Skip to main content

Novel Approaches for the Development of Trusted IoT Entities

  • Conference paper
  • First Online:
ICT Systems Security and Privacy Protection (SEC 2022)

Abstract

The Internet of Things (IoT) is a paradigm allowing humans and smart entities to be interconnected anyhow and anywhere. Trust is fundamental in order to allow communication among these actors. In order to guarantee trust in an IoT entity, we believe that it must be considered during the whole System Development Life Cycle (SDLC). Anyhow, we think that usual development techniques are not effective for the IoT. For this reason, in this paper, we describe a methodology to develop an IoT entity by proposing a holistic approach implementing three different techniques: a bottom-up approach, a top-down approach and a trusted block development. Firstly, the top-down approach will start from the general IoT entity going down to its specific functionalities. Secondly, the bottom-up approach will focus on the contexts related to the IoT entity. It starts from basic ones, going up aggregating them to the composition of the IoT entity as a whole. Finally, the trusted block development will define different blocks of code related to functionalities and contexts. Every block can be considered a trust island where the contexts and functionalities are specified only for a particular block.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/.

  2. 2.

    https://cloudsecurityalliance.org/working-groups/software-defined-perimeter.

  3. 3.

    http://www.waverleylabs.com/software-defined-network-sdn-or-software-defined-perimeter-sdp-whats-the-difference/.

References

  1. Carmely, T.: Using finite state machines to design software. EE Times (2009)

    Google Scholar 

  2. Čolaković, A., Hadžialić, M.: Internet of Things (IoT): a review of enabling technologies, challenges, and open research issues. Comput. Netw. 144, 17–39 (2018)

    Article  Google Scholar 

  3. Erickson, J.: Trust metrics. In: International Symposium on Collaborative Technologies and Systems, CTS 2009, pp. 93–97. IEEE (2009)

    Google Scholar 

  4. Feamster, N., Rexford, J., Zegura, E.: The road to SDN: an intellectual history of programmable networks. ACM SIGCOMM Comput. Commun. Rev. 44(2), 87–98 (2014)

    Article  Google Scholar 

  5. Fernandez-Gago, C., Moyano, F., Lopez, J.: Modelling trust dynamics in the internet of things. Inf. Sci. 396, 72–82 (2017)

    Article  Google Scholar 

  6. Ferraris, D., Daniel, J., Fernandez-Gago, C., Lopez, J.: A segregated architecture for a trust-based network of internet of things. In: 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC) (CCNC 2019), Las Vegas, USA (2019)

    Google Scholar 

  7. Ferraris, D., Fernandez-Gago, C.: Trustapis: a trust requirements elicitation method for IoT. In: International Journal of Information Security, pp. 1–17 (2019)

    Google Scholar 

  8. Ferraris, D., Fernandez-Gago, C., Lopez, J.: A trust by design framework for the internet of things. In: NTMS 2018 - Security Track (NTMS 2018 Security Track), Paris, France (2018)

    Google Scholar 

  9. Ferraris, D., Fernandez-Gago, C., Lopez, J.: A model-driven approach to ensure trust in the IoT. Human-Centric Comput. Inf. Sci. 10(1), 1–33 (2020)

    Article  Google Scholar 

  10. Fraser, C.W., Henry, R.R.: Hard-coding bottom-up code generation tables to save time and space. Softw. Pract. Exp. 21(1), 1–12 (1991)

    Article  Google Scholar 

  11. Ganchev, I., Ji, Z., O’Droma, M.: A generic iot architecture for smart cities (2014)

    Google Scholar 

  12. Hoffman, L.J., Lawson-Jenkins, K., Blum, J.: Trust beyond security: an expanded trust model. Commun. ACM 49(7), 94–101 (2006)

    Article  Google Scholar 

  13. Jørgensen, M.: Top-down and bottom-up expert estimation of software development effort. Inf. Softw. Technol. 46(1), 3–16 (2004)

    Article  Google Scholar 

  14. Kozlov, D., Veijalainen, J., Ali, Y.: Security and privacy threats in IoT architectures. In: BODYNETS, pp. 256–262 (2012)

    Google Scholar 

  15. Moyano, F., Fernandez-Gago, C., Lopez, J.: A conceptual framework for trust models. In: Fischer-Hübner, S., Katsikas, S., Quirchmayr, G. (eds.) TrustBus 2012. LNCS, vol. 7449, pp. 93–104. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32287-7_8

    Chapter  Google Scholar 

  16. Patel, P., Pathak, A., Teixeira, T., Issarny, V.: Towards application development for the internet of things. In: Proceedings of the 8th Middleware Doctoral Symposium, p. 5. ACM (2011)

    Google Scholar 

  17. Pavlidis, M.: Designing for trust. In: CAiSE (Doctoral Consortium), pp. 3–14 (2011)

    Google Scholar 

  18. Reaidy, P.J., Gunasekaran, A., Spalanzani, A.: Bottom-up approach based on internet of things for order fulfillment in a collaborative warehousing environment. Int. J. Prod. Econ. 159, 29–40 (2015)

    Article  Google Scholar 

  19. Roman, R., Najera, P., Lopez, J.: Securing the internet of things. Computer 44(9), 51–58 (2011)

    Article  Google Scholar 

  20. Valdivieso Caraguay, A.L., Benito Peral, A., Barona Lopez, L.I., Garcia Villalba, L.J.: SDN: evolution and opportunities in the development IoT applications. Int. J. Distrib. Sensor Netw. 10(5), 735142 (2014)

    Google Scholar 

  21. Van Kranenburg, R., Bassi, A.: IoT challenges. Commun. Mobile Comput. 1(1), 9 (2012)

    Article  Google Scholar 

  22. Wagner, F., Schmuki, R., Wagner, T., Wolstenholme, P.: Modeling Software with Finite State Machines: A Practical Approach. Auerbach Publications, Boca Raton (2006)

    Book  Google Scholar 

  23. Xu, T., Wendt, J.B., Potkonjak, M.: Security of IoT systems: design challenges and opportunities. In: 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 417–423. IEEE (2014)

    Google Scholar 

  24. Yan, Z., Zhang, P., Vasilakos, A.V.: A survey on trust management for internet of things. J. Netw. Comput. Appl. 42, 120–134 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

This work has been supported by the Spanish project SecureEDGE (PID2019-110565RB-I00), by the EU project H2020-MSCA-RISE-2017 under grant agreement No. 777996 (Sealed-GRID) and the EU H2020-SU-ICT-03-2018 Project No. 830929 CyberSec4Europe (cybersec4europe.eu). Moreover, we thank Huawei Technologies for their support.

This work reflects only the authors view and the Research Executive Agency is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Ferraris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferraris, D., Fernandez-Gago, C., Lopez, J. (2022). Novel Approaches for the Development of Trusted IoT Entities. In: Meng, W., Fischer-Hübner, S., Jensen, C.D. (eds) ICT Systems Security and Privacy Protection. SEC 2022. IFIP Advances in Information and Communication Technology, vol 648. Springer, Cham. https://doi.org/10.1007/978-3-031-06975-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06975-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06974-1

  • Online ISBN: 978-3-031-06975-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics