protocol Π that is
proven secure in the plain model and attach a public coin zero-knowledge (ZK)
proof to each round of Π. That is, each party computes one message of Π and
then runs a ZK proof to show that the computed message has been generated
accordingly to Π. We first note that such an approach does not immediately
work if Π is not perfectly correct. Indeed, if Π is not perfectly correct then
there might exist randomness that, if used to compute a message of Π, would
make the receiver of this message abort. However, the adversary would be able
to complete the proof since it has followed the protocol. Instead of using a
perfectly correct protocol Π one could add a coin-tossing protocol, but this
would create additional issues since the coin-tossing protocol needs to be secure
with identifiable abort.

Another issue with the above approach is that, even in the case where Π
is perfectly correct, we cannot just use a standard public-coin ZK proof, given
that the adversary might maul the ZK proof received from an honest party. To
account for this, using a public-coin non-malleable ZK in combination with a
perfectly correct Π seems to be a reasonable direction. But, also in this case,
if we want a constant round protocol we need to require the public-coin ZK to
be executable in a constant number of rounds and, as shown in [24], only trivial
languages admit constant round public-coin black-box ZK protocols (with neg-
ligible soundness error). Therefore, if we want to use such an approach, we need
to relax the public-coin requirement, and, indeed, public verifiability suffices. We
say that a ZK protocol is publicly verifiable if, by looking at the messages of
the protocol exchanged between a prover and a verifier, it is possible to infer
whether the honest verifier would accept the proof without knowing its random
coins. Moreover, it must be possible to detect whether the verifier is sending
valid messages (i.e., messages that would not make the honest prover abort)
without knowing the randomness of the prover and by just looking at the tran-
script. This property is particularly important for our purposes since it allows a
party P , that is not involved in the execution of the non-malleable ZK protocol
between two parties (in which one is acting as a prover and the other as the ver-
ifier), to detect which party caused the abort (if any). If the prover is malicious
and the verifier rejects, then P notices this and it can tag the party acting as

10 In this model, the identities of the corrupted parties are not fixed at the beginning
of the experiment and the adversary can decide which party to corrupt during the
execution of the protocol.
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the prover as being corrupted. If instead the verifier sends a message that the
prover would reject then, also due to the public verifiability, P can tag the party
acting as the verifier as corrupted.

Assuming that there are constant round ZK protocols with all these proper-
ties (hereafter we refer to them as special ZK protocols) and that Π is a perfectly
correct constant round protocol, we can finally construct an MPC protocol with
identifiable abort (in a constant number of rounds) in the plain model.

However, in this work, we want to study the optimal round complexity for
MPC with identifiable abort. In particular, we want to prove that four rounds
are sufficient to securely realize any function with identifiable abort. We start
by observing that it is not needed to run a ZK proof after each round of the
protocol. Indeed, we could just let the parties run the protocol Π and only at the
end, in the case a party aborts, each party generates its zero-knowledge proof
(proving that all the messages of Π that it has sent over the broadcast channel
have been computed correctly). If the ZK protocol is four-round (which is the
best we can hope for) and Π needs four rounds as well (which, again, is the
best we can hope for) then we have obtained an 8-round MPC protocol with
identifiable abort.

The next natural step, to reduce the round complexity of the above protocol,
is to parallelize the messages of Π and the messages of the special ZK protocol.
This natural approach fails for two reasons. First, the special ZK protocol now
needs to be delayed-input. That is, the statement the parties prove in the case
someone aborts is not defined until the fourth round and, second, there is no
reason to expect that Π and a zero-knowledge protocol would compose in par-
allel. Even if there are four-round special ZK protocols that enjoy the property
of delayed-input, like the one in [11], at the same time it is unclear how to prove
that this protocol composes with Π due to well-known rewinding issues. Indeed,
one approach to prove the security of this candidate MPC protocol would be to
consider a first hybrid experiment in which we run the simulator of the special
ZK proof. This step is a straightforward reduction and does not seem to cause
issues. Note that, in this intermediate hybrid experiment, the simulator of the
ZK protocol is rewinding the adversary and, in particular, we can assume that
the simulator rewinds (at least) from the third to the second round. We now
proceed to the next hybrid where we run the simulator of Π. Proving the indis-
tinguishability between the two hybrid experiments is problematic. The reason
is that the rewinds made by the ZK simulator could make the adversary ask
for multiple second rounds with respect to Π. However, the reduction can only
receive one set of second round messages from the challenger and it is unclear
whether the reduction can fake these messages of Π during the rewinds.

In this work, we solve this issue by constructing an MPC protocol (with
unanimous abort) that is bounded-rewind secure. That is, such an MPC pro-
tocol remains secure even if an adversary asks to receive multiple third-round
messages as a reply to multiple (adversarially generated) second round messages.
Equipped with this tool we can make the reduction work and complete the proof.
We note that this approach works only under the assumption that the ZK sim-
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ulator rewinds from the third to the second round, which we will argue to be
sufficient for our construction. In more detail, in this work we simply combine
the bounded-rewind secure MPC protocol with witness-indistinguishable proofs
and non-malleable commitments. These tools guarantee a mild form of non-
malleability (which is sufficient for our purposes) that is achieved by requiring
rewinds only from the third to the second round in the security proof. The way
we achieve non-malleability has become quite standard recently and has been
used in [4,10,11,22]. For this reason, we do not give more details on these aspects
and refer the interested reader to the technical section. Instead, we dedicate the
last part of this section to explain how we construct our bounded-rewind secure
MPC protocol.

Bounded-Rewind Secure MPC. Our compiler turns a four-round MPC pro-
tocol Π, that only relies on a broadcast channel, into a four-round bounded-
rewind-secure MPC protocol Πrmpc (that, again, works over a broadcast chan-
nel). We start by discussing how the protocol works for the two-party case (with
parties P1 and P2), and then discuss how to extend our approach to the multi-
party case. For reference, in Fig. 1 we provide a pictorial description of the
protocol Πrmpc.

As already mentioned, a protocol is bounded-rewind secure if it retains its
security even in the case that the adversary queries the honest party on multiple
second rounds, and receives an honestly generated third round for each of these
queries. It is easy to imagine that most of the existing four-round MPC protocols
have no resiliency against such types of attacks. Indeed, usually the simulation
strategy adopted to prove the security of these protocols is to rewind from the
third to the second round and extract the input of the corrupted parties. Regard-
less of that, we aim to provide a compiler that works on any four-round MPC
protocol without making any additional assumptions on the input protocol.

To prevent the adversary from gaining an advantage, using its rewinds, we
adopt a strategy to hide the third round message of Π and only reveal it in
the fourth round. To do that we follow an approach similar to [1, 14, 18], by
embedding the next-message function of Π inside a garbled circuit (GC). More
precisely, each party (e.g., P1) upon receiving the second round message of Π
creates a GC that contains all the messages of Π generated so far, its input
and randomness. Note that the GC embeds almost all the information needed
to compute the fourth round of Π. The only thing that is missing is the third
round of the other party (P2 in our example). The GC, on input the third round
message of P2 for Π, runs the next-message function and returns the fourth
round of Π for P1.

As one might expect, to securely evaluate the GC, P1 and P2 need to run
an OT protocol in which, in this example, P2 acts as the receiver and P1 acts
as the sender. The input of P1 (which acts as a sender) to the OT protocol are
the labels of the GC we have just described, while the input of P2 (which acts
as the receiver) is its third round of the protocol Π. In other words, in the third
round of the protocol we have just described each party does not send the third
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Fig. 1: Our rewindable-secure protocol for the two-party case. msgj
i represents the

j-th message of the MPC protocol Π computed by the party Pi. otj
i represents

the j-th message of the bounded-rewind secure OT protocol in which Pi acts
as the sender and P3−i acts as the receiver with i ∈ [2]. The pairs of inputs
(K⃗0

i , K⃗1
i ) that the party Pi uses as input when acting as the sender of the OT

represent the labels of the wire for the garbled circuit that computes the next-
message function of Π. This garbled circuit GCi has hardwired-in the input of
Pi, its randomness and all the messages of Pi generated up to the second round.
The algorithm eval is the GC evaluation algorithm, that on input the encoding
of the GC and a set of labels (one per each wire) returns the output of the GC
(the last message of Π in this case). Note that the parties in the last round also
send the third message of Π. This is because to compute the output of Π the
parties might need all the messages generated from Π.

round message of Π over the channel, but it sends the OT receiver message
which encodes the third round of Π.

The above approach, however, has an issue. To prove its security we need to
use an OT protocol that is simulation-based secure against malicious receivers.
This is required because in the simulation we need to use the OT simulator to
extract the third round of Π (and forward it to the simulator of Π). Existing
OTs that achieve this property require at least four rounds, and this means
that our construction is not secure unless the OT protocol is resilient against
rewinding attacks. Interestingly, in [10] the authors propose a four-round OT
protocol that is secure even in the presence of an adversary that does a bounded
number of rewinds. One drawback of the protocol proposed in [10] is that it is
not proved to be simulation-based secure against malicious receivers. This should
not come as a surprise since it seems to be contradictory to have a primitive that
allows extraction through rewinds (since we are in the plain model), but at the
same time is secure against adversaries that make rewinds. Fortunately, we can
prove that the protocol of [10] is also simulation-based secure against malicious
receivers. This proof requires a non-trivial simulator and analysis to argue that
the simulated transcript remains indistinguishable from a real one. Our OT
simulator and proof crucially rely on the elegant analysis of the simulator for
the zero-knowledge protocol proposed by Hazay et al. [30]. We refer the reader
to Section 6 for more details.
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The multi-party case. A natural extension of the above 2-party approach to the
n-party case would be for each pair of parties to engage in an OT instance as a
receiver and sender respectively, to retrieve the labels which are needed to query
each other GC and to obtain the fourth round of Π. More precisely, each party
now prepares a garbled circuit as before with the difference that its GC now
accepts n−1 inputs (n−1 third round messages of the remaining n−1 parties).

This approach does not immediately work since, for example, the party Pi

would be able to get only the labels for the wires of the garbled circuit of Pj

that encodes its own third round. However, to query the garbled circuit of Pj ,
the party Pi needs at least one label per wire. To allow Pi to get those labels,
we use an approach similar to the one proposed in [10], in which, in the fourth
round, all the parties broadcast the randomness and the input used when acting
as the OT receiver. In this way Pi can finally query Pj ’s garbled circuit since it
has the labels that correspond to the third round messages of all the parties.

However, since we need to rely on the rewindable-security of the OT protocol,
we cannot simply let the parties disclose their randomness contrary to what
happens in [10]. For this reason we propose a simple modification of the rewind-
secure OT that retains an adequate level of security even in the case that part
of the randomness used in the computation is disclosed.

Even if the above approach looks promising, it is vulnerable to the following
attack by a potentially corrupted P ⋆: P ⋆ could use different third-round mes-
sages in each of the n OT instances when acting as the OT receiver. This be-
haviour is problematic since it allows the adversary to recover the fourth-round
messages of the honest parties (via the evaluation of their respective garbled
circuits) computed with respect to different third-round messages, which could
compromise the security of the underlying MPC protocol Π. Indeed, in the case
that Π is normally executed over a broadcast channel, honest parties compute
their fourth-round message with respect to the same third-round messages.

To solve this problem, we break this one-to-one dependency such that the
labels of the garbled circuit (GC) are secret shared among the OT executions
in such a way that it is guaranteed that the labels of a party’s GC can only
be reconstructed if and only if each party has used the same input across the
OT executions where it was acting as the receiver. For more details on how this
secret sharing works we refer the reader to Section 4.

1.3 Related Work

As already mentioned, the notion of security with identifiable abort was first
considered by Aumann and Lindell [3]. This notion was subsequently studied in
[15,31,32].

Ishai et al. [32] show that in the correlated randomness model MPC with
identifiable abort can be realized information-theoretically. In the information-
theoretic setting Ishai et al. require all the n parties to be in possession of some
shared randomness and leave open the question of whether information-theoretic
ID-MPC can be realized assuming oracles that return correlated randomness
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shares to less than n parties. This question has been answered in the affirmative
in recent works [8, 9, 43].

The idea of using the SPDZ protocol [17, 19] to realize ID-MPC has been
used in a few follow-up works. In the work of Spini and Fehr [44] the authors
aim to adapt the SDPZ protocol to allow for identifiable abort without increasing
the complexity of the protocol too much. Their protocol achieves a communi-
cation and computation complexity that polynomially depends on the number
of the participating parties. In another work by Cunningham et al. [16], the au-
thors extend the results of Spini and Fehr and obtain a protocol that requires
n messages instead of O(n) messages [16, Table 1], where n is the number of
parties. Furthermore, their protocol also realizes the notion of completely iden-
tifiable abort, which is introduced in the same work. The notion of completely
identifiable abort extends the existing notion of identifiable abort by not only
guaranteeing that a single cheating party is identified but that all the cheating
parties are identified.

In the work of Scholl et al. [42] the authors present a compiler that takes any
passively secure preprocessing protocol and turns it into one with covert security
and identifiable abort. A protocol that fulfills these conditions is, again, the
SPDZ protocol [17,19]. In Baum et al. [5] the authors present a constant round
ID-MPC protocol with concrete efficiency. Their protocol only makes black-box
use of OT and a circular 2-correlation robust hash function. The security of
their protocol is proven in the UC framework and they also present an efficiency
analysis of their construction.

The notion of bounded-rewind security has been considered in previous works
with respect to simpler primitives, like witness-indistinguishable proofs, com-
mitment schemes [4,28,36] and the mentioned oblivious transfer [10]. In [10] the
authors also propose a notion (and instantiation) of a rewindable secure MPC
protocol. However, their rewind-secure protocol is only secure against a weaker
class of adversaries called semi-malicious adversaries. Without getting too tech-
nical, such an adversary provides its randomness and inputs to the simulator
which can then simulate in a straight-line manner. In our work, we do not have
this luxury since we require our construction to be secure against any probabilis-
tic polynomial-time adversarial strategy which creates many additional technical
challenges.

2 Preliminaries and Standard Definitions

Notation. We denote the security parameter with λ ∈ N. A randomized al-
gorithm A is running in probabilistic polynomial time (PPT) if there exists a
polynomial p(·) such that for every input x the running time of A(x) is bounded
by p(|x|). Let A and B be two interactive probabilistic algorithms. We denote by
⟨A(α), B(β)⟩(γ) the distribution of B’s output after running on private input β
with A using private input α, both running on common input γ. Typically, one
of the two algorithms receives 1λ as an input. A transcript of ⟨A(α), B(β)⟩(γ)
consists of the messages exchanged during an execution where A receives a pri-
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vate input α, B receives a private input β and both A and B receive a common
input γ. Moreover, we will define the view of A (resp. B), denoted by viewA

(A,B)
(resp. viewB

(A,B)), as the messages it received during the execution of the protocol
(A, B), along with its randomness and its input. We say that the transcript τ
of an execution b = ⟨A(z), B⟩(x) is accepting if b = 1. We say that a protocol
(A, B) is public coin if B only sends random bits to A. If the randomness is
explicit we write a := A(x; r) where x is the input and r is the randomness.

A protocol is defined to be delayed-input if it requires the input of the protocol
only in the last round of communication.

We assume familiarity with the notion of negligible functions, garbled cir-
cuits, CPA encryptions, extractable commitments, public-coin WI proofs and
oblivious transfers and refer the reader to the full version for more details.

2.1 Non-Malleable Commitments Scheme

We follow the definition of non-malleable commitments used in [26,38,40] (these
definitions are build upon the original definition of Dwork et al. [20]). In the
real experiment, the adversary, called man-in-the-middle MIM, interacts with a
committer C in the left session, and with a receiver R in the right session. We
assume w.l.o.g. that each session has a tag and non-malleability holds only if the
tag from the left session is different from the one in the right session.

At the beginning of the experiment, C receives an input v and MIM receives
an auxiliary input z, which could contain a priori information about v. For
the real experiment, we denote with MIM⟨C,R⟩(ṽ, z) the random variable that
describes the message that MIM commits to in the right session, jointly with the
view of MIM. In the ideal experiment, MIM interacts with a PPT simulator S.
There, we denote with SIM⟨C,R⟩(1λ, z) the random variable describing the value ṽ
that S committed to and the output view of S. In either of the two experiments,
the value ṽ is defined to be ⊥ if the tags in the left and right session are equal.

Definition 2.1 (Synchronous Non-malleable Commitments). A 3-round
commitment scheme ⟨C, R⟩ is said to be synchronous non-malleable if for every
PPT synchronizing adversary11 MIM, there exists a PPT simulator S such that
the following ensembles are computationally indistinguishable:

{MIM⟨C,R⟩(ṽ, z)}λ∈N,v∈{0,1}λ,z∈{0,1}∗ and {SIM⟨C,R⟩(1λ, z)}λ∈N,v∈{0,1}λ,z∈{0,1}∗

Additionally, we require the following properties to hold for the synchronous
non-malleable commitments: 1) Non-malleability with respect to extraction: this
notion requires the existence of an extractor ExtNMCom that is able to extract
a message from a well-formed commitment generated by MIM. Moreover, the
output distribution of ExtNMCom remains the same independently of whether
the adversary is receiving honest or simulated commitments. 2) Last-message
11 A synchronizing adversary is an adversary that sends its message for every round

before obtaining the honest party’s message for the next round.
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pseudo-randomness: the last message generated by C is computationally indis-
tinguishable from a random string.

Formal definitions of this properties can be found in the full version. In the
work of Choudhuri et al. [10], it is observed that the (synchronous version of the)
3-round non-malleable commitments of [27] satisfies all the mentioned properties.

2.2 Trapdoor Generation Protocol with Bounded Rewind Security

This section is taken almost verbatim from [4, 10] and introduces the notion of
trapdoor generation protocols with bounded rewind security.

Syntax. A trapdoor generation protocol TDGen = (TDGen1, TDGen2, TDGen3,
TDOut, TDValid, TDExt) is a three round protocol between two parties - a sender
(trapdoor generator) S and a receiver R that proceeds as follows:

1. Round 1 - TDGen1(·):
S computes and sends tdS→R

1 ← TDGen1(RS) using a random string RS .
2. Round 2 - TDGen2(·):

R computes and sends tdR→S
2 ← TDGen2(tdS→R

1 ; RR) using randomness RR.
3. Round 3 - TDGen3(·):

S computes and sends tdS→R
3 ← TDGen3(tdR→S

2 ; RS).
4. Output - TDOut(·):

The receiver R outputs 0/1← TDOut(tdS→R
1 , tdR→S

2 , tdS→R
3 ).

5. Trapdoor Validation Algorithm - TDValid(·):
Taking as an input (trap, tdS→R

1 ), output a single bit 0 or 1 that determines
whether the value trap is a valid trapdoor corresponding to the message td1
sent in the first round of the trapdoor generation protocol.

In the remainder of this work, to not overburden the notation, we indicate
td1 to be tdS→R

1 , td2 to be tdR→S
2 , and td3 to be tdS→R

3 .
The algorithm TDValid is public and everyone can verify that trap is a valid

trapdoor for a first round message td1.
Extraction. Furthermore, we require the existence of a PPT extractor algorithm
TDExt that, given a set of values12 (td1, {tdi

2, tdi
3}3

i=1) such that td1
2, td2

2, td3
2 are

distinct and TDOut(td1, tdi
2, tdi

3) = 1 for all i ∈ [3], outputs a trapdoor trap such
that TDValid(trap, td1) = 1.
1-Rewinding Security. Roughly speaking, if a trapdoor generation protocol is 1-
rewind secure then no cheating PPT receiver R⋆ can learn a valid trapdoor even
when R⋆ queries S on two (possibly adaptive) different second-round messages,
thereby receiving two different third round responses from the sender. The formal
definition of this notion can be found in the full version.
12 These values can be obtained from the malicious sender via an expected PPT rewind-

ing procedure. The expected PPT simulator in our applications performs the neces-
sary rewindings and then inputs these values to the extractor TDExt.
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3 Rewind-Secure OT and MPC

We assume familiarity with the standard notions of multi-party computation
secure with unanimous and identifiable abort under black-box simulation in the
plain model. We refer to the full version for more details. In this section, we in-
troduce the definitions of two rewind-secure primitives, namely oblivious trans-
fer (OT) and MPC. We start with the definition of our new notion of special
rewindable OT. Afterwards, we define what it means for an MPC protocol to be
rewindable secure.

Definition 3.1 (Special B-Rewindable OT Security). Let OT = (OT1, OT2,
OT3, OT4) be an OT protocol, then we say that OT is special B-rewindable se-
cure against malicious senders with B rewinds if the output distributions of the
adversary in the experiments E0

k and E1
k (where Eσ

k is defined below) are com-
putationally indistinguishable for any k ∈ [B] and all {b0[j], b1[j]}j∈[B] with
bσ[j] ∈ {0, 1}λ for all j ∈ [B] and σ ∈ {0, 1} and with b0[k] = b1[k].

Adversary A Challenger C

ot1 ← OT1(1λ):

◁−−−−−−−−−−−−−−−−−−−−−−−−−−
ot1

−−−−−−−−−−−−−−−−−−−−−−−−−−▷
{ot2[j]}j∈[B]

For each j ∈ [B]:
ot3[j]← OT3(ot1, ot2[j], bσ [j])

◁−−−−−−−−−−−−−−−−−−−−−−−−−−
{ot3[j]}j∈[B]

−−−−−−−−−−−−−−−−−−−−−−−−−−▷
ot4[k]

We note that this definition is equal to the one proposed in [10] except for
the fact that we require the adversary to pick the same input in the k-th slot.

Definition 3.2 (Bounded Rewind-Secure MPC with unanimous abort).
A 4-round MPC protocol MPC for f is a tuple of deterministic polynomial-time

algorithms MPC = {(Next1
i , Next2

i , Next3
i , Next4

i , outputi)}i∈[n] (where the algo-
rithms are defined as in the standard definition of MPC:

Similar to the standard security definition of MPC, we define the real-world
and ideal-world execution.
Ideal Computation. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function and let
I ⊂ [n], of size at most n− 1, be the set of indices of the corrupt parties. Then,
the joint ideal execution of f under (S, I) on input vector x = (x1, . . . , xn),
auxiliary input aux and security parameter λ, denoted by IDEALun-abort

f,I,S(aux)(x, λ),
is defined as in the standard definition of MPC.
Real Execution. Let Π = (P1, . . . , Pn) be an n-party 4-round MPC protocol
and let I ⊆ [n], of size at most n − 1, denote the set of indices of the parties
corrupted by A. The joint execution of Π under (A, I) in the real world, on input
vector x = (x1, . . . , xn), auxiliary input aux and security parameter λ, denoted
by REALΠ,I,A(aux)(x, λ), is defined as the output vector of P1, . . . , Pn and A(aux)
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resulting from the following 4-round protocol interaction. Let H denote the set
of indices of honest parties H = [n] \ I.

- Interaction in Round 1: A receives {msg1
j = Nextj(1λ, xj , ρj)}j∈H and sends

messages {msg′1i }i∈I of its choice. Let msg<2 = {{msg1
j}j∈H, {msg′1i }i∈I} .

- Interaction in Round 2 and 3 with B rewinds:
– A is given {msg2

j = Next2
j (1λ, xj , ρj , msg<2)}j∈H .

– A chooses B second-round messages, namely {msg′2i [k]}i∈I,k∈[B].
– A is given {msg3

j [k] = Next3
j (1λ, xj , ρj , msg<3[k])}j∈H,k∈[B], where

msg<3[k] = {msg<2, {msg2
j}j∈H, {msg′2i [k]}i∈I}.

- A sends third-round message {msg′3i }i∈I of its choice.
- Let msg<4 = {msg<3[1], {msg3

j [1]}j∈H, {msg′3i }i∈I}.
- Interaction in Round 4: A is given fourth-round messages {msg4

j = Next4
j (1λ,

xj , ρj , msg<4)}j∈H. A sends fourth-round messages {msg′4i }i∈I of its choice.

REALI,A(aux)(x, λ) is defined as (yH, z), where yH is the vector of outputs of the
honest parties while z is the output of the adversary.

Security Definition. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party func-
tion. A protocol Π securely computes the function f with unanimous abort and
bounded B-rewind security if for every PPT real-world adversary A there exists a
PPT simulator S such that for every I ⊂ [n] of size at most n− 1, the following
ensembles are computationally indistinguishable:{

REALΠ,I,A(aux)(x, λ)
}

x∈({0,1}∗)n,λ∈N
and

{
IDEALun-abort

f,I,S(aux)(x, λ)
}

x∈({0,1}∗)n,λ∈N
.

4 From MPC with Unanimous Abort to B-rewindable
MPC with Unanimous Abort

In this section, we present a compiler that makes a four-round MPC protocol
ΠMPC secure with unanimous abort in the plain model bounded-rewind-secure,
resulting in the protocol Πrmpc, while preserving all its other security properties.
We begin with a high-level overview of the compiler and establish some notation
for simplicity. Let msgr

i denote the message broadcast by Pi in Round r (r ∈ [4])
of ΠMPC.
The two-party case. For simplicity, we start by considering the 2-party case,
where one of the parties, here P2, is corrupted. To make ΠMPC bounded-rewind-
secure, we need to ensure that security is maintained even if P2 receives a set
of multiple third-round messages from P1 (namely, msg3

1) as a response to its
chosen set of second-round messages (namely, msg2

2).
In our protocol the party Pi (i ∈ [2]) computes a garbled circuit GCi that

has hard-coded inside its input xi, randomness ri and the protocol transcript of
ΠMPC until Round 2 i.e. {msg1

j , msg2
j}j∈[2] and takes as input the set of third-

round messages {msg3
j}j∈[2] and outputs Pi’s fourth-round message i.e. msg4

i . In
the last round of Πrmpc, these garbled circuits are then evaluated to obtain the
fourth-round messages of ΠMPC. For the evaluation of these garbled circuits, we
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need the parties to be able to obtain the labels corresponding to {msg3
j}j∈[2].

For this purpose we use the rely on an oblivious transfer OT protocol.13 In the
above context, P1 does not send msg3

1 directly in Round 3 of Πrmpc but instead
participates in an OT instance as an OT receiver with input msg3

1; while P2
participates as the sender using as its input the labels of GC2 that were used
to encode the input msg3

1. Similarly, there would be another OT instance with
P2 as the receiver and P1 as the sender for the labels of msg3

2 corresponding
to GC1. It is now evident that the parties can proceed to evaluate the garbled
circuits, obtain the fourth-round messages of ΠMPC and compute the output.
Intuitively, the above approach helps to achieve rewind-security because, in the
security game, the honest party P1 has to send multiple third-round messages
(in round 3 of Πrmpc) which, in our protocol, contain msg3

1 messages under the
hood of OT and are thereby ‘hidden’ from the adversary. In the fourth-round
only one among these third-round messages is ‘opened’ to the adversary which
effectively reduces the security to a single execution of ΠMPC.
The multi-party case. A natural extension of the above 2-party approach to the
multi-party case would be to let each pair of parties, Pi and Pj , engage in an OT
instance (say OTj,i) as an OT receiver and sender respectively to retrieve labels
of msg3

i corresponding to GCj (which would output the fourth-round message of
Pj). However, unlike the 2-party case, a party, for example, Pi is not able to
obtain the labels for all the inputs of GCj , and therefore cannot evaluate GCj . In
more detail, Pi would not have access to the labels corresponding to the input
msg3

k in GCj (where k, j ̸= i). To enable Pi (and everyone else) to recover these
labels, we make Pk reveal the OT randomness that is used as an OT receiver
during the instance OTj,k so that everyone can learn the output of this OT
(i.e. the labels of GCj corresponding to msg3

k). Note that this randomness can
be safely revealed because the adversary learns the OT receiver’s input msg3

k

also in the protocol ΠMPC which is secure with unanimous abort. In light of the
above, we define the security notion of OT with rewindable security against a
malicious sender. This notion is a slightly modified variant of the one used in
[10] and their construction can be easily adapted with minor tweaks to satisfy
our notion. This rewind-secure OT construction also satisfies public verifiability,
enabling all the parties to check the correctness of the OT receiver messages, for
all pairwise instances of the OT, by just checking the transcripts.

Next, we observe that the above approach of using pairwise OTs is vulnerable
to the following attack by a potentially corrupted party Pi : Pi could use different
third-round messages (i.e. msg3

i ) as its input across the n OT instances where it
acts as an OT receiver (one instance for every other party as the sender). This
behaviour violates the security of the underlying MPC since it allows the adver-
sary to recover the fourth-round messages of honest parties (via evaluation of
their respective garbled circuits) computed with respect to different third-round
messages msg3

i . Note that in the underlying protocol ΠMPC the adversary cannot

13 For the wires corresponding to their own third-round message (i.e. msg3
i in GCi), the

labels can be broadcasted directly in the last round.
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launch this attack since honest parties compute their fourth-round message with
respect to the same msg3

i (which is broadcast in round 3 of ΠMPC).
The crux of the above issue is that the labels of GCj corresponding to msg3

i are
tied to a single instance of OT, i.e. the one between Pi and Pj . To resolve this,
we break this one-to-one dependency such that the labels of GCj corresponding
to msg3

i are obtained in a distributed manner across all n OTs where Pi acts as
a receiver. For simplicity, assume that msg3

i contains only a single bit b ∈ {0, 1}
and corresponds to wire w in each of the n garbled circuits. Each garbler Pj

additively shares the labels of wire w of GCj among the parties for b ∈ {0, 1}. Now,
each Pk has an additive share for each of the n garbled circuits corresponding
to wire w and each bit b ∈ {0, 1}. Accordingly, the OT instances between Pi,
acting as the receiver, (who participates with the actual value of bit b as input)
and Pk, acting as the sender, would now involve Pk participating with the two
tuples of n additive shares as its input, where the first tuple comprises of the n
additive shares for b = 0, while the other tuple contains the n additive shares
for b = 1. The above technique ensures that if Pi participates with inconsistent
inputs b across its instances as an OT receiver then neither the label for b = 0
nor for b = 1 will be recovered for any honest party’s garbled circuit. This is
due to the fact that the OT instances with a subset of honest parties as OT
senders would output additive shares corresponding to 0, while the others would
output additive shares corresponding to 1; which is insufficient to reconstruct
either of the labels. The transfer of the additive shares is done using public-
key encryption i.e. by encrypting the relevant share using the public key of the
intended recipient. This allows us to maintain the property that all messages in
Πrmpc are sent over a broadcast channel.

Looking ahead, this is useful to achieve identifiable abort security as it al-
lows the parties to give a corresponding proof of correctness for these messages
in such a way that it can be verified by everyone. In our final construction, how-
ever, the relevant additive shares of the garbled circuits are not used directly
in the OT instances. Instead, the OT senders encrypt each of their tuple of n
additive shares using one-time pads, broadcast these encryptions and use the
corresponding one-time pad keys as inputs to the OT. Note that if the additive
shares were used directly, some of the components of an honest sender’s input
(corresponding to the additive shares given by a corrupt garbler) are adver-
sarially chosen. However, the above described modification using one-time pads
allows us to rely on standard OT security where an honest sender’s input is not
adversarially chosen. This completes the high-level description of our compiler.

Lastly, we highlight an important aspect related to the security of the above
described bounded-rewind-secure MPC construction. Since we allow the adver-
sary to proceed to the evaluation of the garbled circuits and obtain the output
only if it used consistent third-round messages in all the OT instances where it
participated as a receiver, we require the property of ‘simultaneous extractabil-
ity’ from the rewind-secure OT. In more detail, consider multiple OT instances
running in parallel where the receiver is corrupted and the sender is honest. We
require that the simulator of the OT should be able to extract the input of the
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malicious receivers in the same rewinding thread for multiple OT instances. This
is needed to check if the adversary used consistent inputs on behalf of the same
malicious receiver or not, as the latter would result in abort. We show in Sec-
tion 6 that the modified variant of the rewind-secure OT of [10] satisfies this
property of simultaneous extractability.

We now proceed to the formal description of our compiler.
The compiler makes use of the following tools:

– A four-4 MPC protocol ΠMPC with unanimous abort security represented by
the set of functions {(Next1

i , Next2
i , Next3

i , Next4
i , outputi)}i∈[n], where all the

messages are assumed to be sent over a broadcast channel.
– A garbling scheme (garble, eval, simGC) that is assumed to satisfy properties

of privacy (a set of labels, together with the garbled circuit, reveals nothing
about the input the labels correspond to), correctness (the correct evaluation
of the garbled circuit matches the evaluation of the plain circuit), authentic-
ity of input labels (it is not possible to ‘forge’ a different set of valid input
labels from a set of valid input labels) and partial evaluation resiliency (un-
less at least one label corresponding to every bit is obtained, nothing about
the output is revealed). We defer details of these notions to the full version.

– A delayed-input OT protocol, instantiated by the construction in Section 6,
denoted as a sequence of algorithms (rOT1, rOT2, rOT3, rOT4, rOT5, rOT6),
where rOTr (r ∈ [5]) denotes the algorithm to compute the r-th round mes-
sages and rOT6 denotes the algorithm for the output computation. The OT
protocol satisfies special 2-B rewindable security and sender simulatability.

– A CPA-secure public-key encryption scheme PKE = (keygen, enc, dec).

Figure 4.1: Πrmpc

Notation. - Let Circuit Ci,x,ρ,msg<3(msg3
1, msg3

2, . . . , msg3
n) denote the

boolean circuit with hard-wired values i, x, ρ and the transcript msg<3

of the first two rounds of an execution of ΠMPC that upon receiv-
ing n inputs msg3

1, msg3
2, . . . , msg3

n (i.e. the third-round broadcast
messages of the execution of ΠMPC) computes Next4

i (x, ρ, msg<4 =
{msg<3, msg3

1, msg3
2, . . . , msg3

n}). For simplicity, we assume that each
third-round broadcast message is ℓ bits long – so the circuit has L = nℓ
input bits.

- Let OTj,k denote an instance of a B-rewind secure OT (denoted as
(rOT1, rOT2, rOT3, rOT4, rOT5, rOT6)) where Pj acts as the sender
and Pk acts as the receiver.

Private Input. Pi has private input xi ∈ {0, 1}λ and randomness ρi.
Output. y = f(x1, . . . , xn) or ⊥.
Round 1. Each Pi does the following:
1. Run the setup of the PKE scheme as (pki, ski)← keygen(1λ; RPKE).
2. Compute the first-round message of ΠMPC as msg1

i ← Next1
i (xi; ρi).



18 M. Ciampi, D. Ravi, L. Siniscalchi, and H. Waldner

3. Compute the first-round OT message as the receiver – i.e. for each j ∈
[n] corresponding to the instance OTj,i (where Pi acts as the receiver),
sample randomness R1

j,i and compute rotj,i
1 ← rOT1(1λ; R1

j,i).
4. Broadcast

(
pki, msg1

i , {rotj,i
1 }j∈[n]

)
.

Round 2. Each Pi does the following:
1. If any party aborts in the previous round, honest parties output ⊥. a

2. Compute the second-round message of ΠMPC as msg2
i ←

Next2
i (xi, ρi, msg<2), where msg<2 = {msg1

j}j∈[n].
3. Compute the second-round OT message as the sender – for each j ∈

[n] corresponding to the instance OTi,j (where Pi acts as the sender),
sample randomness Si,j and compute roti,j

2 ← rOT2(roti,j
1 ; Si,j).

4. Broadcast
(
msg2

i , {roti,j
2 }j∈[n]

)
.

Round 3. Each Pi does the following:
1. Compute the garbled circuit as (GCi, K⃗i) ← garble(Ci,x,ρ,msg<3 , 1λ;

RGC), where K⃗i denotes the set of labels {K(0)
i,α, K(1)

i,α}α∈[L].
2. For each α ∈ [L] and b ∈ {0, 1}, compute an additive sharing

(K(b)
i,α,1, K(b)

i,α,2, . . . , K(b)
i,α,n) of the label K(b)

i,α.
3. For each α ∈ [L], b ∈ {0, 1} and j ∈ [n] \ {i}, compute the ciphertexts

ct(b)
i,α,j ← enc(pkj , K(b)

i,α,j).
4. Compute the third-round message of ΠMPC as msg3

i ← Next3
i (xi, ρi,

msg<3), where msg<3 = {msg1
j , msg2

j}j∈[n].
5. Compute the third-round OT message as the receiver using as

an input the string msg3
i – for each j ∈ [n] corresponding to

the OT instance OTj,i, sample randomness R3
j,i and run rotj,i

3 ←
rOT3(msg3

i , rotj,i
1 , rotj,i

2 ; R3
j,i).

6. Broadcast
(
{ct(b)

i,α,j}α∈[L],j∈[n]\i,b∈{0,1}, {rotj,i
3 }j∈[n]

)
.

Round 4. Each Pi does the following:
1. For each α ∈ [L], b ∈ {0, 1} and j ∈ [n] \ {i} , compute K(b)

j,α,i ←
dec(ski, ct(b)

j,α,i).
2. For each j, k ∈ [n], check the correctness of rotj,k

3 sent by Pk (this is
possible due to public verifiability of the OT). If the check does not
pass, broadcast ‘abort’ and output ⊥, else, continue.

3. // Recall that the input wires of each GCk (k ∈ [n]) at indices [(j −
1)ℓ + 1, jℓ] correspond to msg3

j and K(b)
k,α,i denotes Pi’s additive share

of the label of GCk corresponding to index α and bit b.
For each j ∈ [n] and β ∈ [ℓ] – let m

(0)
j,β,i = (K(0)

1,(j−1)ℓ+β,i, . . . ,

K(0)
n,(j−1)ℓ+β,i) and m

(1)
j,β,i = (K(1)

1,(j−1)ℓ+β,i, . . . , K(1)
n,(j−1)ℓ+β,i). Sample

random strings q
(0)
j,β,i and q

(1)
j,β,i (to be used as one-time pad keys) and

compute M
(0)
j,β,i = m

(0)
j,β,i + q

(0)
j,β,i and M

(1)
j,β,i = m

(1)
j,β,i + q

(1)
j,β,i.
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4. For each j ∈ [n] corresponding to the OT instance OTi,j (where
Pj participated as a receiver with input msg3

j ) – Compute the
fourth-round OT message as the sender as follows: run roti,j

4 ←

rOT4

(
(q(0)

j,1,i, q
(1)
j,1,i), (q(0)

j,2,i, q
(1)
j,2,i), . . . , (q(0)

j,ℓ,i, q
(1)
j,ℓ,i), roti,j

1 , roti,j
2 , roti,j

3 ;

Si,j

)
.

5. For all OT instances OTj,i where Pi participated as the receiver, com-

pute rotj,i
5 ← rOT5

(
R1

j,i, R3
j,i

)
for all j ∈ [n].

6. Broadcast (GCi, msg3
i , {roti,j

4 }j∈[n], {rotj,i
5 }j∈[n], {M

(0)
j,β,i, M

(1)
j,β,i}j∈[n],β∈[ℓ]).

Output Computation. Each Pi does the following:
1. If any party broadcasted ‘abort’ in Round 4, output ⊥.
2. Compute the output of each OT instance where Pj acts as the receiver

and Pk acts as the sender as follows (where j, k ∈ [n]):
- Compute (qj,1,k, qj,2,k, . . . , qj,ℓ,k) ← rOT6(rotk,j

1 , rotk,j
2 , rotk,j

3 ,

rotk,j
4 , rotk,j

5 , msg3
j ).

- Let msg3
j be the third-round message of ΠMPC broadcast by Pj in

Round 4. Parse msg3
j as msg3

j = bj,1||bj,2|| . . . bj,ℓ.
- For each β ∈ [ℓ], set {K1,(j−1)ℓ+β,k, , . . . , Kn,(j−1)ℓ+β,k} = qj,β,k ⊕

M
(bj,β)
j,β,k , where M

(bj,β)
j,β,k was broadcast by Pk in Round 4.

3. For each garbled circuit GCj (j ∈ [n]) – compute Kj,α =
∑n

k=1 Kj,α,k

for each α ∈ [L].
4. For each GCj (j ∈ [n]), compute msg4

j ← eval(GCj , Kj,1, . . . , Kj,L).
5. Output yi ← outputi(xi, ρi, {msg1

j , msg2
j , msg3

j , msg4
j}j∈[n]).

a we assume that honest parties execute this step in the beginning of each
round.

Theorem 4.1. Assume the existence of a 4-round MPC protocol with unani-
mous abort security against dishonest majority, a CPA-secure public key encryp-
tion scheme, a garbling scheme that is assumed to satisfy properties of privacy,
correctness, authenticity of input labels and partial evaluation resiliency and a
5-round delayed-input oblivious transfer protocol (described in Section 6) sat-
isfying special 2-B rewindable security and sender simulatability. Then, Πrmpc
is a 4-round B-rewindable secure MPC with unanimous abort against dishonest
majority in the plain model.

The above construction can be built based on trapdoor permutations (we
refer to the full version for details on the instantiations of each of the building
blocks). The formal proof of Theorem 4.1 can be found in the full version.
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5 Our Construction: MPC with Identifiable Abort

In this section we present the four-round MPC protocol secure with identifiable
abort. The idea of our construction is to let every participating party prove,
during the execution of the MPC protocol, that it is generating all of its messages
according to the protocol description. To prove the correctness of the generated
messages, each party, in the last round, executes a zap (i.e., a two-round public-
coin WI proof) with every other participating party. These zaps prove that either
all the messages of the MPC protocol are generated correctly or the party has,
earlier in the protocol execution, generated a non-malleable commitment with
respect to a trapdoor, that has been generated using a trapdoor generation
protocol later in the protocol execution. Both, the trapdoor generation protocol
and the non-malleable commitment scheme are also executed in parallel to the
MPC protocol.

To allow the simulator in the security proof of this construction to gener-
ate a valid zap it needs to prove the second part of the relation, i.e. that the
non-malleable commitment is a commitment to the trapdoor generated using the
trapdoor generation protocol. To create such a commitment, the simulator needs
to rewind the overall protocol to extract the trapdoor from the trapdoor gen-
eration protocol. To guarantee that during these rewinds the underlying MPC
protocol is preserved, we can rely on its rewindable security. After the trapdoor is
extracted, the simulator can commit to it in the non-malleable commitment and,
finally, finishes the execution of the zap. We need to require the commitment
scheme to be non-malleable to prevent an adversary from malleability attacks.
An adversary could, for example, if these commitments were malleable, maul one
of them during the simulation and use it to create its own commitment to the
trapdoor of the trapdoor generation protocol and use it to provide an accept-
ing zap even though it did not behave accordingly to the protocol description.
In Figure 5.1 we provide the formal description of our protocol Π ID, for which
we make use of the following tools.

– A public-coin perfectly correct trapdoor generation protocol TDGen = (TDGen1,
TDGen2, TDGen3, TDOut, TDValid, TDExt).

– A perfectly correct 3-round special non-malleable commitment scheme NMCom
= (C, R).

– A perfectly correct 4-round MPC protocol that is 3-rewindable secure with
unanimous abort Π. W.l.o.g. we assume that whenever a party aborts in Π
(i.e., its next message function outputs ⊥) then the party keeps interacting
with the other parties by sending ⊥ anytime that it is suppose to send a
message for Π and replace its output with ⊥. Moreover, if a party receives
⊥ from any other party, it will replace any message of Π (as well as its
output) with ⊥. The construction of Π is described in Section 4 and we
argue that it satisfies perfect correctness in the full version.

– A perfectly correct 2-round public coin WI proof RWI = (P,V) for the
NP-language L characterized by the relation R specified below (we denote
statements and witnesses as st and w, respectively).
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st :=
(

msg<5, {msgℓ}ℓ∈[4] , {nmcℓ}ℓ∈[3], td1, r
)

and w := (x, R, r̃, RNMCom)
R(st, w) = 1 if either of the following conditions is satisfied:
1. Honest: for every ℓ ≤ 4, msgℓ is an honestly computed ℓth round

message in the protocol Π w.r.t. input x, randomness R and the first
(ℓ− 1) round protocol transcript msg<5.

2. Trapdoor: {nmcℓ}ℓ∈[3] is an honest transcript of NMCom w.r.t. input
r̃ and randomness RNMCom (AND) trap = r⊕ r̃ is a valid trapdoor w.r.t.
td1

We also require the domain of the messages of the receivers/verifier of TDGen,
NMCom and RWI to be {0, 1}λ.

Figure 5.1: Π ID

In each round if a set of parties stops replying then all the honest parties
stop and output (⊥, i), where Pi is the party with the smallest index that
did not reply.

Round 1. Pi computes and broadcasts the first round messages of the
following protocols:
1. Rewindable secure MPC Π: msg1,i ← Next1,i(1λ, xi, Ri,⊥).
2. Sender message of TDGen: td1,i ← TDGen1 (Rtd,i).
For every j ̸= i:
3. Sender message of the non-malleable commitment scheme

NMComi→j
1 ← NMCom1(r̃i→j , Ri→j

NMCom) where r̃i→j ← {0, 1}λ.
Round 2. Pi computes and broadcasts the second round messages of the
following protocols:
1. MPC Π: msg2,i ← Next2,i(1λ, xi, Ri, msg<2).
For every j ̸= i:
2. Receiver message of TDGen: tdi→j

2 ← TDGen2(td1,j).
3. Receiver message of the non-malleable commitment scheme

NMComj→i
2 ← NMCom2(nmcj→i

1 ).
Round 3. Pi computes and broadcasts the following messages of the
following protocols:
1. Third round of Π: msg3,i ← Next3,i(1λ, xi, Ri, msg<3)
2. The third round of TDGen: set td2,i = td1→i

2 || . . . ||tdn→i
2 where

tdi→i
2 = ⊥. Compute td3,i ← TDGen3(td2,i).

For every j ̸= i:
(a) The third round of NMCom: NMComi→j

3 ← NMCom3(nmci→j
2 ,

r̃i→j ; Ri→j
NMCom).

(b) The first round of RWI: zapj→i
1 ← {0, 1}λ.

Round 4. Pi does the following: If ∃j ̸= i such that
TDValid(td1,j , td2,j , td3,j) ̸= 1 then output (abort, j) and stop else
compute and broadcast the following messages
// where td2,j := (td1→j

2 || · · · ||tdn→j
2 ).
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1. Fourth round message of the MPC protocol Π: msg4,i ← Next4,i(1λ,

xi, Ri, msg<4)
For every j ̸= i
2. A random value ri→j ← {0, 1}λ.
3. The second round of RWI: Define st :=

(
msg<5,

{
msgℓ,i

}
ℓ∈[4] ,

{nmci→j
ℓ }ℓ∈[3], td1,j , ri→j

)
and w := (xi, Ri,⊥,⊥) and compute

zapi→j
2 ← P(st, w, zapi→j

1 ).
Output Computation Pi computes the following:
1. If ∃j ̸= i and k, s.t. V(st, zapj→k

2 , zapj→k
1 , st) = 0 where st :=(

msg<5,
{

msgℓ,j

}
ℓ∈[4] , {nmcj→k

ℓ }ℓ∈[3], td1,k, rj

)
, output j and stop.

2. Output output(1λ, xi, Ri, msg<5)

Theorem 5.1. Assuming the existence of a public-coin perfectly correct trap-
door generation protocol, a perfectly correct 3-round special non-malleable com-
mitment, a perfectly correct 4-round MPC protocol that is three-rewindable secure
with abort against dishonest majority in the plain model, a perfectly correct 2-
round public-coin WI proof, then Π ID is a four-round MPC secure protocol with
identifiable abort against dishonest majority in the plain model.

The above construction Π ID can be built based on trapdoor permutations (we
refer to the full version for details on the instantiations of each of the building
blocks).

Below, we describe the simulation. We denote the set that contains the indices
of all the corrupted parties as I. Before describing how our simulator S works,
we define an algorithm M that we refer to as the augmented machine. The
augmented machine internally runs the adversary A (we refer to this as the left
interface), and acts as a proxy between A and its external interface (which we
denote as the right interface) with respect to the messages of Π. At a high level,
M filters the messages of Π that will be forwarded to the simulator of Π denoted
by Π.S, and forwards the replies received from Π.S to A. The way in whichM
and Π.S interact with each other is regulated by our simulator S, that internally
runs (and has full control of) M and Π.S.

The reason why we describe our simulator via the augmented machineM is
to deal with the rewinds that the simulator of Π might do. We refer to Figure 5.2
and Figure 5.3 for the formal description of M and S respectively.

Figure 5.2: M(ρA, ρ)

Unless otherwise specified, in each round if a set of parties stops replying
then all the honest parties stop and output abort together with the index
of the party with the smallest index to indicate which is the aborting
party.
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Initialization Run A using the randomness ρA and use the randomness
ρ to compute all the messages described below.
Round 1.

– Upon receiving the message msg1,i from the right session where i ∈ I
do the following.
1. Compute td1,i ← TDGen1 (Rtd,i).
For every j ̸= i:
2. Compute NMComi→j

1 ← NMCom1(r̃i→j , Ri→j
NMCom) where r̃i→j ←

{0, 1}λ.
3. Broadcast {NMComi→j

1 }j∈[n]\{i}, td1,i, msg1,i.
– Upon receiving the first round from A, for each i ∈ I forward msg1,i

to the right interface and continue as follows.
Round 2.

– Upon receiving the message msg2,i from the right interface where i ∈ I
do the following:
1. Compute the receiver message of TDGen: tdi→j

2 ← TDGen2(td1,j).
2. Compute the receiver message of the non-malleable commitment

scheme NMComj→i
2 ← NMCom2(nmcj→i

1 ).
– Broadcast {NMComj→i

1 , tdi→j
2 }j∈[n]\{i}, msg2,i.

– Upon receiving the second round from A, for each i ∈ I forward
msg2,i to the right interface and continue as follows.

Round 3.
– Upon receiving the message msg3,i from the right session where i ∈ I

do the following:
1. Compute the third round of TDGen: set td2,i = td1→i

2 || . . . ||tdn→i
2

where tdi→i
2 = ⊥ and compute td3,i ← TDGen3(td2,i)

For every j ̸= i:
(a) Compute the third round of NMCom: NMComi→j

3 ←
NMCom3(nmci→j

2 , r̃i→j ; Ri→j
NMCom).

(b) Compute the first round of RWI: zapj→i
1 ← {0, 1}λ.

2. Broadcast {NMComi→j
3 , zapj→i

1 }j∈[n]\{i}, td3,i, msg3,i

Upon receiving the third round from A, for each i ∈ I do the following.
Check abort. On the behalf of the honest party Pi do the following: If
∃j ̸= i such that TDValid(td1,j , td2,j , td3,j) ̸= 1 then let j be the smallest
of such indexes, send (abort, j) to the ideal functionality and output the
view generated so far and stop. Else for each i ∈ I do the following:
Check if the trapdoor has been already extracted. Send get trap
to the right interface. If the reply received from the right interface is
02λ then go to Rewinds. Else, if the reply is {trapj}j∈I such that for
each j ∈ I TDValid(trapj , tdj) = 1 then send {msg3,i}i∈I to the right
interface, and upon receiving the message msg4,i for all i ∈ I from the
right interface go to Round 4.
Rewinds.
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1. Rewind A to the end of round 1 and freeze the main thread at this
point. Then, create a set of T (to be determined later) rewinding
threads, where on each thread, only rounds 2 and 3 of the protocol
are executed using fresh randomness for each primitive.

2. For each look-ahead thread, define a thread to be GOOD with respect
to Pi if for all malicious parties Pj

– Pj does send its third round messages.
– TDValid(td1,j , td2,j , td3,j) = 1 where td2,j is as computed in round

3.
3. The number of threads T created is such that at least 3 GOOD threads

exist.
Trapdoor extraction.
1. For every corrupted party Pj , extract a trapdoor trapj by running

the trapdoor extractor TDExt using the transcript of the trapdoor
generation protocol with Pj playing the role of the trapdoor gen-
erator from any 3 GOOD threads. Specifically, compute trapj ←
TDExt(td1, {tdk

2 , tdk
3}3

k=1) where (td1, tdk
2 , tdk

3) denotes the transcript
of the trapdoor generation protocol with Pj as the sender of the k-th
GOOD thread.

2. Send (set trap, {trapj}j∈I) to the right interface.
3. Go back to the pre-rewinds thread, send {msg3,i}i∈I to the right

interface. Upon receiving the message msg4,i from the right interface
for all i ∈ I continue as follows

Round 4. For all i ∈ I
4. Set ri→j ← trapj ⊕ r̃i→j

5. Compute RWI:
Define st :=

(
msg<5,

{
msgℓ,i

}
ℓ∈[4] , {nmci→j

ℓ }ℓ∈[3], td1,i, ri→j
)

and

w :=
(
⊥,⊥, r̃i→j , Ri→j

NMCom

)
and compute zapi→j

2 ← P(st, w, zapi→j
1 ).

End of the simulation For all i ∈ I
1. If ∃j ̸= i and k, s.t. V(st, zapj→k

2 , zapj→k
1 , st) = 0 where st :=(

msg<5,
{

msgℓ,j

}
ℓ∈[4] , {nmcj→k

ℓ }ℓ∈[3], td1,k, rj→k
)

, let j be the small-
est of such indexes such that this holds, then send (abort, j) to the
ideal functionality and output the view generated so far.

Figure 5.3: S

– Start S using randomness of appropriate length and initialize trap =
02λ.

– Forward any query made by S directed to the adversarial interface to
the right interface of M.

– Upon receiving a query from S directed to the ideal functionality
forward the query to it.
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– Upon receiving (set trap, y) from M set trap← y.
– Upon receiving the command get trap from M send trap to the right

interface of M.
– Upon receiving the command (abort, j) from M forward it to the

ideal functionality.
– Upon receiving the messages {msgk,i}i∈I from the right interface of
M, rewind S up to the k-th round and forward {msgk,i}i∈I to S.a

– Whenever S stops, stop and output whatever S outputs.
a Note that S has full control of Π.S, hence it can rewind Π.S at its will. In

the security proof such rewinds need to be handled with some care as we will
show in the formal proof.

The indistinguishability proof of Theorem 5.1 can be found in the full version.

6 Special BOT-Rewindable Secure Oblivious Transfer

Now, we present a modified version of the compiler of Choudhuri et al. [10]
that achieves our new notion of special BOT-rewindable security and sender
simulatability. The compiler makes use of the following tools:

- A delayed-input oblivious transfer protocol OT′ = (OT′1, OT′2, OT′3, OT′4, OT′5)
with the following properties: one-sided simulation security, and 2-extractability.
In the full version we recall the oblivious transfer protocol of [34] and observe
that it has the desired properties.

- A garbled circuit (garble, eval, simGC) that is assumed to satisfy privacy, per-
fect correctness, authenticity of input labels and partial evaluation resiliency.

Figure 6.1: BOT-rewindable Compiler OT

Private Inputs. The sender uses as its private input two lists (L0, L1),
where each list consists of l bit strings of length λ, i.e. Lb = {yi,b}i∈[l]
and yi,b ∈ {0, 1}λ. The receiver uses as its private input a vector x⃗ that
consists of l bits, i.e. x⃗ = (x1, . . . , xl).
Output. The receiver obtains the values {yi,xi

}i∈[l].
Round 1. (Receiver)
1. Compute the first round message of all the OTs, i.e. for all i ∈ [n], k ∈

[BOT], oti,k
1 ← OT1(1λ, r1

i,k). We refer to index i as the outer index
and k as the inner index.

2. Output {oti,k
1 }i∈[n],k∈[BOT] to the sender.

Round 2. (Sender)
1. Compute the second round message of all the OTs, i.e. for all i ∈

[n], k ∈ [BOT], oti,k
2 ← OT′1(oti,k

1 ; r2
i,k).

2. Output {oti,k
2 }i∈[n],k∈[BOT] to the receiver.

Round 3. (Receiver)
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1. Encode the input x⃗ using n additive shares, i.e. sample b⃗j ← {0, 1}l

for all j ∈ [n− 1] and compute b⃗n :=
⊕n−1

j=1 b⃗j .
2. Select one of the OT′ instances for all of the outer indexes i, i.e. sample

σi ← [BOT] for all i ∈ [n].
3. Use the input b⃗i to compute oti,σi

3 ← OT′3(⃗bi, {oti,σi

j }j∈[2]; r3
i ). The

other OTs are discontinued.
4. Output {oti,σi

3 }i∈[n] to the sender.
Round 4. (Sender)
1. Compute the garbled circuit (GC, {Ki,b}i∈[n],b∈{0,1}) :=

garble(COT[{yi,0}i∈[l], {yi,1}i∈[l]]), where the circuit COT[{yi,0}i∈[l],
{yi,1}i∈[l]] on input x⃗1, . . . , x⃗l outputs {yi,xi

}i∈[l] with x⃗ = (x⃗1, . . . , x⃗l)
:=

⊕n
i=1 b⃗i.

2. For all i ∈ [n], compute oti,σi

4 ← OT′4({Ki,b}b∈{0,1}, {oti,σi

j }j∈[3]; r4
i )

3. Output {oti,σi

4 }i∈[n] and GC to the receiver.
Round 5. (Receiver)
1. Output (r1

σi,i, r3
i )i∈[n] to the sender.

Output Computation. (Receiver)
1. For all i ∈ [n], compute K̃i := OT′5(⃗bi, {oti,σi

j }j∈[4]).
2. Output {y′i}i∈[l] := eval(GC, {K̃i}i∈[n]).

Theorem 6.1. Assuming the existence of a delayed-input oblivious transfer pro-
tocol that satisfies one-sided simulation security, and 2-extractability, and a gar-
bled circuit that satisfies privacy, perfect correctness, authenticity of input labels
and partial evaluation resiliency, then the OT (described above) is an oblivious
transfer protocol with special BOT-rewindable and sender simulatability.

The above construction can be built based on trapdoor permutations (we
refer to the full version for details on the instantiations of each of the build-
ing blocks). In the remainder of this section we argue informally about sender
simulatability, the proof can be found in the full version.
Sender Simulatability for parallel executions of OT. Our construction
of B-rewindable secure MPC Πrmpc in Section 4 uses the OT defined in this
section as a building block. It is crucial for proving the security of Πrmpc that
it is possible to extract from all the malicious receivers at the same time. In
more detail, the simulator SOT of OT proceeds to the extraction via rewinds
(i.e. sending to the adversary a 2nd round of OT computed with new random-
ness), therefore the simulator of the OT should be able to extract the inputs
of malicious receivers in the same rewinding thread for multiple OT instances
that are executed in parallel. We refer to this property informally as simultane-
ous extractability. We therefore define SOT when multiple, say m2, executions of
the protocol OT of Figure 6.1 are executed in parallel, with a single execution
corresponding to each pair of parties, where m denotes the number of parties.
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Let us indicate with OT′ the underlying OT protocol that is used in Figure 6.1.
We discuss now the high-level overview of SOT. Recall that in the rewind-secure
OT construction of Figure 6.1, the OT receiver chooses a set of indices among
the underlying OT′ instances that it wishes to continue. However, the adversary
acting on behalf of the OT receiver can choose to reveal a different set of indices
across different rewinds of the simulator. Note that, to extract the receiver’s
input used in an instance of OT′, the simulator requires two transcripts where
the receiver chooses the same index. Therefore, in order to extract the input of
malicious receivers across multiple OT instances in the same rewind thread, it
is crucial that the indices for all the OT instances have appeared at least once
previously in the rewind thread in which we are able to extract. Based on the
above, the natural simulation strategy would be to continue rewinds until the
above condition occurs i.e. until there occurs a rewinding thread such that the
indices for all the OT instances have appeared at least once previously (we refer
to this as a collision). It is important to notice that if in a rewinding thread
a collision does not appear, then SOT obtains a transcript with a new index.
Therefore, it is sufficient for SOT to rewind until it finds a collision. Unfortu-
nately, simulation based on the above natural halting condition suffers from the
following issue: if the simulator stops the first time it sees a transcript having the
set of indices seen earlier, then the distribution of the transcripts output by the
simulator is biased towards more frequently appearing indices that appeared in
earlier rewinds. Therefore, the simulated view is not indistinguishable from the
real view of the adversary. A similar issue was observed in the zero-knowledge
protocol of [30], where the authors proposed a new halting condition of the simu-
lator to maintain the indistinguishability of the views. We adopt their solution in
the design of our simulation strategy. In more detail, for a better understanding,
we elaborate on the issue of [30] and describe how their scenario is analogous to
us. The authors of [30] consider N parallel instances of the following four-round
ZK protocol: the verifier commits to a challenge in the 1st round and opens it in
the 3rd round. In the 4th round the prover answers to the challenge. In particu-
lar, the verifier chooses t among the N instances for which it opens the challenge.
The prover, in round 4, finishes the ZK protocol for the revealed challenges. The
simulator S on behalf of the honest prover should be able to cheat w.r.t. all the
indices (of the instances) opened by the verifier. In order to do that S rewinds
the malicious verifier V ∗, and succeeds if each of the t indices opened by V ∗ has
appeared in at least one of the earlier rewinds (a collision occurs). Note that V ∗

can choose different indices during different rewinds. However, when S fails to
cheat it learns at least one new index that did not occur in any of the previous
rewinds. In [30] it is pointed out that if S stops as soon as it can simulate suc-
cessfully, then the simulated view could be distinguishable from the real world
view of V ∗ due to the same reasons explained above (in the context of OT). It is
easy to see that SOT could collect the indices in the same way as S. It remains
to argue that the strategies with which the malicious receiver can open the OT′
indices are a subset of the one that V ∗ can perform. Consider an execution of OT
where the malicious receiver opens n indices k1, . . . , kn as opposed to t indices
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i1, . . . , it given by V ∗. It easy to see that N of [30] corresponds to nB in our
case. For simplicity, let us assume that the underlying OT′ instances are labeled
{1, . . . , nB}, then each kj has a value only in {(j − 1) · B + 1, . . . , j · B}, with
j ∈ [n]. Therefore, this corresponds to a strategy of V ∗ where for each ij , V ∗

chooses value only in {j − 1 · ( N
t ) + 1, . . . , j · N

t }, with j ∈ [t].
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