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In this papeIEl, we propose an innovative Transfer learning for Time series
classification method. Instead of using an existing dataset from the UCR
archive as the source dataset, we generated a 15,000,000 synthetic univariate
time series dataset that was created using our unique synthetic time series
generator algorithm which can generate data with diverse patterns and angles
and different sequence lengths. Furthermore, instead of using classification
tasks provided by the UCR archive as the source task as previous studies
did,we used our own 55 regression tasks as the source tasks, which produced
better results than selecting classification tasks from the UCR archive.
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1 Abstract

Both time series classification and transfer learning have increasingly been the
focus of research in recent years. However, only a limited number of studies have
combined time series classification with transfer learning.

Time series classification (TSC) is the task of training a classifier to map a given
time series input to a probability distribution over the possible class values.
Typically, transfer learning (TL) algorithms learn from a source dataset and
task and then apply the knowledge gained to another target dataset and task.
TL has received considerable attention in the domains of computer vision and
natural language processing, but less research attention has been devoted to the
task of TSC, which is lacking a state-of-the-art pretrained model that can serve
as a good starting point for new TSC tasks. All previous research in the domain
of TL for TSC relied on existing datasets from the UCR archive, the largest
publicly available TSC benchmark, in order to choose the optimal source dataset
and task; there are some limitations to this approach, however. First, searching
for the optimal source dataset in the UCR archive can be time- and resource-
consuming. Second, there is no guarantee that the optimal source dataset exists
in the UCR archive.

In this paper, we propose an innovative TL for TSC method which addresses the
limitations mentioned above. Instead of using an existing dataset from the UCR
archive as the source dataset, we generated a 15,000,000 synthetic univariate time
series dataset that was created using our unique synthetic time series generator
algorithm which can generate data with diverse patterns and angles and different
sequence lengths. Furthermore, instead of using classification tasks provided by
the UCR archive as the source task as previous studies did, we used our own 55
regression tasks as the source tasks, which produced better results than selecting
classification tasks from the UCR, archive.

With our unique source dataset and tasks, we pretrained a CNN (convolutional
neural network) model and using 85 TSC datasets from the UCR archive to
serve as target dataset, we performed an extensive evaluation of our method.
We also reduced the training set of each dataset to only 10% training data in
order to emphasize the benefits of using TL for TSC when there is insufficient
labeled data.

Our experimental results show that (1) on datasets with seasonal characteristics,
our method outperforms all other TSC methods (both TL and non-TL methods)
on 17 of the 34 seasonal datasets in the UCR archive, whereas the second-best
methods outperform on only seven of the 34 seasonal datasets; and (2) the use
of our method improves the test set’s accuracy while reducing training time
by 85%, without compromising performance. We published the code for the
entire method which includes a synthetic time series data and regression task
generator algorithm and a pretraining and fine-tuning process. We also published
the 15,000,000 sample synthetic dataset and the pretrained CNN model.



2 Introduction

Transfer learning (TL) is a machine learning (ML) technique that tries to
utilize knowledge learned from a source domain in a relevant target domain.
The relevant knowledge is applied to the target domain in order to improve the
performance of the prediction function of the target domain [2§]. The need for
sufficient training data exists in most ML tasks, but obtaining labeled data data
can be expensive, time-consuming, or in some cases - infeasible. TL is a promising
technique which can address this problem by transferring the knowledge across
domains, preventing the need for labeled data in sparse domains [30].

TL has also shown to be effective at addressing some of the challenges with
training a deep learning model which typically is time-consuming and requires
high computational resources. Moreover, when lacking training data, ML models
encounter the overfitting problem [J].

Transfer learning has also been widely used in computer vision, with state-
of-the-art neural network (NN) models such as AlexNet [16] and ViT-G/14 [27],
which is the current leader in terms of top-1 accuracy on the ImageNet [3]
dataset. Evaluation of models pretrained on ImageNet show that accuracy is
improved when using TL on new target datasets as opposed to training with
the same architecture from scratch [I7]. TL has also been used effectively for
natural language processing (NLP) tasks with pretrained models using word2vec
and BERT models, and BERT’s later versions were considered state of the art
[4]. Many studies used pretrained NLP models (such as BERT) to serve as a
good starting point for new target datasets. However, for time series (TS) tasks,
limited effort has been invested in developing a state-of-the-art, generic, and
robust pretrained model that provides a good starting point for a new task.

A time series is a series of data samples in a time-based domain, which

are typically sampled at a uniform time interval [12]. There are two main types
of T'S: univariate time series (UTS) and multivariate time series (MTS)[25]. An
MTS is an M-dimensional TS where each data sample consists of M real values,
e.g., an MTS can be data acquired by measuring multiple climate sensors, such
as temperature, humidity, and wind speed, once an hour; this is an M = 3 MTS.
A UTS is simply an MTS where M = 1; a UTS can be data acquired by sam-
pling the heartbeat of a patient every 10 seconds [II]. In this paper, we focus
only on UTS data. TS data is relevant for many domains, including the analy-
sis of financial transactions [29], monitoring network traffic [I9], the analysis of
time-based medical events [I4]. In fact, TS data mining was mentioned as one
of the top 10 data mining problems by Yang and Wu [26].
Time series data analysis is a highly focused research domain that has a number
of different applications. The three main applications are: time series classi-
fication (TSC) - the task of training a classifier to map a given input to a
probability over the possible class values (labels) [6], time series forecasting - the
task of predicting future values of a given sequence using previous data [20], and
time series clustering - the task of dividing a set of TS data into groups, where
similar TS samples are put in the same cluster [§]. In this work, we focus only
on time series classification.



TL for TSC has not been extensively studied, and a generic, robust, and scal-
able pretrained model that can serve as a good starting point for new datasets
is needed, especially when there is insufficient labeled data. Due to the time-
consuming process of collecting and labeling data, the availability of such a
pretrained model is essential and would reduce the training time and cost, and
in some cases, these models could lead to better overall results.

In this study, we propose an innovative, generic, scalable, and architecture-
agnostic TL for TSC method based on (1) our new algorithm for generating
synthetic data and (2) 55 corresponding regression tasks. Our method can be
applied to any deep learning CNN-based architecture. As opposed to previously
proposed TL for TSC methods, our model only needs to be pretrained once, and
there is no need to search for the optimal source dataset for every new target
dataset. Using our unique algorithm, 15,000,000 synthetic samples of UTS data
with various angles, sequence lengths, and patterns were used to pretrain our
CNN (convolutional neural network) model.

Using 85 datasets from the UCR archive as target datasets, we perform a com-
prehensive evaluation of our method. For datasets with seasonal characteristics,
when the amount of training data was reduced to 10%, our method outperforms
all other TSC methods (both TL and non-TL methods) on 17 of the 34 seasonal
datasets in the UCR archive, whereas the second-best methods outperform on
only seven of the 34 seasonal datasets.

Additionally, using our method improves the test set’s accuracy while reducing
training time by 85%, without compromising performance. We thus believe that
our method can serve as a good starting point for any new target dataset.

The contributions of this paper are as follows:

1. Synthetic UTS data and regression task generator algorithm: In
this paper, we contribute a new architecture-agnostic TL for TSC method.
Unlike previously proposed TL for TSC methods which use an existing source
dataset and classification task from the UCR archive [I], we propose a new
algorithm which generates synthetic UTS data and creates 55 corresponding
regression tasks which can be used as a source dataset and task.

Using existing datasets from the UCR archive as the source dataset has some
limitations that our synthetic data overcomes. First, given a target dataset,
datasets from the UCR archive may not always be similar or generic enough
to serve as a good source dataset. Since our synthetic 15,000,000 sample
dataset has a wide variety of patterns, angles, and sequence lengths, it could
be a more generic source dataset and therefore be a better fit. A second
limitation is that using UCR datasets is not scalable: each update to the
UCR archive requires that TL for TSC methods perform a new pretraining
procedure to incorporate the new datasets. Since our method relies on the
synthetic 15,000,000 sample dataset as a source dataset, no additional pre-
training is necessary. Finally, searching for the optimal source dataset from
the UCR archive can be time- and resource- consuming. Since we do not use
datasets from the UCR but instead use our synthetic dataset, no such search



is needed.

In this paper, we demonstrate the superiority of a dataset consisting of syn-
thetic data over existing datasets from the UCR archive, by addressing all
of the above mentioned issues.

2. Code contribution: Our codd’] includes the following:

— UTS data and regression tasks generator: We created an algorithm
to generate synthetic UTS data with a wide range of UTS patterns,
angles, and sequence lengths that can serve as a source dataset.

— Complete framework: a comprehensive easy-to-use framework that
covers data and regression task generation through fine-tuning the pre-
trained model on a new target dataset and task.

3. We publish both the synthetic dataset with 15,000,000 UTS samples and
the pretrained CNN model with the CT'N architecture that was pretrained
on that dataset, making them available for use by researchers and the entire
ML community.

The remainder of the paper is structured as follows: In section [3] we provide
the necessary background and introduce related work on TSC and TL for TSC
methods. Following this, in section [, we describe our method, from data gen-
eration through fine-tuning the pretrained model on a new target dataset and
task. In section [§] we describe the experimental setup, while section [6] presents
our results. Finally, in section [7} we present our conclusions and plans for future
work.

3 Background and related work

In this section, we first discuss on related work regarding TSC and TL for TSC
methods, and we highlight the differences between those methods and ours.

3.1 TSC related work

In this subsection, we discuss previously proposed TSC methods.
MultiRocket [22] is a TSC method that achieved SOTA (state-of-the-art) re-
sults on the entire UCR archive [I] at a rate orders of magnitude faster than any
other competing method.

MultiRocket is, in practice, a single-layer convolutional neural network, where
the transformed features from the convolutional kernels form the input for a
linear classifier.

MultiRocket uses as many as 10,000 convolutional kernels with a wide range of
length, padding, dilation, and random weights. After the kernels are generated,
each kernel is applied to each input time series, resulting in a feature map. Mul-
tiRocket then computes a set of features from the feature map that includes
PPV (portion of positive values) plus a randomly selected features from a set of
five candidate features. These features serve as the input for a linear classifier,

% Code availble at: https://github.com/YR234/TL-for-TSC
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such as a ridge regression classifier or logistic regression.

MultiRocket does not use a nonlinear function or have any hidden layers, thus
allowing it to be orders of magnitude faster than any other method.

OS-CNN [23] is a TSC method that uses omni-scale (OS) blocks, which does
not need to tune the feature extraction scales. Usually, a core challenge of a
CNN is to determine the proper scales of feature extraction. This method uses
OS blocks which are made up of OS layers that can be configured automatically
from the input size based on a list of kernel sizes; by stacking those layers, this
method can achieve full receptive field coverage of the total length of the input
(sequence length) [10].

InceptionTime [7] is a TSC method that uses an ensemble of five deep CNN
models, which was inspired by the Inception-V4 [21I] architecture. This archi-
tecture includes several techniques commonly used when constructing a CNN
model, such as residual block with shortcut connections [10] and inception mod-
ules [2T]. Each of the five models is given equal weight in the final prediction
decision.

Because of our TL-based approach, our method differs entirely from the TSC
methods mentioned above. In the absence of sufficient labeled data, TL tech-
niques are useful. In this paper, we leverage this by reducing the amount of
labeled training data to 10%. Our experimental results indicate that when it
comes to seasonal datasets, our method outperforms all other methods, and
with all datasets (both seasonal and non-seasonal) our method is only second to
MultiRocket, however the difference in the performance of the two methods was
not shown to be significant when the Nemenyi statistical test was performed.

3.2 TL for TSC related work

The use of TL for TSC has been proposed in a number of studies. In this sub-
section, we discuss the existing TL for TSC methods and how our TL for TSC
method differs from these methods.

An overview of the general TL for TSC process is presented in Fig. [2] This
process consists of the following five steps: First, a source dataset is selected.
Second, a source task is selected. In step 3, the model’s architecture is chosen.
In step 4, the model chosen in step 3 is pretrained on the source dataset and
task selected respectively in steps 1 and 2. The final step consists of fine-tuning
the pretrained model from step 4 on a new target dataset and task.

While all previous TL for TSC studies used existing datasets and classification
tasks from the UCR archive as the source dataset and task for steps 1 and 2, in
this paper, we generate synthetic data for the source dataset and use regression
tasks instead of classification as the source task, and demonstrate how those two
decisions can result in better generalization while eliminating the need for an
exhaustive search for the best source dataset.

Fawaz et al [5] suggested using DTW (dynamic time warping), a technique for
finding the optimal alignment between two given time series sequences [18], as
a similarity measure for finding the most similar source dataset from the UCR
archive. The source task is chosen according to the source dataset (provided by



10 4

0.5 4

0.0 4

0.25 A

0.00 1

-0.25 4

RandomWaveVersion Down
0.0
-05
_].D -4
0 20 a0 & & 100 0 0 a0 & 8 100
HighPeak Up
05
0 20 40 B0 B0 100 o 20 40 B0 80 100
SmallDownHighUpAndNormal ECG200
o]
_1 4
0 20 4 50 &0 160 b 0 a0 &0 B0 100
CrazyRandom SmallUpHighDownAndNormal
o]
-7 A
0 20 a0 & & 100 0 0 a0 & 8 100
Traffic UpAndDownAndNormal
2
1]

T T T T T T o- T T T T T T
0 20 40 50 80 100 o 20 40 50 80 100
SinWave UpAndDown

2]
0
0 20 4 50 &0 160 b 0 a0 &0 B0 100

Fig. 1. The 12 UTS patterns generated in our work.

the UCR archive).
While our method may only differ from the method of Fawaz et al in terms of
steps 1 and 2 of the TL for TSC process, our novel approach for creating the
source dataset and task from synthetic data and regression tasks instead of using
an existing dataset and classification task from the UCR archive addresses other
issues that we will discuss later in the paper.
Our experimental results on the UCR archive showed that the method proposed
by Fawaz et al performed positive transfer learning on 71/85 datasets, however
this approach has some disadvantages.




Kashiparekh et al [I3] suggested using a convolutional neural network (CNN)
based architecture with a multi-head approach for training a given S source
dataset (Dg) and corresponding S classification tasks (Ts) from the UCR archive.
The CNN core architecture consists of convolutional layers followed by skip con-
nections [10], which make this architecture a deep one. However, instead of stan-
dard fully connected layers followed by a dense layer with the softmax activation
function, the authors used S fully connected layers and S dense layers with the
softmax activation function - one for each source dataset and task.

The authors randomly selected S = 24 datasets from the UCR archive for train-
ing and validation, and the remaining 41 datasets were used as test sets (the
authors used sequence lengths up to 512, and therefore not all 85 datasets of the
UCR archive were evaluated).

As noted earlier, none of these methods provides a real solution when it comes
to real-world problems in the domain of TL for TSC. Since they are limited to
the available datasets in the UCR, archive, they may not always be able to find
the optimal source dataset. Not only that, when using the method proposed by
Fawaz et al, one would have to perform an exhaustive search to find the most
similar source dataset for a new target dataset and task.

In contrast to prior work, our method does not require an exhaustive search,
and it is not restricted to datasets available in the UCR archives or any specific
sequence length. Since it is based on diverse synthetic data that was generated
by our new algorithm, it can be applied to a variety of new target datasets and
tasks.

4 Method

In this section,We will discuss on our five-step TL for TSC method (see Fig. .
The first two steps describe the process of generating the source dataset and
regression source task. We then describe steps 3-5 where we select and pretrain
the CNN architecture and fine-tune the pretrained model on a new target dataset
and task.

4.1 Data generation - source dataset

We created a synthetic UTS data generator algorithm; using this algorithm, we
created a 15,000,000 sample dataset that contains a wide range of UTS with
different segment patterns, angles, sequence lengths. This dataset will serve as
our source dataset Dg.

In our study, we generated only 12 UTS patterns. However, using our algorithm,
many more patterns can be generated.

4.2 Data generation - source tasks

Upon generating the source dataset, we proceed to the source task. Because our
target task is TSC (classification), it would be natural to use classification as
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Fig. 2. Method overview: In step 1, we generate a a 15,000,000 sample UTS source
dataset using our Algorithm. After that, we calculate 55 regression tasks for each UTS
in the source dataset to be our source tasks. In step 3, we select the CNN architecture
(we chose to use CTN). Then in step 4, we train the CNN with the source dataset
and task. Finally, in step 5, we fine-tune the pretrained CNN model on a new target
dataset and task.

our source task, however when comparing classification and regression as source
tasks, we found that regression achieves more accurate results, and therefore it
was chosen as our source task.

1. The 55 tasks are:

1.

Maximum (Task 1): Given an input UTS, the purpose of the task is
to accurately predict the maximum value of the UTS.

. Minimum (Task 2): Given an input UTS, the purpose of the task is

to accurately predict the minimum value of the UTS.

STD (Task 3): Given an input UTS, the purpose of the task is to
accurately predict the STD (standard deviation) value of the UTS.
Peaks (Task 4): Given an input UTS, the purpose of the task is to
accurately predict the number of high and low peaks.

. Cross median (Task 5): Given an input UTS, the purpose of the task

is to accurately predict the number of times the UTS crosses the median
value from up to down and vice versa.

10 splits (Tasks 6-55): Given an input UTS, we first divide the UTS
into 10 equal length segments. For each segment we calculate tasks 1-5
and concatenate them into a 50 value task (10 segments * 5 tasks).

4.3 CNN model’s architecture

Our method is architecture-agnostic, meaning that any deep learning network
with a convolutional layer based architecture (CNN) can be used. In our research

source task target task
Task 1 . lass1
Task 55 A lass N
= Step 5

Fine-tune pretrained CNN from
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we used the same CNN architecture as Kashiparekh et al [I3] whose work showed
it to be an effective architecture for TL. Just one change was made to their
architecture; unlike the multi-head approach used by Kashiparekh et al., we used
only one dense layer with the sotfmax activation function. This architecture will
be denoted as CTN.

4.4 CNN pretraining

The next step of our method is pretraining the CT' N model on the source dataset
Dg with the source task Tg.

To create the training and validation sets, we randomly divided the source
dataset Dg into an 80%-20% split. We pretrained the CT'N model for 100 epochs
with a batch size of 128, while performing early stopping on the validation loss.
We used the Adam [15] optimizer and M SE (mean square error) as the loss
function.

The pretraining process was lengthy, taking almost 10 days on a single GPU pro-
cessor, however this process only needs to happen once. Once the C'T'N model
has been pretrained, we save the weights of the model’s core layers. These weights
are used later to fine-tune new target datasets and tasks.

4.5 Fine-tuning a new target dataset

The final step of our method is to fine-tune the pretrained C'T'N model on a
new target dataset Dp with a new target task Tr.

We start by initializing the C'T'N model’s core layers with the pretrained weights
that were saved in the last step. Once initialization is complete, newly added
fully connected layers can be adjusted so that they better fit the new target
dataset and task.

5 Experimental setup

In this section, we describe our experimental setup, including the datasets, pre-
processing, and settings used, as well as the methods we compare our method
to.

5.1 Datasets

To evaluate our method, we used the UCR archive, which is the benchmark
archive for TSC. In 2002, the archive contained 45 datasets; this increased to 85
datasets in 2015, and as of 2019, 128 datasets are available. All of the datasets
contain UTS samples. The archive’s datasets vary in terms of the time series
domain covered; the domains include traffic, sound, sensors, motion, image, HAR,
(human activity recognition), financial, medical, and more. Furthermore, they
are diverse in terms of the sequence length (ranging from 8-5,000), number of
classes (2-60), number of training samples (12-139,000), and number of test
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samples (15-139,000). Due to running time considerations, we evaluated our
results on just the 85 dataset version of the UCR archive and not on the most
update version that includes 128 datasets.

5.2 Data preprocessing (reducing the labeled training data to 10%)

The original train-test split provided by the UCR archive was used. However,
instead of using all of the training data, we reduced each dataset’s training data
to only 10% of the original, while keeping the same class distribution, e.g., given a
dataset of 100 training samples with 70 samples of class 1 and 30 samples of class
2, we reduced the training data to 10 samples, with seven class 1 samples and
three class 2 samples. Therefore, the 70-30% class distribution was maintained.
The following are some key points regarding the reduction process:

1. The remaining 10% of the training samples were chosen at random.
2. The reduction process was only performed once.
3. All of the test data samples were evaluated (the test data was not reduced).

This reduction process was used to emphasize the importance of transfer learn-
ing, since when there is a lack of labeled data, the pretraining process (steps 1-4
of our method) is expected to provide a better start for learning a new target
dataset and task than learning from scratch.

5.3 Methods used for comparison

We compare our method, which will now be denoted as CT N _our, to the meth-
ods covered in the related work section: Fawaz et al [5] (denoted as Fawaz),
Kashiparekh et al [I3] (denoted as ConvTime), MultiRocket [22], OS-CNN [23],
and InceptionTime [II]; we also examine the CTN architecture without the
pretraining phase (steps 1-4 in our method), which is denoted as CTN_S (no
transfer learning was applied). We included CTN_S, so we can examine our
results in terms of positive and negative transfer learning and more.

5.4 Hyperparameters and other settings

For all deep learning methods (Fawaz et al, Kashiparekh et al, OS-CNN, Inception-
Time), including ours, we trained each dataset with 2,000 epochs, using cross-
entropy [2] as the loss function and Adam [I5] as the optimizer.

For MultiRocket (a linear classifier), we used the default parameters provided
by the authors.

5.5 The evaluation process

The evaluation process includes applying all of the methods on the datasets with
the necessary data preprocessing and with the hyperparameters - all this was
described at this section.

A summary of the results is provided in the next section.
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6 Results

This section begins with a brief summary of the results. We then explore each
aspect mentioned in the brief summary in more detail.

6.1 Results appendices

CTN_our
Il MultiRocket

Mean average rank

EEN OSCNN
I InceptionTime

Seasonal wins

Fawaz

. CTN s

Wins

I ConvTime

Losses

16

14

12

10

25

20

Fig. 3. Empirical results, from left to right: mean average rank, seasonal wins, wins,
losses. Each method is associated with a colored bar.

A summary of the results can be seen in Table [I|and a more visual represen-
tation can be found in Fig.

6.2 Brief summary of the results

1. Thirty-four of the 85 UCR archive datasets have seasonality characteristics.
Of these datasets, our method outperforms all other examined methods on
17 datasets; the second best method only outperforms all other methods on
seven datasets.

2. Positive transfer learning occurs in all 2,000 epochs except the first seven
epochs, and using our method can save 85% of the training time while achiev-
ing the same results (see Fig. [4)).
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Table 1. Summary of the results in terms of the number of wins, number of losses,
seasonal wins, and mean average rank

Method Wins Losses Seasonal Wins Mean Avg Rank

ConvTime 6 10 3 4.4
CTN_S 7 12 4 4.365
Fawaz 15 14 4 4.2

InceptionTime 9 7 6 3.906
OSCNN 14 16 7 3.753
CTN_our 26 9 17 3.494
MultiRocket 28 12 7 3.271

3. Our method obtains a mean average rank of 3.494, which is second only
to MultiRocket with a mean average rank of 3.271 (the difference between
the two values is not significant. In terms of the win/lose rate, our method
obtains a 26/9 rate, while MultiRocket’s rate is 28/12; MultiRocket has two
more wins, but it also has three more loses than our proposed method.

4. As can been Fig. [3] our method comes in at least second place in each case,
something no other method achieved.

6.3 Seasonality evaluation

We first evaluate the results in terms of seasonality. The autocorrelation values
of a given UTS are in the range of [—1,1]. Generally, as the autocorrelation
values approach zero there is no seasonality and vice versa. So, in this paper,
we took the absolute value of the autocorrelation function, and the values will
eventually be in the range of [0, 1]. Higher absolute values of the autocorrelation
function indicate strong seasonality and vice versa.

To empirically define datasets with seasonality we calculated a seasonality met-
ric for each dataset, which is denoted as SM (seasonality metric).

All datasets with SM => 0.5 will be considered as seasonal datasets. The
results show that 34 of of the 85 UCR archive datasets are seasonal datasets.
Of these 34 datasets, CT' N _our outperforms all other methods on 17 datasets.
The second best methods are OSCNN and MultiRocket which outperform other
methods on only seven of the 34 seasonal datasets. These results are presented
in Table [1] and more visually in Fig. |3] These results indicate that our method
is superior when it comes to seasonal datasets.

6.4 Positive transfer learning

To demonstrate that transfer learning using our method can improve the per-
formance of a given CNN architecture, we compered the following two methods:
CTN _our and CTN_S. The comparison was made while considered the follow-
ing three aspects: positive transfer learning after each epoch, training time, and
final accuracy. The results can be seen in Fig. [
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A more detailed evaluation for each of the aspects mentioned above is pro-
vided below:

1. Positive transfer learning: Except for the first seven epochs, C'T'N _our
outperforms CTN_S. Accordingly, we can conclude that our method’s per-
formance improves when training continues beyond the first few initial train-
ing epochs.

2. 85% Less training time: It took CTN_S 1,515 epochs to achieve its
highest level of accuracy on all 85 datasets (indicated by the grey 'X’ in
Fig. E[), whereas C'I'N _our attains the same level of accuracy after only 193
epochs. In other words, using our method can save as much as 85% of the
training time and still achieve the same generalization.

3. Accuracy: When considering the average accuracy after 2,000 epochs across
the 85 datasets from the UCR archive, CT N _our outperforms CTN_S, as
can be see in Fig. [

Positive transfer learning

= CTN_our (CTH with our method)
CTN_5 (CTN without our method)
2 Max accuracy of CTN S
=== Max accuracy of CTH_5

Mean test accuracy accros 85 dataset
=

0 500 1000 1500 2000
Epochs

Fig. 4. Performance of the C'T'N architecture on all of the test sets from the UCR
archive after each epoch, with and without our method.

6.5 Mean average rank and win/lose rate

In terms of the mean average rank, C'T'N _our achieved a score of 3.494, which
is only second to MultiRocket with a score of 3.271; the Nemenyi statistical
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test indicated that there was no significant difference in the results of the two
methods

(see Table [1f which presents the mean average rank of all of the examined
methods).
In terms of the win/lose rate, our method obtains a 26/9 win/lose rate. While
MultiRocket achieves a 28/12 win/lose rate, winning two more times but losing
three more times. InceptionTime has the fewest losses, with a win/lose rate of
9/7.
Our method comes in at least second place on every empirical measure (mean
average rank, seasonal wins, win, lose), which no other method is capable of (the
results of all of the examined methods can be seen in Table .

7 Conclusion and future work

In this paper, we introduced:

1. A novel architecture-agnostic TL for TSC method. In contrast to previous
TL for TSC methods using existing UCR’s datasets and tasks as the source
dataset and task, in this paper, we introduce a new algorithm that generates
UTS data and creates 55 corresponding regression tasks to be used as a
source dataset and task.

2. Open-source code for generating custom synthetic data, producing regression
tasks, pretraining, and fine-tuning on a new target dataset and task.

Our 15,000,000 sample synthetic dataset, the 55 regression tasks, and the
pretrained model with the C'I'N architecture are published for further use
by the ML community.

Our study shows that the use of our method can not only improve the perfor-
mance of a given CNN architecture but also decreases training time by 85%.
When it comes to seasonal datasets, our method outperforms all other existing
TSC methods.

For future work, we would like to do the following:

1. Explore other regression tasks beside the 55 tasks we used. The new tasks
could include Fourier transform, autocorrelation, etc.

2. Examine a new architecture for transfer learning based on both CNN and
LSTM layers which will be trained on our source dataset and task, as suggest
by Wang et al [24].

3. Expand our source dataset to include more patterns than the 12 patterns
we generated.

4. Extend our method so that it will be suitable for MTS (multivariate time
series) datasets.

5. Explore the use of a generative adversarial network (GAN) to automatically
generate synthetic data that is more similar to a specific given dataset.
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