Skip to main content

McEliece Needs a Break – Solving McEliece-1284 and Quasi-Cyclic-2918 with Modern ISD

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13277))

Abstract

With the recent shift to post-quantum algorithms it becomes increasingly important to provide precise bit-security estimates for code-based cryptography such as McEliece and quasi-cyclic schemes like BIKE and HQC. While there has been significant progress on information set decoding (ISD) algorithms within the last decade, it is still unclear to which extent this affects current cryptographic security estimates.

We provide the first concrete implementations for representation-based ISD, such as May-Meurer-Thomae (MMT) or Becker-Joux-May-Meurer (BJMM), that are parameter-optimized for the McEliece and quasi-cyclic setting. Although MMT and BJMM consume more memory than naive ISD algorithms like Prange, we demonstrate that these algorithms lead to significant speedups for practical cryptanalysis on medium-sized instances (around 60 bit). More concretely, we provide data for the record computations of McEliece-1223 and McEliece-1284 (old record: 1161), and for the quasi-cyclic setting up to code length 2918 (before: 1938).

Based on our record computations we extrapolate to the bit-security level of the proposed BIKE, HQC and McEliece parameters in NIST’s standardization process. For BIKE/HQC, we also show how to transfer the Decoding-One-Out-of-Many (DOOM) technique to MMT/BJMM. Although we achieve significant DOOM speedups, our estimates confirm the bit-security levels of BIKE and HQC.

For the proposed McEliece round-3 192 bit and two out of three 256 bit parameter sets, however, our extrapolation indicates a security level overestimate by roughly 20 and 10 bits, respectively, i.e., the high-security McEliece instantiations may be a bit less secure than desired.

A. May—Funded by DFG under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

F. Zweydinger—Funded by BMBF under Industrial Blockchain - iBlockchain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/FloydZ/decoding.

References

  1. Albrecht, M., Bard, G.: The M4RI Library. The M4RI Team (2021). http://m4ri.sagemath.org

  2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)

    Article  MathSciNet  Google Scholar 

  3. Aragon, N., Lavauzelle, J., Lequesne, M.: decodingchallenge.org (2019). http://decodingchallenge.org

  4. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: A finite regime analysis of information set decoding algorithms. Algorithms 12(10), 209 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bard, G.V.: Algorithms for Solving Linear and Polynomial Systems of Equations Over Finite Fields, with Applications to Cryptanalysis. University of Maryland, College Park (2007)

    Google Scholar 

  6. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31

    Chapter  MATH  Google Scholar 

  7. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 31–46. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3_3

    Chapter  Google Scholar 

  8. Both, L., May, A.: Decoding linear codes with high error rate and its impact for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_2

    Chapter  Google Scholar 

  9. Chou, T., et al.: Classic McEliece: conservative code-based cryptography, 10 October 2020 (2020)

    Google Scholar 

  10. Dumer, I.: On minimum distance decoding of linear codes. In: Proceedings of the 5th Joint Soviet-Swedish International Workshop Information Theory, pp. 50–52 (1991)

    Google Scholar 

  11. Esser, A., Bellini, E.: Syndrome decoding estimator. IACR Cryptol. ePrint Arch. 2021, 1243 (2021)

    Google Scholar 

  12. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_12

    Chapter  Google Scholar 

  13. Kleinjung, T., et al.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_18

    Chapter  Google Scholar 

  14. Landais, G.: Code of Grégory Landais (2012). https://gforge.inria.fr/projects/collision-dec/

  15. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_6

    Chapter  MATH  Google Scholar 

  16. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_9

    Chapter  Google Scholar 

  17. Peters, C.: Information-set decoding for linear codes over \(\text{F}_q\). In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_7

  18. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)

    Article  MathSciNet  Google Scholar 

  19. Sendrier, Nicolas: Decoding one out of many. In: Yang, Bo-Yin. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_4

    Chapter  Google Scholar 

  20. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356 (1969)

    Article  MathSciNet  Google Scholar 

  21. Canto Torres, R., Sendrier, N.: Analysis of information set decoding for a sub-linear error weight. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 144–161. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_10

    Chapter  Google Scholar 

  22. Various: PQC-forum: Round 3 official comment: classic McEliece (2021). https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/EiwxGnfQgec

  23. Various: PQC-forum: security strength categories for code based crypto (and trying out crypto stack exchange) (2021). https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/6XbG66gI7v0

  24. Vasseur, V.: Code of Valentin Vasseur (2020). https://gitlab.inria.fr/vvasseur/isd

  25. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_19

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floyd Zweydinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esser, A., May, A., Zweydinger, F. (2022). McEliece Needs a Break – Solving McEliece-1284 and Quasi-Cyclic-2918 with Modern ISD. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13277. Springer, Cham. https://doi.org/10.1007/978-3-031-07082-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07082-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07081-5

  • Online ISBN: 978-3-031-07082-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics