Skip to main content

Post-Quantum Cheating Detectable Private Information Retrieval

  • Conference paper
  • First Online:
ICT Systems Security and Privacy Protection (SEC 2022)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 648))

Abstract

Private Information Retrieval (PIR) allows a user to privately retrieve any item from a database such that the server(s) holding the database cannot learn any information about the user’s choice. Most existing PIR protocols focus on minimizing the communication cost for retrieving one bit from the database, in an honest-but-curious server model. Dishonest servers were studied in an ad-hoc fashion including the robust PIR and verifiable PIR for cheater identification, where the former further guarantees error correction but only works when the number of dishonest servers are bounded and the latter works for any number of dishonest servers but has to rely on the intractability assumption of certain computational hard problems and a tag published by the honest data owner. We initiate a systematic study of the fundamental problem of cheating detection for PIR (cd-PIR). We first show a theoretic result that rules out the possibility of information-theoretically secure cd-PIR against arbitrary number of cheaters (even allowing the data owner to publish a tag and lifting cheater identification), which justifies our study of computational cd-PIR. On the positive side, we show that computational cd-PIR against arbitrary number of cheaters can be achieved much more efficiently than all previous constructions and with weaker cryptography hardness assumptions. In particular, we obtain efficient cheating detection for PIR with more than one server that resists quantum algorithm for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems. J. ACM 51(4), 595–605 (2004)

    Article  MathSciNet  Google Scholar 

  2. Angel, S., Chen, H., Laine, K., Setty, S.: PIR with compressed queries and amortized query processing. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 962–979 (2018)

    Google Scholar 

  3. Angel, S., Setty, S.: Unobservable communication over fully untrusted infrastructure. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 551–569 (2016)

    Google Scholar 

  4. Beimel, A., Stahl, Y.: Robust information-theoretic private information retrieval. J. Cryptol. 20(3), 295–321 (2007)

    Article  MathSciNet  Google Scholar 

  5. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_28

    Chapter  Google Scholar 

  6. Cheng, R., et al.: Talek: private group messaging with hidden access patterns. In: Annual Computer Security Applications Conference, pp. 84–99 (2020)

    Google Scholar 

  7. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proceedings of IEEE 36th Annual Foundations of Computer Science, pp. 41–50 (1995)

    Google Scholar 

  8. Devet, C., Goldberg, I., Heninger, N.: Optimally robust private information retrieval. In: Presented as part of the 21st USENIX Security Symposium (USENIX Security 2012), pp. 269–283 (2012)

    Google Scholar 

  9. Dvir, Z., Gopi, S.: 2-server PIR with subpolynomial communication. J. ACM 63(4), 1–15 (2016)

    Article  MathSciNet  Google Scholar 

  10. Efremenko, K.: 3-query locally decodable codes of subexponential length. SIAM J. Comput. 41(6), 1694–1703 (2012)

    Article  MathSciNet  Google Scholar 

  11. Goldberg, I.: Improving the robustness of private information retrieval. In: 2007 IEEE Symposium on Security and Privacy (SP 2007), pp. 131–148 (2007)

    Google Scholar 

  12. Green, M., Ladd, W., Miers, I.: A protocol for privately reporting ad impressions at scale. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1591–1601 (2016)

    Google Scholar 

  13. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. STOC 1996, Association for Computing Machinery, p. 212–219 (1996)

    Google Scholar 

  14. Gupta, T., Crooks, N., Mulhern, W., Setty, S., Alvisi, L., Walfish, M.: Scalable and private media consumption with popcorn. In: 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2016), pp. 91–107 (2016)

    Google Scholar 

  15. Gyongyosi, L., Imre, S.: A survey on quantum computing technology. Comput. Sci. Rev. 31, 51–71 (2019)

    Article  MathSciNet  Google Scholar 

  16. Häner, T., Jaques, S., Naehrig, M., Roetteler, M., Soeken, M.: Improved quantum circuits for elliptic curve discrete logarithms. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 425–444. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_23

    Chapter  Google Scholar 

  17. Juels, A.: Targeted advertising ... and privacy too. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 408–424. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_30

    Chapter  Google Scholar 

  18. Khoshgozaran, A., Shahabi, C.: Private information retrieval techniques for enabling location privacy in location-based services. In: Bettini, C., Jajodia, S., Samarati, P., Wang, X.S. (eds.) Privacy in Location-Based Applications. LNCS, vol. 5599, pp. 59–83. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03511-1_3

    Chapter  Google Scholar 

  19. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally-private information retrieval. In: Proceedings 38th Annual Symposium on Foundations of Computer Science, pp. 364–373 (1997)

    Google Scholar 

  20. Kwon, A., Lazar, D., Devadas, S., Ford, B.: Riffle: an efficient communication system with strong anonymity. Proc. Priv. Enhancing Technol. 2016(2), 115–134 (2016)

    Article  Google Scholar 

  21. Lueks, W., Goldberg, I.: Sublinear scaling for multi-client private information retrieval. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 168–186. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_10

    Chapter  Google Scholar 

  22. Mittal, P., Olumofin, F., Troncoso, C., Borisov, N., Goldberg, I.: PIR-Tor: scalable anonymous communication using private information retrieval. In: Proceedings of the 20th USENIX Conference on Security (SEC 2011), p. 31 (2011)

    Google Scholar 

  23. Borisov, N., Danezis, G., Goldberg, I.: Dp5: a private presence service. Proc. Priv. Enhancing Technol. 2015(2), 4–24 (2015)

    Article  Google Scholar 

  24. Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.: Quantum resource estimates for computing elliptic curve discrete logarithms. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 241–270. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_9

    Chapter  Google Scholar 

  25. Sassaman, L., Cohen, B., Mathewson, N.: The pynchon gate: a secure method of pseudonymous mail retrieval. In: Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, pp. 1–9 (2005)

    Google Scholar 

  26. National Academies of Sciences, Engineering, and Medicine: Quantum computing: progress and prospects. National Academies Press, Washington, DC (2019)

    Google Scholar 

  27. Microsoft SEAL (release 3.2) Microsoft Research, Redmond (2019). https://github.com/microsoft/SEAL

  28. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  29. Wang, X., Zhao, L.: Verifiable single-server private information retrieval. In: Naccache, D., Xu, S., Qing, S., Samarati, P., Blanc, G., Lu, R., Zhang, Z., Meddahi, A. (eds.) ICICS 2018. LNCS, vol. 11149, pp. 478–493. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01950-1_28

  30. Woodruff, D., Yekhanin, S.: A geometric approach to information-theoretic private information retrieval. In: 20th Annual IEEE Conference on Computational Complexity (CCC 2005), pp. 275–284 (2005)

    Google Scholar 

  31. Yannuzzi, M., Milito, R.A., Serral-Graciá, R., Montero, D., Nemirovsky, M.: Key ingredients in an IoT recipe: Fog computing, Cloud computing, and more Fog computing. In: 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 325–329 (2014)

    Google Scholar 

  32. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length. J. ACM 55(1), 1–16 (2008)

    Article  MathSciNet  Google Scholar 

  33. Zhang, L.F., Safavi-Naini, R.: Verifiable multi-server private information retrieval. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 62–79. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5_5

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for helpful comments to improve the presentation of this paper.

Liang Feng Zhang’s research was supported by Natural Science Foundation of Shanghai under grant 21ZR1443000 and Singapore Ministry of Education under grant RG12/19. Changlu Lin’s research was supported in part by National Natural Science Foundation of China under grant U1705264. Fuchun Lin’s research was supported by EPSRC grant EP/S021043/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuchun Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, L., Lin, C., Lin, F., Zhang, L.F. (2022). Post-Quantum Cheating Detectable Private Information Retrieval. In: Meng, W., Fischer-Hübner, S., Jensen, C.D. (eds) ICT Systems Security and Privacy Protection. SEC 2022. IFIP Advances in Information and Communication Technology, vol 648. Springer, Cham. https://doi.org/10.1007/978-3-031-06975-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06975-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06974-1

  • Online ISBN: 978-3-031-06975-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics