
VU Research Portal

Ensemble-Based Fact Classification with Knowledge Graph Embeddings

Joshi, Unmesh; Urbani, Jacopo

published in
The Semantic Web
2022

DOI (link to publisher)
10.1007/978-3-031-06981-9_9

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Joshi, U., & Urbani, J. (2022). Ensemble-Based Fact Classification with Knowledge Graph Embeddings. In P.
Groth, M.-E. Vidal, F. Suchanek, P. Szekley, P. Kapanipathi, C. Pesquita, H. Skaf-Molli, & M. Tamper (Eds.),
The Semantic Web: 19th International Conference, ESWC 2022, Hersonissos, Crete, Greece, May 29 – June 2,
2022, Proceedings (pp. 147-164). (Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 13261 LNCS). Springer Science and Business
Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-06981-9_9

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 29. Mar. 2024

https://doi.org/10.1007/978-3-031-06981-9_9
https://research.vu.nl/en/publications/34e05d67-cc20-4d64-a148-ac2d66b0923f
https://doi.org/10.1007/978-3-031-06981-9_9

Ensemble-Based Fact Classification
with Knowledge Graph Embeddings

Unmesh Joshi(B) and Jacopo Urbani

Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
u.n.joshi@vu.nl, jacopo@cs.vu.nl

Abstract. Numerous prior works have shown how we can use Knowledge Graph
Embeddings (KGEs) for ranking unseen facts that are likely to be true. Much less
attention has been given on how to use KGEs for fact classification, i.e., mark
unseen facts either as true or false. In this paper, we tackle this problem with a
new technique that exploits ensemble learning and weak supervision, following
the principle that multiple weak classifiers can make a strong one. Our method
is implemented in a new system called DuEL. DuEL post-processes the ranked
lists produced by the embedding models with multiple classifiers, which include
supervised models like LSTMs, MLPs, and CNNs and unsupervised ones that
consider subgraphs and reachability in the graph. The output of these classifiers
is aggregated using a weakly supervised method that does not need ground truths,
which would be expensive to obtain. Our experiments show that DuEL produces
a more accurate classification than other existing methods, with improvements
up to 72% in terms of F1 score. This suggests that weakly supervised ensemble
learning is a promising technique to perform fact classification with KGEs.

1 Introduction

Knowledge Graphs (KGs) [26] have emerged as the de-facto standard to share large
amounts of factual knowledge on the Web. A fundamental problem that concerns KGs
is link prediction, i.e., the problem of predicting potential missing links in a KG.

Recently, numerous works [25,40] have shown that Knowledge Graph Embed-
dings (KGEs) models can be used to identify the top k completions for link patterns
(e.g., 〈London,capitalOf,?〉). This operation is useful to identify a smaller set of
promising links, but more work is needed for selecting the correct ones. Consider, for
instance, the case of a human KG curator who is searching for missing links. An embed-
ding model can help they to identify the k most promising links, but in practice only a
small fraction of such a subset is indeed correct. To recognize those, an additional eval-
uation is needed, which might be time consuming if it were conducted manually. This
problem would be solved, or at least reduced, if we have a procedure that directly clas-
sifies potential links with a binary true/false label. Such a procedure could be used to
implement a fully automated KG completion pipeline, or at least would lift the burden
of interpreting ranked lists of potential completions off the user.

Surprisingly, performing fact classification with KGEs is a problem that is not
yet well studied. So far, the research on KGEs has primarily focused on the model

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 147–164, 2022.
https://doi.org/10.1007/978-3-031-06981-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_9&domain=pdf
https://doi.org/10.1007/978-3-031-06981-9_9

148 U. Joshi and J. Urbani

construction, using ranking as the main evaluation metric and leaving the task of mak-
ing fact classification as future work [35,42]. This makes existing KGEs models (e.g.,
TransE [5], ComplEx [38], RotatE [36], RDF2Vec [29]) not suitable in their current
form. So far, the only proposal for performing fact classification with KGEs is to sim-
ply label all the top k completions as correct and all the others as incorrect [35]. In
practice, however, this approach does not work well because not all correct completions
appear in the top ranked positions; thus a small k would affect recall while a large one
would affect precision. Another approach would be to include additional background
knowledge such as ontologies to filter out incorrect links. For instance, if we know
that a property is functional, then at most one of the k completions should be marked
as correct. Unfortunately, such additional knowledge is not always available; thus we
consider the setting where we do not have it.

In general, we can identify two main key challenges for performing fact classifi-
cation using KGEs. First, KGs can be very incomplete and this affects negatively the
accuracy of predictions. Second, it is hard to produce training samples, negative in par-
ticular, because KGs are built under Open World Assumption (OWA), thus potential
links can be either missing or incorrect. One could address this problem by manually
annotating the top k completions, but this is a time consuming operation which may
require human experts.

The two challenges above increase significantly the difficulty of designing a single
procedure, e.g., a supervised classifier, that relies solely on the embeddings to produce
the classification. Fortunately, there is a well-known alternative approach in Machine
Learning called ensemble learning that is designed to address precisely the cases when
we do not have a classifier that is accurate enough. The idea behind ensemble learning
is conceptually simple: instead of focusing on a single classifier, we can use multiple
ones, following the principle that multiple weak classifiers can make a strong one.

Ensemble learning is a technique that has been successfully applied in multiple
domains (e.g., see overview at [47]), but it has never been applied for fact classification
with KGEs. In this paper, we cover this gap with a new ensemble learning method
called DuEL (Dual Embedding-based Link prediction), that is specifically designed for
fact classification with KGEs. With ensemble learning, the challenge is to identify a
suitable set of classifiers and aggregation technique to exploit their predictive power as
much as possible. Next to this, in our context we also need to face the problem that we
lack ground truths to train any supervised classifier and aggregation model.

We address the aforementioned problems as follows. For the selection of a suitable
set of classifiers, we considered state-of-the-art neural architectures, which can be seen
as a natural choice for this type of problems. In particular, we selected three differ-
ent models: an LSTM network [17], a convolutional neural network (CNN) [13], and
a multi-layer perceptron (MLP) [4]. We selected these models because they interpret
the input in different ways (e.g., with an LSTM it is a one-by-one sequence while with
a CNN multiple facts are fed at the same time), hence each of them can capture sig-
nals that the others might miss. To function properly, however, all three models require
ground truths for training, which we do not have. To fix this problem, we created (possi-
bly wrong) training data assuming Closed World Assumption (CWA), which states that
everything that is not in the KG is false by definition. A consequence of this assump-
tion is that the training data might contain many false negatives. Hence, the classifier

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 149

is trained with a bias towards rejecting potential good completions, which favors pre-
cision but harms recall. To mitigate this problem, we include two additional unsuper-
vised classifiers which leverage subgraph embeddings [18] and shared paths in the KG,
respectively. These two classifiers tend to have a higher recall. Therefore, they are a
good complement to the first three classifiers.

For aggregating the classifiers’ outputs, using a supervised classifier is problematic
because we do not have ground truths. An alternative could be to rely on unsupervised
techniques like majority voting. However, such approaches would not consider possible
differences of the classifiers’ accuracies, or latent correlations between them. To exploit
those, we can leverage recent weakly supervised techniques that combine the outputs
of classifiers without ground truths [12,28]. In the literature, these models have been
shown to be very effective for making predictions with noisy data (e.g., see the Snorkel
project [27]). We show here that they are also valuable for performing link prediction,
which is a problem for which they have not been applied yet.

While our solution is conceptually simple, our experiments using multiple embed-
ding models confirmed that DuEL was able to perform a fact classification that is much
more accurate than currently possible, with the major benefit that our solution can be
trained only with the content of the (incomplete) KG and without high-quality manual
annotations. For instance, DuEL outperformed existing methods producing predictions
with an F1 of 0.60 and 0.51 on FB15k237 and DBpedia50 respectively, which are two
well-known benchmarks, with improvements that range between 72% and 24% against
the second best approach.

2 Link Prediction with KGEs

A KG can be seen as a directed labeled (multi)graph K = (V, E ,R) where vertices
in V represent entities and every edge in E denotes a semantic relation labeled with
type r ∈ R. Given h, t ∈ V and r ∈ R, we write 〈h, r, t〉 to indicate the edge from h
to t which is labeled with r, e.g., 〈London,capitalOf,UK〉. Throughout, we often
refer to edges as links. We also introduce the expression link pattern, denoted 〈h, r, ?〉
(〈?, r, t〉), to refer to the set of all links from h (to t) with label r. Finally, we say that e
is a valid completion for 〈h, r, ?〉 (〈?, r, t〉) in K if 〈h, r, e〉 ∈ K (〈e, r, t〉 ∈ K).

We assume that K is incomplete in the sense that some links are missing. This
assumption implies the existence of another KG K ′ = (V, E ′,R) where E ′ ⊃ E is the
set of all true links with a label in R between the entities in V . Our goal is to predict all
and only the links in E ′ \ E .

An embedding is a vector in R
d where d > 0 and an embedding model (or model

for short) is a set of embeddings. Several techniques have been proposed to construct
embedding models that are suitable for link prediction (e.g., [5,7,24,32,36,38,41,44]).
In this paper, we consider three techniques: ComplEx [38], RotatE [36], andTransE [5],
which we selected as examples of factorization models (ComplEx) and translational
models (RotatE, TransE). ComplEx and RotatE are among the techniques that returned
the best performance according to [30] whileTransE is included as it is one of the oldest
and most frequently used techniques.

All three techniques assign a vector of d numbers to every entity in V and every
relation in R, effectively creating models with (|V| + |R|) × d parameters. In the case

150 U. Joshi and J. Urbani

of TransE, the numbers are real, while with RotatE and ComplEx the numbers are
complex. These techniques first define a suitable scoring function for a candidate link
〈h, r, t〉. Then, the models are trained with different loss functions that combine the
scoring functions of true and false links. With TransE, the scoring function is:

ftr(〈h, r, t〉) = ||h+ r − t|| (1)

where ||·|| is the L1 norm, h, r, and t are the vectors associated to h, r, and t respectively
(we follow convention of denoting the embeddings in boldface). With ComplEx, it is:

fco(〈h, r, t〉) = Re(〈r,h, t̄〉) (2)

where 〈·〉 applied to vectors is the generalized dot product, Re(·) is real component,
and ·̄ is the conjugate for complex vectors. With RotatE, it is:

fro = ||h ◦ r − t|| (3)

where ◦ denotes the element-wise product.
In the literature, empirical evaluations have shown that embedding models return

higher scores for true links than for false ones [25,30,40]. This observation suggests
a straightforward way to do link prediction, that is, to rank every entity ti according
to f(〈h, r, ti〉), and consider the k entities with the highest ranks as potential valid
completions. However, accepting indiscriminately all k is likely to yield a low precision
because in practice many of the top k entities are not valid completions. One solution
would be to reduce the k to retain only the most likely completions, but this would
lower the recall since many correct completions will be missed. To improve the both
precision and recall, we are called to critically look at the ranked list of entities and
translate the numerical scores into binary decisions.

3 Our Proposal

Let K be the input KG and K′ be the (unknown) KG with all the true links. DuEL is
designed to predict all the links in K′ with a given label r that either start from or end to
a given entity e. This equals to finding all valid completions for a pattern that is either
of the form 〈?, r, e〉 or 〈e, r, ?〉 in K′. Thus, from now on we will assume that the input
is a link pattern p and an embedding model M of K, while the output is the set of valid
completions for p in K′.

As an example, Fig. 1 gives a graphical overview of the functioning of DuEL with
the pattern p = 〈?,locatedIn,UK〉. The first step consists of computing the top k
ranked entities for p with M , which are not valid completions in K (if they are, then the
links are already known). Let us call E the set of such entities. DuEL considers only the
entities in E, which are the most likely completions, and ignore all others.

Next, DuEL makes a binary decision for every entity e ∈ E, thus establishing the
truth value of links (e.g., if the decision for e = London is positive, then the link
〈London,locatedIn,UK〉 is correct). Each binary decision is a two-step process.
First, multiple classifiers independently label every candidate entity. Then, the labels
are aggregated to formulate a final correct/incorrect prediction.

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 151

Fig. 1. Schematic overview of DuEL

3.1 Classifiers

In principle, DuEL can be configured to use an arbitrary number of classifiers. In gen-
eral, we would like to have some classifiers that complement each other. For instance,
some can learn to make the predictions based on the latent representations of the enti-
ties, and others that more generally consider the structure of K. The classifiers do not
need to be conceptually simple or fast to execute. For our purposes, they can be arbi-
trarily sophisticated as long as they do not require human input. With this desiderata in
mind, we introduce five types of classifiers, C1,. . . ,C5.

The classifiers C1,. . . ,C3 are supervised models. Thus, they require training data.
Unfortunately, obtaining ground truth annotations involves a human intervention, which
can be expensive. To give an idea, deciding whether a link was true often took more than
a minute during the creation of our gold standard. To avoid this problem, we decided to
use the content of K to label the training samples, effectively operating under CWA.

Since this data contains an approximation of the true labels, we train multiple clas-
sifiers hoping that mistakes will be corrected during a collective evaluation. Each clas-
sifier approaches the problem from a different perspective: C1 is a MLP, one of the
most conventional choices for classification; C2 is an LSTM, thus it views the classifi-
cation as a sequence labeling problem; C3 is a CNN, thus it relies on the convolutional
operator to perform a collective prediction of the top-k at once.

The classifiers C4 and C5 are added because they do not rely on supervised models:
C4 relies on ranked lists of subgraph embeddings while C5 considers shared paths
between the entities. Since they do not base their decisions using training data created
under CWA, we expect them to have a higher recall than the first three which should
have instead a higher precision.

For a given set E as input, every classifier returns the set F := {〈e, l〉 | e ∈ E}
where l ∈ {CORRECT,INCORRECT}. We create two classifiers of each type, one for
patterns of the form 〈?, r, t〉 and another for 〈h, r, ?〉. Below, we describe each classifier
in more detail.

152 U. Joshi and J. Urbani

C1 (MLP). MLPs are among the most popular neural architectures used for classifi-
cation. Our MLP network is structured with two dense layers (each with n units) inter-
leaved by two dropout layers (each with rate r) and sigmoid as final activation function.
As input, the network receives the vectors t1, . . . , tk that represents the list of k entities.
Each vector ti is obtained by concatenating three vectors a, b, and c, and the ranking
score of the ith ranked entity. Vectors a, b, and c are created using the embedding
model M . In particular, a and b equal to the embeddings of the entity and relation in
the link pattern, respectively, while c is the embedding mapped to the ith entity in the
ranked list.

For instance, suppose that we want to construct the vector ti that corresponds to the
entity ei, p = 〈?, r, t〉, and M was created with TransE. In this case, a := t, b := r,
and c := ei and the score is ftr(〈ei, r, t〉).

C2 (LSTM). Using an LSTM for classifying the top-k answers entities is not a usual
approach. This is because LSTM is a sequence model and in theory the truth value
of each answer does not depend on the ones that are before or after it. However, we
observed that there are some regularities in the number and positions of true links in
the ranked list. For instance, if p = 〈Ferrary,isA, ?〉, then it is likely that the valid
completions are few and concentrated in the top positions (since typically the number
of classes is limited). However, if p = 〈?,isA,Student〉, then the valid completions
are (probably) many more. These observations hint that the sequence of completions is
a useful asset for making binary predictions.

As input, the LSTM with n hidden units receives a sequence of vectors t1, . . . , tk
that represents the list of k entities. Each ti is constructed in the same manner as done
for C1. Since our task is classification, we add, on top of the LSTM, one extra layer
with n units, followed by a dropout layer with rate r and a final dense layer with a
sigmoid activation function to produce a binary classification.

C3 (CNN). CNN networks are a very popular type of deep neural networks used
primarily for image processing and other types of problems, like sentence classifica-
tion [21], sentiment analys [9], or text ranking [33].

We construct a network with a single 2D convolutional layer, parametrized by a
kernel of size s1 × s1. We chose a 2D layer instead of a 1D layer because with the
former we can model the interactions between the concatenated embeddings. As input,
we provide a 2D matrix obtained by concatenating the t1, . . . , tk vectors. The convolu-
tional layer returns an output with k channels, which is passed to a max pooling layer,
parametrized by another kernel of size s2 × s2 for further down sampling. This layer
returns a 1D vector with k elements, which is post-processed by a sigmoid activation
function such that it returns k binary predictions.

C4 (Subgraph Embeddings). This classifier uses subgraph embeddings, which were
recently introduced by [18]. Subgraphs embeddings are created by aggregating the
embeddings of the entities contained in them, and are meant to quickly provide an
approximate ranking of the top k entities. In this context, subgraphs are defined as set

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 153

of entities that share the same neighbour with edges with the same label. Subgraphs
can be of two types, depending on the direction of the edges to the common neighbour.
Let us recall that K = (V, E). We denote with S〈?,r,t〉 := {h | 〈h, r, t〉 ∈ E} the sub-
graph with all entities with outgoing edges to t which are labeled with r. Analogously,
S〈h,r,?〉 := {t | 〈h, r, t〉 ∈ E} denotes the subgraph with incoming edges from h. Sub-
graph embeddings are constructed by averaging the embeddings of their entities. With
TransE, this equals to

Sl :=

∑
e∈Sl

e
|Sl| (4)

With ComplEx and RotatE, we take the average of the real (Re(·)) and imaginary
(Im(·)) parts, respectively.

Sl := 〈
∑

e∈Sl
Re(e)

|Sl| ,

∑
e∈Sl

Im(e)
|Sl| 〉 (5)

The average embeddings computed by Eqs. 4 and 5 allow us to apply the scoring
function using the subgraph embeddings rather than the embeddings of potential com-
pletions. Once the classifier receives as input p and E, it first ranks all the subgraphs
with the scoring function of M and p. This operation produces a list S = 〈S1, S2, . . .〉
of subgraphs. Then, it retains in S only the top j subgraphs, where j is a threshold value
that is dynamically computed using statistics from K [18].

Finally, the classifier labels every entity e ∈ E as follows. If e appears as a mem-
ber of any subgraph in S, then it is labeled as CORRECT. Otherwise, e is labeled as
INCORRECT. Notice that this classifier, unlike the previous three, does not require a
training phase.

C5 (Shared Paths). The previous four classifiers rely on KG embeddings to make their
predictions. In contrast, this classifier does not use embeddings, but considers instead
shared paths between potential valid completions in K′ (i.e., the entities in E) and any
valid completion in K.

First, let us assume that the input link pattern p is of the form 〈?, r, t〉 (the other case
is analogous). Then, let Pa,b be the set of all paths between a and b in K of maximum
length 2 (note that the direction of the edges is not taken into account). Furthermore,
let Pp = {q | q ∈ Pa,t, 〈a, r, t〉 ∈ K} the set of all paths between t and any valid
completion of p in K. This classifier will label every entity e ∈ E as CORRECT if there
is a path p ∈ Pe,t and another path q ∈ Pp which differ only on the first entity in the
paths. In other words, entity e is marked as CORRECT if it is connected to t with the
same path as one of the valid completions inK. Otherwise, e is labeled as INCORRECT.

3.2 Aggregation

The output of classifiers can be aggregated in several ways. Two techniques which are
often used are Min Voting and Majority Voting. With the first technique, we label an
entity as CORRECT if at least one classifier has labeled it as CORRECT. With the sec-
ond one, we pick the label chosen by the majority of the classifiers (ties are broken

154 U. Joshi and J. Urbani

arbitrarily). A disadvantage of these techniques is that they do not consider latent cor-
relations between the classifiers. To include those, we can use several approaches that
were originally introduced for building machine learning models without using ground
truth annotations [12,28].

The problem of aggregating without ground truths can be modeled as follows. The
input consists of a set data points X . The goal consists of labelling each data point
X ∈ X with a vector Y = [Y1, . . . , Yt]T of t categorical task labels. We assume that
we do not have any ground truth that we can use for training. To recover from the lack
of such data, we consider a set of sources that provide approximate labels for (a subset
of) the t tasks. If they cannot provide a label, then the sources can abstain.

The sources might be potentially correlated and have an unknown accuracy. We can
estimate those considering the observed agreement and disagreement rates of the emit-
ted labels. To this end, we can construct a matrix λ of noisy labels produced by the
sources, and then compute a label model Pµ(Y|λ) where μ is the vector of parameters
that encodes the correlations and accuracies. Then, we can use the label model to output
a single probabilistic label vector Ỹ from the noisy labels of an unseen data point X .
The problem translates into computing the parameters μ. One way consists of estimat-
ing μ from the inverse covariance matrix among the sources [28]. Another approach
consists of breaking down the original problem into a set of smaller problems that con-
siders subsets of three sources. The advantage is that the subproblems have closed-form
solutions, thus the parameters can be computed without iterative solutions [12].

In our context, we have a single task, the categorical task label represents the binary
prediction CORRECT and INCORRECT, the data points are the potential completions
for p (i.e., E), and there are five sources, C1, . . . ,C5. Finally, since one of the strengths
of such methods is to consider that a source might abstain, we slightly change the label-
ing of our classifiers as follows. Instead of predicting either CORRECT or INCORRECT,
we introduce one extra label NEUTRAL. Then, we modify the output of C1, C2, and C3
introducing two threshold values τ1 and τ2. If the output of the sigmoid is lower (higher)
than τ1 (τ2) then the label is INCORRECT (CORRECT). Otherwise, if it is between τ1
and τ2, then it is NEUTRAL.

A problem that arise with our threshold-based approach is that we must find good
values for τ1 and τ2. In practice, we observed that using grid search using a small
held-out validation dataset yields satisfactory performance. For C4 and C5, we replace
INCORRECT with NEUTRAL, thus simulating a prediction under OWA where missing
links are not automatically considered as incorrect.

To aggregate the classifiers’ output, we first compute the label model by applying
the classifiers on every potential completion and use their output to create the label
matrix λ. After computing μ, either exploiting the covariance [28] or the decomposition
in triplets [12], we compute λ for an unlabeled completion e, pass it to the label model
and use the value of the returned Ỹ as the final (binary) label of e.

It is important to note that none of the components in the pipeline of DuEL needs
large volumes of manually annotated data, with a consequent benefit in terms of scala-
bility. The classifiers C4, C5 do not require training, C1, C2, and C3 are trained using
the true links of K, and the training of the label model only considering the provided λ.

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 155

Fig. 2. Statistics, model parameters, and ranges used for grid search

4 Evaluation

KGs. As inputs, we considered datasets commonly used in the related literature. We
selected FB15k237, a subset of Freebase used as benchmark in many works (e.g.,
[18,36,38]), and DBpedia50, a subset of DBpedia used in [30]. We used the param-
eters for the embedding models reported as optimal by [30]. Details are in Fig. 2a. The
embedding models were trained with Adagrad [10] for 1000 epochs.

Below, we set k = 10 (|E|) as default since this is a common threshold used for eval-
uating ranked lists of entities (hit@10). The experiments were performed on a machine
with 64GB RAM and two 8-core CPU 2.4 GHz. The code and other experimental data
is available online1.

Training C1, C2, and C3. These classifiers are trained under CWA using training data
that was automatically generated. Every pattern and list of k completions is a data point
used to train the networks. Since there is a variable number of link patterns of different
types, the number of data points depends on the KG and type of pattern. Figure 2a
reports the size of the training data sets. Training occurred by minimizing the binary
cross entropy with Adam [19] for 10 epochs.

We performed grid search to find the optimal values for n (hidden units), r (dropout
rate), s1 and s2 (kernel sizes), τ1, and τ2 optimizing for the best F1 on the validation
dataset. The ranges considered for the search are reported in Fig. 2b. We observed that
the values n = 100, r = 0.2, s1 = 3, s2 = 2, τ1 = 0.2 and τ2 = 0.6 work well with
the models and KGs.

Gold Standard. To test the performance of DuEL, we cannot rely on the content of
the input KG since it is, by definition, incomplete. In particular, we cannot use a held-
out dataset as it is typically done for evaluating the ranking capabilities of embedding
models because such a dataset would contain only (some) links which we know are
true (and not the ones which we know are false). To perform a more complete evalua-
tion, we created a gold standard with data annotated by humans. We randomly selected

1 https://github.com/karmaresearch/duel.

https://github.com/karmaresearch/duel

156 U. Joshi and J. Urbani

Fig. 3. Details about gold standard

Fig. 4. Screenshot annotation interface

250 and 150 previously unseen link patterns of both types (50/50) for FB15k237 and
DBpedia50 respectively, retaining 50 patterns of each type to construct a small valida-
tion dataset. Then, for every link pattern and embedding model, we manually annotated
the top k = 10 entities that correspond to links that are not in K, consulting exter-
nal sources to verify the correctness of the links. The annotations were performed by
two human annotators who independently annotated the links using a special web inter-
face. Figure 4 reports a screenshot of (part of) the interface. The interface shows, for a
given query, which are the top ranked answers provided by the three embedding mod-
els. Additional links to Google and Wikipedia are provided to help the human annotator
to decide whether a particular answer is correct.

In total, the annotators labeled about 3900 links for FB15k237 and 3600 links for
DBpedia50. Figure 3a reports the rate of CORRECT links in both datasets while Fig. 3b
reports the 10 most popular relations annotated in each dataset. Since the task of the
annotators is to verify whether the fact is true, the degree of subjectivity is low. This is
confirmed by a high Cohen’s score: With FB15k237 is it 0.8137 while with DBpedia50
it is 0.869, which indicate a nearly perfect agreement between the annotators. Notice
that the size of the gold standard is much smaller than the size of training data used to
train the classifiers since the former requires a manual annotation while the latter can be

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 157

Fig. 5. Performance on gold standard (P, R and F1 denote Precision, Recall, F1 scores, respec-
tively). The best results are marked in boldface

automatically computed from the input KG. Also, notice that the ratio of correct links
is fairly low, especially in DBpedia50. With such a low ratio, a supervised classifier
trained with such data can achieve a high accuracy by simply returning always the label
INCORRECT. Our method does not suffer from this problem since the aggregation does
not need ground truths.

4.1 Performance of Link Prediction

Baselines. We consider three external baselines and several alternative approaches to
the default pipeline, yielding a comparison against 10 other methods. The first exter-
nal baseline, which we name RankClassify, is presented by [35] and it is, as far as
we know, the only method that uses embeddings to perform binary predictions. The
technique consists of marking as correct all the answers in the top k positions, where
k is fine tuned upfront on a validation dataset. The second baseline is the state-of-
the-art method proposed by [43]. This method, which we label DeepPath, does not use

158 U. Joshi and J. Urbani

embeddings. Instead, it uses reinforcement learning to learn reasoning paths on the KG.
We configured it to do fact prediction on FB15k237 and mark the top k ranked facts as
correct, similarly as before. The third baseline is the reinforcement learning version of
AnyBURL [22,23], which learns rules bottom-up for link prediction. AnyBURL is exe-
cuted using the default parameters mentioned in the online documentation and trained
for 1000 s. On DBpedia50, we report only the performance with RankClassify as it was
the external baseline with the highest F1.

To compare against more methods, we also apply the five classifiers in isolation.
Finally, we compare our weak supervision approach (with the covariance [28]) denoted
DuEL (M) and with the triplets [12], denoted DuEL (S)) against two unsupervised and
one supervised alternatives. The unsupervised ones are theminority andmajority voting,
which are popular choices. The supervised one is a random forest which uses the scores
of the classifiers as input features and the validation dataset as training labels.

Results. Figure 5 reports the precision, recall, and F1 of the CORRECT predicted links
with our gold standard. We make six main observations.

Observation 1. We observe that DuEL returns the highest F1 in all cases. The improve-
ment is 0.09 (DBpedia50, ComplEx) and 0.01 (FB15k237, RotatE) points better than
the second-best non-DuEL result in the best and worst cases, respectively. If we com-
pare against existing approaches in the literature, then the gain increases to 0.25
(FB15k237, ComplEx) and 0.1 (DBpedia50, ComplEx). We find remarkable that both
DuEL (M) and denoted DuEL (S) achieve superior or comparable performance than the
fully supervised model despite they do not make use of ground truth annotations.

Observation 2. The best performance is obtained with ComplEx, but the differences
with the other models are not large, except for DBpedia50 where TransE does not
perform as well as the others. A lower performance of TransE should be expected since
it is a model that is often outperformed by the other two (e.g., see [30]). In general, we
conclude that our approach generalizes well. Therefore, it can be used with different
embedding models.

Observation 3. If we compare C1,. . . ,C5, then we notice that C1, C2, and C3 mostly
return a higher precision than the other two, as we expected. In contrast, C4 and C5
tend to return a higher recall. In some cases, some classifiers used in isolation returned
remarkable performance. For instance,C2with RotatE and FB15k237 is close to return
the best result. In other cases, the classifiers perform very poorly. For instance, C2 with
TransE and DBpedia50 never returned any positive answers.

Observation 4. There is not a classifier that is clearly outperforming the others, and
they all contribute to improve the performance. To obtain further evidence, we per-
formed an ablation study where we executed DuEL (M) excluding, each time, the labels
of one classifier. Figure 6 reports the obtained F1 during such a study with some rep-
resentative KGs, models, and types of patterns. In this case, if the performance loss
that we get when we remove one classifier is large, then it means that it provided a
significant contribution. We observe that with ComplEx, FB15k237, and 〈?, r, t〉 pat-
terns, C3, C4, and C5 gave the most significant contribution. In contrast, with 〈h, r, ?〉

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 159

Fig. 6. Ablation study where the F1 is computed with all classifiers but one. H refers to per-
formance with patterns of the form 〈?, r, t〉 while T with 〈h, r, ?〉. Other abbreviations: FB =
FB15k237, DB = DBpedia50, Co = ComplEx, Ro = RotatE

patterns,C1 andC2 are more important. These differences highlight the benefit of weak
supervision that takes all classifiers into account.

Observation 5. It is interesting to compare the results of DuEL (M) against the ones
of DuEL (S). Both methods return similar scores, but DuEL (M) has slightly better
performance. Thus, we select it as default choice. However,DuEL (S) has the advantage
that it is much faster. Thus, it is a good alternative for a large-scale deployment or for
context where a timely prediction is needed.

Observation 6. Fact classification appears to be a hard problem. The absolute perfor-
mance of external baselines is low, with F1 scores that range from 0.1 to 0.4. This is
partly due to the fact that these methods were mainly designed for ranking and not
for classifying. The best F1 values that we obtained with DuEL are between 0.5 and
0.6. This is due to the fact that many links are hard to label if we have only the KG
as input. We observed higher F1 values for 〈h, r, ?〉 patterns than for 〈?, r, t〉, which is
expected since there are typically fewer tails than heads. Despite the absolute values
of the F1 are not very high, the relative improvement brought by DuEL is significant.
With DBpedia50 and TransE, DuEL returns an F1 score that is 2.5 times better than
existing techniques but this likely to be due to the low quality of the embedding model.
With better models like ComplEx and RotatE, the relative improvement is still signifi-
cant as it ranges between 72% and 24%. We believe that the performance can be further
improved by including more sources, but this is a topic that deserves a dedicated study.

Hyperparameter Tuning. We show the effect of some parameters on the overall per-
formance. We report the results only with ComplEx and FB15k237 since they are rep-
resentative of the other cases. Figure 7a shows the effect of the number of units in the
networks of C1 and C2 (the tuning that we performed with grid search included more
values than the shown ones). We observe that the impact of this parameter is limited
since the performance does not change significantly. Figure 7b reports the F1 if we set
different τ1 and τ2. In this case, we observe that the performance changes significantly,
and this makes τ1 and τ2 two important parameters. Figure 7c shows the impact of
changing the kernel sizes in C3. We notice that also here the impact is noticeable.

160 U. Joshi and J. Urbani

Finally, Fig. 7d shows how the performance varies if we change the top k con-
sidered completions with FB15k237 and ComplEx. As expected, we observe that the
performance decreases with higher k since the problem becomes harder.

Fig. 7. Figures (a–c): Performance while changing multiple hyperparameters, with ComplEx, and
FB15k237. The best results are marked in boldface. Figure (d): Performance with different k

5 Related Work

Ranking vs. Classifying. The problem that the prevailing evaluation paradigm of KGEs
is based on ranking rather than classifying has been empirically studied in [42] and
in [35]. Both works focus on the analysis of current methods rather than proposing new
ones like ours. Previous work addressed the problem of a ranking-based evaluation by
creating negative samples and measuring the accuracy [34], or with new metrics [42].
In contrast, we use a manually annotated dataset.

Link Prediction on KGs. Links can be predicted also using rules, which can be either
mined from KGs [14,23] or learned with differentiable models [39]. These approaches
propose themselves as alternatives to KGEs for ranking promising set of links. There-
fore, they can be used as additional classifiers within our pipeline.

Another technique for finding new links is logic-based reasoning. In particular, rule-
based reasoning based on Datalog [1] can compute new facts (links) in KGs with bil-
lions of edges [6]. Also, a recent work uses BERT [8] for link prediction [46], leveraging
the labels of the entities, thus the language model. Our work differs from them because
ours does not depend on external knowledge, like rules or language models.

(Knowledge) Graph Embeddings. In our work, we considered three representative
embedding models but there are many more that could be considered. A class of embed-
ding models that has yield good results is the one that employs Graph Neural Networks

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 161

(GNNs) [32]. In principle, our technique could also be used considering the embed-
dings produced by a GNN, but it is interesting, as future work, to study whether it is
possible to exploit the graph-like structure of the GNN to produce more sophisticated
classifiers. Another way to exploiting KGEs for fact classification could rely on a prob-
abilistic interpretation of their scoring function. For instance, [11] has shown that it is
possible to give to DistMult a probabilistic interpretation, which in turn can be used
for producing a binary classification. In this case, we can employ techniques used for
calibrating the probabilities, like the ones presented in [37] and [31] to improve the
accuracy of classification.

If we broad our horizon and consider also different types of graphs, then it is useful
to mention a recent overview of (unlabeled) graph embeddings is given at [15]. An
important task for these techniques consists of classifying the nodes (instead of links),
e.g., [16,20]. To achieve the best results, some techniques use semi supervision [20,45].
We conclude by mentioning that there are several fully supervised techniques for binary
link prediction designed for social networks [2].

6 Conclusion

We addressed the problem of performing (binary) fact classification with KGEs. Exist-
ing KGEs methods were designed and evaluated for link prediction via ranking and
not via classification. There is an emerging consensus that this is an important limi-
tation and that future methods should be evaluated also on classification next to rank-
ing [3,35,42]. To make the problem worse, using KGEs for classification is not trivial
also because embeddings may be too noisy if they are not sufficiently trained and we
lack large volumes of ground truths to train effectively supervised classifiers on top of
them.

Our proposal is the first of its kind. Instead of proposing yet another (embedding)
model, the main novelty of our contribution is to show how we can leverage and com-
bine the power of existing methods following the well-established paradigm of ensem-
ble learning. By aggregating the output of multiple classifiers together, we are able to
correct mistakes that may be due to noisy embeddings. Moreover, the aggregation takes
place in a weakly-supervised manner without using ground truths.

Our experiments confirm the value of our approach. Although the absolute F1 val-
ues show that we have not yet reached human-like levels, the improvement brought
by our method is significant. For instance, with our approach the F1 improved of 72%
against the second best with FB15k237 and ComplEx (0.599 vs 0.348) and of 33%
against the second best with DBpedia50 and RotatE (0.505 vs 0.381). These improve-
ments indicate that ensemble learning methods are promising techniques to implement
fact classification with KGEs.

In practice, we believe that DuEL can be used in several pipelines for knowledge
extractions. For instance, it can be used to further assist human curators to further
populate KGs or to cover the last mile to implement a fully automated end-to-end
embedding-based system for KG completion. In this latter case, more work is needed
in order to further improve the accuracy. One possible extension is to include additional
classifiers, e.g., based on ontological constraints. Alternatively, it is worthwhile to study

162 U. Joshi and J. Urbani

whether we can further reduce a potential bias introduced by training some of our clas-
sifiers under CWA. Another topic for future work could aim at combining the rankings
produced by different embedding models. Moreover, it is interesting to study how we
can include the knowledge that can be extracted from textual corpora, or to investigate
whether we can build classifiers for some specific relations.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, vol. 8. Addison-Wesley, Read-
ing (1995)

2. Al Hasan, M., Zaki, M.J.: A survey of link prediction in social networks. In: Aggarwal, C.
(ed.) Social Network Data Analytics, pp. 243–275. Springer, Boston (2011). https://doi.org/
10.1007/978-1-4419-8462-3 9

3. van Bakel, R., Aleksiev, T., Daza, D., Alivanistos, D., Cochez, M.: Approximate knowledge
graph query answering: from ranking to binary classification. In: GKR, pp. 107–124 (2021)

4. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)
5. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embed-

dings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)
6. Carral, D., Dragoste, I., González, L., Jacobs, C., Krötzsch, M., Urbani, J.: VLog: a rule

engine for knowledge graphs. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779,
pp. 19–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7 2

7. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph
embeddings. In: AAAI, pp. 1811–1818 (2018)

8. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional trans-
formers for language understanding. In: NAACL, pp. 4171–4186 (2019)

9. Dos Santos, C., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short
texts. In: COLING, pp. 69–78 (2014)

10. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and
stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

11. Friedman, T., Van den Broeck, G.: Symbolic querying of vector spaces: probabilistic
databases meets relational embeddings. In: UAI, pp. 1268–1277 (2020)

12. Fu, D.Y., Chen, M.F., Sala, F., Hooper, S.M., Fatahalian, K., Ré, C.: Fast and three-rious:
speeding up weak supervision with triplet methods. In: ICML, pp. 3280–3291 (2020)

13. Fukushima, K., Miyake, S.: Neocognitron: a self-organizing neural network model for a
mechanism of visual pattern recognition. In: Amari, S., Arbib, M.A. (eds.) Competition
and Cooperation in Neural Nets. Lecture Notes in Biomathematics, vol. 45, pp. 267–285.
Springer, Heidelberg (1982). https://doi.org/10.1007/978-3-642-46466-9 18

14. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowl-
edge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)

15. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey.
Knowl.-Based Syst. 151, 78–94 (2018)

16. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: KDD, pp.
855–864 (2016)

17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

18. Joshi, U., Urbani, J.: Searching for embeddings in a haystack: link prediction on knowledge
graphs with subgraph pruning. In: WWW, pp. 2817–2823 (2020)

19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2017)

https://doi.org/10.1007/978-1-4419-8462-3_9
https://doi.org/10.1007/978-1-4419-8462-3_9
https://doi.org/10.1007/978-3-030-30796-7_2
https://doi.org/10.1007/978-3-642-46466-9_18
http://arxiv.org/abs/1412.6980

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 163

20. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
arXiv:1609.02907 (2017)

21. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classifica-
tion. In: AAAI, pp. 2267–2273 (2015)

22. Meilicke, C., Chekol, M.W., Fink, M., Stuckenschmidt, H.: Reinforced anytime bottom up
rule learning for knowledge graph completion. arXiv:2004.04412 (2020)

23. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule
learning for knowledge graph completion. In: IJCAI, pp. 3137–3143 (2019)

24. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for
knowledge base completion based on convolutional neural network. In: NAACL, pp. 327–
333 (2018)

25. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning
for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

26. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge
graphs: lessons and challenges. Commun. ACM 62(8), 36–43 (2019)

27. Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Wu, S., Ré, C.: Snorkel: rapid training data
creation with weak supervision. VLDB J. 29(2), 709–730 (2020)

28. Ratner, A., Hancock, B., Dunnmon, J., Sala, F., Pandey, S., Ré, C.: Training complex models
with multi-task weak supervision. In: AAAI, pp. 4763–4771 (2019)

29. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P.
(ed.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46523-4 30

30. Ruffinelli, D., Broscheit, S., Gemulla, R.: You CAN teach an old dog new tricks! On training
knowledge graph embeddings. In: ICLR (2020)

31. Safavi, T., Koutra, D., Meij, E.: Evaluating the calibration of knowledge graph embeddings
for trustworthy link prediction. In: EMNLP, pp. 8308–8321 (2020)

32. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling
relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018.
LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93417-4 38

33. Severyn, A., Moschitti, A.: Learning to rank short text pairs with convolutional deep neural
networks. In: SIGIR, pp. 373–382 (2015)

34. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for
knowledge base completion. In: NIPS, pp. 926–934 (2013)

35. Speranskaya, M., Schmitt, M., Roth, B.: Ranking vs. classifying: measuring knowledge base
completion quality. In: AKBC (2020)

36. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by relational
rotation in complex space. In: ICLR (2019)

37. Tabacof, P., Costabello, L.: Probability calibration for knowledge graph embedding models.
In: ICLR (2019)

38. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embeddings for
simple link prediction. In: ICML, pp. 2071–2080 (2016)

39. Wang, P.W., Stepanova, D., Domokos, C., Kolter, J.Z.: Differentiable learning of numerical
rules in knowledge graphs. In: ICLR (2019)

40. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches
and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

41. Wang, Q., Wang, B., Guo, L.: Knowledge base completion using embeddings and rules. In:
IJCAI, pp. 1859–1865 (2015)

42. Wang, Y., Ruffinelli, D., Gemulla, R., Broscheit, S., Meilicke, C.: On evaluating embedding
models for knowledge base completion. In: The 4th Workshop on Representation Learning
for NLP, pp. 104–112 (2019)

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/2004.04412
https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38

164 U. Joshi and J. Urbani

43. Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowl-
edge graph reasoning. In: EMNLP, pp. 564–573 (2017)

44. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning
and inference in knowledge bases. In: ICLR (2015)

45. Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph
embeddings. In: ICML, pp. 40–48 (2016)

46. Yao, L., Mao, C., Luo, Y.: KG-BERT: BERT for knowledge graph completion.
arXiv:1909.03193 (2019)

47. Zhou, Z.H.: Ensemble learning. In: Zhou, Z.H. (ed.) Machine Learning, pp. 181–210.
Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-1967-3 8

http://arxiv.org/abs/1909.03193
https://doi.org/10.1007/978-981-15-1967-3_8

	Ensemble-Based Fact Classification with Knowledge Graph Embeddings
	1 Introduction
	2 Link Prediction with KGEs
	3 Our Proposal
	3.1 Classifiers
	3.2 Aggregation

	4 Evaluation
	4.1 Performance of Link Prediction

	5 Related Work
	6 Conclusion
	References

