Abstract
The Semantic Web of Things enhances the Internet of Things with Web technologies as well as Knowledge Graphs and reasoning. Traditional reasoners are too heavy in terms of memory footprint and/or processing time to be implementable on things. In this work, we present LiRoT, a lightweight incremental reasoner that can be embedded in constrained objects, so that reasoning on them in a fog architecture becomes possible. The focus of this work is to reduce drastically memory footprint while paying attention to processing time, hence usual optimization techniques are not fully adequate. We provide evaluations that (i) compare our system to the state of the art and (ii) show the effective benefits of the different optimizations we have implemented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Microcontrollers are small processing units designed to run embedded applications, in contrast to more powerful microprocessors that can execute general purpose applications.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
As we herein consider the KB as being an ontology expressed in OWL 2 RL under RDF-based semantics, facts are RDF triples.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
Rulesets are described at https://jena.apache.org/documentation/inference/#RDFSconfiguration.
- 17.
The maximum amount of RAM used by a program throughout its execution.
- 18.
Indeed, these devices have, in addition to a limited memory size for handling the application data (DRAM), the same kind of limitations for storing the program itself (IRAM). The reasoner should also be compiled specifically for the targeted platform, and use platform-specific available libraries.
References
Bassiliades, N., Vlahavas, I.: R-device: a deductive RDF rule language. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 65–80. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30504-0_6
Bobed, C., Yus, R., Bobillo, F., Mena, E.: Semantic reasoning on mobile devices: do androids dream of efficient reasoners? J. Web Seman. 35, 167–183 (2015)
Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena: implementing the semantic web recommendations. In: Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers & Posters, pp. 74–83 (2004)
Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning: a survey and outlook. Data Sci. 1(1–2), 59–83 (2017)
Doorenbos, R.B.: Production Matching for Large Learning Systems. Carnegie-Mellon Univ Pittsburgh PA Dept of Computer Science, Technical report (1995)
Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem. In: Readings in Artificial Intelligence and Databases, pp. 547–559. Elsevier (1989)
Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y.: History matters: incremental ontology reasoning using modules. In: Aberer, K. (ed.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 183–196. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_14
Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: Proceedings of the 12th International Conference on World Wide Web, pp. 48–57 (2003)
Guo, Y., Pan, Z., Heflin, J.: Lubm: a benchmark for owl knowledge base systems. J. Web Seman. 3(2–3), 158–182 (2005)
Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. ACM SIGMOD Rec. 22(2), 157–166 (1993)
Matsakis, N.D., Klock, F.S.: The rust language. ACM SIGAda Ada Lett. 34(3), 103–104 (2014)
Meditskos, G., Bassiliades, N.: Clips-owl: a framework for providing object-oriented extensional ontology queries in a production rule engine. Data Knowl. Eng. 70(7), 661–681 (2011)
Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-scalable RDF store. In: Arenas, M. (ed.) ISWC 2015. LNCS, vol. 9367, pp. 3–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_1
Oliya, M., Pung, H.K.: Towards incremental reasoning for context aware systems. In: Abraham, A., Lloret Mauri, J., Buford, J.F., Suzuki, J., Thampi, S.M. (eds.) ACC 2011. CCIS, vol. 190, pp. 232–241. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22709-7_24
Seitz, C., Schönfelder, R.: Rule-based OWL reasoning for specific embedded devices. In: Aroyo, L. (ed.) ISWC 2011. LNCS, vol. 7032, pp. 237–252. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25093-4_16
Tai, W., Keeney, J., O’Sullivan, D.: Resource-constrained reasoning using a reasoner composition approach. Seman. Web 6(1), 35–59 (2015)
Terdjimi, M., Médini, L., Mrissa, M.: Hylar+ improving hybrid location-agnostic reasoning with incremental rule-based update. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 259–262 (2016)
Terdjimi, M., Médini, L., Mrissa, M.: Web reasoning using fact tagging. In: Companion Proceedings of the The Web Conference 2018, pp. 1587–1594 (2018)
Urbani, J., Margara, A., Jacobs, C., van Harmelen, F., Bal, H.: DynamiTE: parallel materialization of dynamic RDF data. In: Alani, H. (ed.) ISWC 2013. LNCS, vol. 8218, pp. 657–672. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_41
Van Woensel, W., Abidi, S.S.R.: Optimizing semantic reasoning on memory-constrained platforms using the RETE algorithm. In: Gangemi, A. (ed.) ESWC 2018. LNCS, vol. 10843, pp. 682–696. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_44
Wright, I., Marshall, J.A.: The execution kernel of rc++: Rete*, a faster rete with treat as a special case. Int. J. Intell. Game. Simul. 2(1), 36–48 (2003)
Yousefpour, A., et al.: All one needs to know about fog computing and related edge computing paradigms: a complete survey. J. Syst. Architect. 98, 289–330 (2019)
Acknowledgment
This work is supported by grant ANR-19-CE23-0012 from the Agence Nationale de la Recherche, France, for the CoSWoT project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bento, A., Médini, L., Singh, K., Laforest, F. (2022). Do Arduinos Dream of Efficient Reasoners?. In: Groth, P., et al. The Semantic Web. ESWC 2022. Lecture Notes in Computer Science, vol 13261. Springer, Cham. https://doi.org/10.1007/978-3-031-06981-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-06981-9_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06980-2
Online ISBN: 978-3-031-06981-9
eBook Packages: Computer ScienceComputer Science (R0)