
ar
X

iv
:2

10
7.

05
22

0v
1 

 [
cs

.C
R

] 
 1

2 
Ju

l 2
02

1

On the undecidability of the Panopticon detection problem

V. Liagkou1,4, P.E. Nastou5, P. Spirakis2, and Y.C. Stamatiou1,3

1 Computer Technology Institute and Press - “Diophantus”, University of Patras Campus, 26504,
Greece

2 Department of Computer Science, University of Liverpool, UK and Computer Engineering and
Informatics Department, University of Patras, 26504, Greece

3 Department of Business Administration, University of Patras, 26504, Greece
4 University of Ioannina, Department of Informatics and Telecommunications, 47100 Koatakioi Arta,

Greece
5 Department of Mathematics, University of the Aegean, Applied Mathematics and Mathematical

Modeling Laboratory, Samos, Greece
e-mails: liagkou@cti.gr, pnastou@aegean.gr, P.Spirakis@liverpool.ac.uk, stamatiu@ceid.upatras.gr

Abstract. The Panopticon (which means “watcher of everything”) is a well-known struc-
ture of continuous surveillance and discipline proposed by Bentham in 1785. This device
was, later, used by Foucault and other philosophers as a paradigm and metaphor for the
study of constitutional power and knowledge as well as a model of individuals’ deprivation
of freedom. Nowadays, technological achievements have given rise to new, non-physical
(unlike prisons), means of constant surveillance that transcend physical boundaries. This,
combined with the confession of some governmental institutions that they actually collab-
orate with these Internet giants to collect or deduce information about people, creates a
worrisome situation of several co-existing Panopticons that can act separately or in close
collaboration. Thus, they can only be detected and identified through the expense of (per-
haps considerable) effort. In this paper we provide a theoretical framework for studying the
detectability status of Panopticons that fall under two theoretical, but not unrealistic, def-
initions. We show, using Oracle Turing Machines, that detecting modern day, ICT-based,
Panopticons is an undecidable problem. Furthermore, we show that for each sufficiently
expressive formal system, we can effectively construct a Turing Machine for which it is
impossible to prove, within the formal system, either that it is a Panopticon or it is not a
Panopticon.

Keywords: Formal Methods · Security · Privacy · Undecidability · Panopticon · Turing
Machine · Oracle Computations

1 Introduction

In 1785, the English philosopher and social theorist Jeremy Bentham (see [1]) envisaged
an, admittedly, unprecedented (for that era) institutional punishment establishment, the
Panopticon. The architecture of this establishment consisted of a circular building dom-
inated by an “observation tower” in the center of which a single guard was continuously
watching the inmates, imprisoned in cells arranged around the circular building. Stand-
ing on the observation tower, the prison’s inspector was able to observe the interior of
the cells at any time. Moreover, the prisoners, themselves, could never be able to see the
inspector, who remained for ever “invisible” to them.

In the '70s, Foucault studied, deeply, Bentham’s concepts, pointing to the Panopticon
as a generic model that denotes a way of defining and discussing power relations in

http://arxiv.org/abs/2107.05220v1


terms of their impact on people’s everyday life. He, also, described the Panopticon as a
mechanism of power enforcement that is reduced to its ideal form: “a figure of political
technology that may and must be detached from any specific use” ([6]). According to
Foucault, disciplinary power was increasingly permeating, in his era, the social body
in schools, factories, hospitals, asylums and military barracks constituting “new prison
regimes” in the emergent capitalist society. His own conceptualization and usage of
Panopticon has allowed for several more or less metaphorical, yet extensive, usages of
the all-seeing abilities that the “panopticized” state of affairs offers in diverse core field
areas. This was, in retrospect, an indirect reference to the modern day, information
technology based, surveillance and people monitoring operations conducted, openly or
covertly, by several agencies and organizations worldwide.

Nowadays, our “digital selves” and personal digital assets and information transcend
physical bounds and, literally, are diffused over the vast, uncontrollable, Internet terri-
tory. This dispersion of our digital assets and personal information provides unlimited
opportunities for massive data collection and surveillance of our daily actions by state
agencies, intelligence institutions and Internet service providers. Several voices exist that
equate this situation to an information era Panopticon or state of massive surveillance
concept. In particular, contrary to the “brick-and-mortar” Panopticon of Bentham, the
surveillance actors often remain invisible and covert since modern surveillance methods
and devices are hard to detect, unlike the classical Panopticon physical structure of
whose existence and objectives all its subjects are aware.

In this paper we investigate the complexity of detecting Panopticons using the Turing
Machine formalism of an effective computational procedure. We provide two different,
but not unrealistic, theoretical models of a Panopticon and show that there is no algo-
rithm, i.e. Turing machine, that can detect, systematically, all Panopticons under these
two definitions. In other words, detecting Panopticons, at least the ones that fall under
these two plausible definitions, is an undecidable problem, in principle.

More specifically, the first formal model we examine studies Panopticons whose
Panopticon behaviour is manifested through the execution of states (actions) that belong
in a specific set of states that characterizes Panopticon behaviour. In some sense, since
the focal point of this model is the execution of states of a particular type, the model
captures the visible behaviour of the Panopticon, according to the action ir perform, and,
thus we call this model behavioural.

The second formal model focuses on the impact or consequences of the actions of
the Panopticon and not the actions themselves. In particular, this model captures an
essential characteristic of Panopticons, that of acquiring, rather, effortlessly information
through surveillance and eavesdropping. We model this characteristic usingOracle Turing
Machines with the oracle having the role of information acquired “for free” based on
surveillance and/or eavesdropping actions. This model is in some sense based on the
information that a Panopticon deduces using “free” information and, thus, we call it
deductive. Essentially, this model focuses on the semantics of a Turing Machine, i.e.
outcomes of operation, while the first model focuses on the syntax, i.e. definition, of a
Turing Machine.



Last, we show that for any formal system, we can demonstrate a Turing Machine
whose Panopoticon status, under the second formal model, cannot be proved within the
formal system. That is, no proof can be produced by the formal system that this Turing
Machine is a Panopticon and no proof that it is not a Panopticon. In other words, given
any formal system, one can provide a procedure that generates a Turing Machine which
is impossible to have its Panopticon or non-Panopticon status within the formal system.

2 Definitions and notation

In this section we briefly state the relevant definitions and notation that will be used
in the subsequent sections. We, first, define a simple extension of a Turing Machine,
following the notation in [8].

Definition 1 (Turing machines). A Turing machine is an octuple, defined as M=(Q,Qpan,Σ ,Γ , δ, q0, B, F )
where Q is a finite set of normal operation states, Γ is a finite set called the tape al-
phabet, where Γ contains a special symbol B that represents a blank, Σ is a subset of
Γ−{B} called the input alphabet, δ is a partial function from Q×Γ to Q×Γ×{L,R}
called the transition function, q0∈Q is a distinguished state called the start state, F ⊂ Q
is a set of final states, and Qpan ⊂ Q, Qpan∩F = ∅, is a distinquished set of states linked
to Panopticon behaviour. We assume that transitions from states in Qpan do not change
the Turing machine’s tape contents, i.e. they are purely interactions with the external
environment of the Turing machine and can affect only the environment.

Notation-wise, given M we denote by < M > its code, i.e. an encoding of its description
elements as stated in Definition 1 using any fixed alphabet, usually the alphabet {0, 1}
(binary system). The details can be found in, e.g., [5,8] but they are inessential for our
arguments.

One of the main outcomes of Turing’s pioneering work [13] was that there exist
problems that Turing machines cannot solve. The first, such, problem was the, so called,
Halting problem (see, also, [4] for an excellent historic account):

The Halting Problem
Input: A string x =< M,w > which is actually the encoding (description) of a Turing
machine <M> and its input w.
Output: If the input Turing M machine halts on w, output True. Otherwise, output
False.

The language corresponding to the Halting problem is Lu = {< M,w > |w ∈
L(M)}. In other words, the language Lu contains all possible Turing machine-input
pair encodings < M,w > such that w is accepted by M . This is why Lu is also called
universal language since the problem of deciding whether a given Turing machine M
accepts a given input w is equivalent to deciding whether < M,w >∈ Lu. The language
Lu was the first language proved to be non-recursive or undecidable by Turing.

In order to discuss Panopticons, we need an important variant of Turing machines,
called oracle Turing Machines. Such a machine has a special tape on which it can write



queries to which they obtain the answer instantaneously in one step, no matter what
query it is.

This type of Turing Machines was, first, discussed, briefly, by Turing himself in [14]
under the name o-machine. Post developed further this concept in a series of papers [10,11,12]
and his collaboration with Kleene in [9] resulted to the definition that is used today in
computability theory.

Below, we give a formal definition of an Oracle Turing Machine:

Definition 2 (Oracle Turing Machine). Let A be a language, A⊆Σ ∗. A Turing ma-
chine with oracle A is a single-tape Turing machine with three special states q?, qy and
qn. The special state q? is used to ask whether a string is in the set A. When the Turing
machine enters state q? it requests an answer to the question: “Is the string of non-blank
symbols to the right of the tape head in A?’’ The answer is provided by having the state
of the Turing machine change on the next move to one of the states qy or qn. The com-
putation proceeds normally until the next time q? is reached, at which point the Turing
machine requests another answer from the oracle.

With respect to notation, we denote by MA the Turing machine M with oracle A. Also,
a set (language) L is recursive with respect to A if L = L(MA) for some Turing machine
MA that always halts while two oracle sets (languages) are called equivalent if each of
them is recursive in the other (see [8]).

3 Our contributions

Our approach is different for each of the two Panopticon models we propose since they
are of a different nature, i.e syntactic (for the behavioural model) vs. semantic (for the
deductive model).

For the behavioural model, we provide a simple adaptation of Cohen’s piooneering
formal model of a virus and prove a Panopticon detection impossibility result much like
Cohen’s result for virus detection.

For the deductive model, we follow a completely different approach using Oracle
Turing Machines and a technique that can be applied to prove undecidabililty results
for this type of machines. More specifically, in Chapter 8 of [8] a technique from [7]
is presented that establishes an hierarchy of undecidable problems for Oracle Turing
Machines. In particular, The technique targets the oracle set S1= {<M> |L(M)=∅},
with <M> denoting the encoding of Turing machine M , as we discussed before. Then,
the sets Si+1=

{

<M> |LSi(M)=∅
}

can be, recursively, defined and the following can be
proved (see [7,8]):

Theorem 1. The membership problem for TM’s without oracles is equivalent to S1 (i.e.
Lu is equivalent to S1).

Theorem 2. The problem of deciding whether L(M) = Σ∗ is equivalent to S2.



Our first contribution is to propose a plausible Panopticon model which incorporates the
information deduction element of its behaviour (see Definition 4). We accomplish this as
follows: information deduction takes place whenever the Turing machine under scrutiny
for Panopticon behaviour produces a completely new information set given a set of fixed,
finitely many, already known information sets. This set models the information that
the Panopticon already knows through surveillance and observation, without (usually)
expending considerable effort since it, merely, intercepts or eavesdrops information.

More formally, let Ni =
{

Li
1, L

i
2, . . . , L

i
k

}

be a set of recursively enumerable lan-
guages, for some fixed integer k ≥ 1, such that ∅ /∈ Ni for all i. Also, let M

i
1,M

i
2, . . . ,M

i
k

Turing machines that, correspondingly, accept these languages. These Turing machines
and their corresponding languages model the fixed, finitely many, information sets al-
ready known to the Panopticon. We, also, say that a set is disjoint from a collection of
sets if it is disjoint from all the sets in the collection. set is disjoint from a collection of
sets if it is disjoint from all the sets in the collection.

We will, now, define the oracle set S1 = {< M > |L(M) is disjoint from N1}, with
< M > denoting the encoding of Turing machine M , and, recursively, in analogy
with [7,8], the sets Si+1 =

{

< M > |L(MSi) is disjoint from Ni+1

}

. The sets S1 and
S2 =

{

< M > |L(MS1) is disjoint from N2

}

, in particular, are central to our approach.
Based on this framework, in Section 4.2 we prove two theorems analogous to Theo-

rems 1 and 2 on the undecidability of the problem of detecting a deductive Panopticon.
The first one, Theorem 4, is focused on the weaker form of the deductive Panopticons,
related to the set S1, while the more powerful one, based on oracle computation for “free”
information gathering, related to the set S2, is handled by Theorem 5. In particular, in
Theorem 4 we prove that Lu is equivalent to S2 and in Theorem 5 we prove that the
problem of whether L(M) = Σ∗ is equivalent to S2.

Finally, in Section 5 we show that for any sufficiently expressive formal system F ,
such as Set Theory, we can effectively construct a Turing Machine which is impossible to
classify it as a Panopticon or non-Panopticon within F . In other words no formal system
is powerful enough so that given any Turing Machine, it can provide either a proof that
it is a Panopticon or a proof that it is not a Panopticon.

Before continuing, we should remark that the essential element of the proposed def-
inition of deductive Panopticons is that the oracle consultations model the “effortless”,
through surveillance, interception or eavesdropping, information gathering by Internet
surveillance agencies and organizations. In this context, the sets Si+1 define an infinite
hierarchy of deductive Panopticons in which a Panopticon whose accepted language be-
longs in Si+1 operates by consulting a (weaker) lower-level Panopticon whose language
belongs in Si, with the weakest Panopticons being the ones whose accepted languages be-
long in S1. These Panopticons do not have oracle consultations or effortless information
gathering capabilities.

4 The Panopticon detection problem

Formal proofs about the impossibility of detecting, in a systematic (i.e. algorithmic) and
general way, malicious entities, such as the Panopticons in our case, already exist for a



long time for a very important category of such entities, the computer viruses or malware
in general.

In Cohen’s pioneering work (see [2,3]) a natural, formal, definition of a virus is
provided based on Turing machines. Specifically, Cohen defined a virus to be a program,
or Turing machine, that simply copies itself to other programs, or more formally, injects
its transition function into other Turing machines’ transition functions (see 1) replicating,
thus, itself indefinitely. Then, he proves that Lu reduces to the problem of deciding
whether a given Turing Machine behaves in this way proving that detecting viruses is
an undecidable problem.

Following Cohen’s paradigm, we will propose two, rather restricted (so as to be
amenable to a theoretical analysis) but reasonable and precise definitions of a Panopti-
con. We, first, define the behavioural Panopticons:

Definition 3. (Behavioral Panopticons) A Panopticon is a Turing machine that when
executed will demonstrate a specific, recognizable, behaviour particular to Panopticons
manifested by the execution (not simply the existence in the Turing machine’s descrip-
tion) of a sequence of actions, e.g. it will publish secret information about an entity, it
will download information illegally etc., actions reflected by reaching, during its opera-
tion, states in the set P (see Definition 1).

This is much like Cohen’s definition of a virus since it characterizes Panopticons accord-
ing to their displayed or manifested behaviour. We stress the word execution in order
to preclude situations where a false alarm is raised for “Panopticons” which merely list
actions that are characteristic of Panopticon behaviour without ever actually invoking
them during their operation. Instead, they operate normally without any actions taking
place that manifest Panopticon behaviour.

Beyond displayed behaviour, however, Panopticons can be reasonably assumed to
also possess deductive powers, not directly visible or measurable. In other words, one
type of such Panopticons may operate by gathering or computing totally new infor-
mation, distinct from the information already known to it. Thus, another type of such
Panopticons can be based on given easily acquired, or even stolen, freely provided (in
some sense) information. In other words, based on information the Panopticon acquires
for free, in a sense, it deduces further information, perhaps expending some computa-
tional effort this time. We model the characteristic Panopticon action, i.e. observation
or surveillance, using oracle Turing machines, where the freely acquired information is
modeled by the oracle set of the machine. Based on this information, the Turing machine
deduces, through its normal computation steps, further information about its targets.
Below, we describe both these two types of Panopticons.

Definition 4. (Deductive Panopticons) A Panopticon is a computer program that by
itself or based on observed or stolen (and, thus, acquired without expending computational
effort to deduce or produce it) information, deduces (perhaps with computational effort)
further information about entities.

In the definition above, the Panopticon operating by itself, i.e. without oracles, is weaker
than the one with oracles since the latter is allowed to obtain free advice or information,



in the form of an oracle. Naturally, many other definitions would be reasonable or re-
alistic. Our main motivation behind the ones stated above was a balance of theoretical
simplicity and plausibility in order to spark interest on the study on formal properties
of Panopticons as well as the difficulty of detecting them algorithmically.

Based on the two formal Panopticon definitions we gave above, we can define the
corresponding Panopticon detection problems. The aim of a Panopticon detection algo-
rithm or Turing machine, is to take as input the encoding of another Turing machine
and decide whether it is Panopticon or not based on the formal definition.

The Panopticon Detection Problem 1
Input: A description of a Turing machine (program).
Output: If the input Turing machine behaves like a Panopticon according to Definition 3
output True. Otherwise, output False.

More formally, if by Lb we denote the language consisting of Turing machine encod-
ings < M > which are Panopticons according to Definition 3, then we want to decide
Lb, i.e. to design a Turing machine that, given < M >, decides whether < M > belongs
in Lb or not.

The Panopticon Detection Problem 2
Input: A description of a Turing machine (program).
Output: If the input Turing machine behaves like a Panopticon according to Definition 4
output True. Otherwise, output False.

More formally, if by Ld we denote the language consisting of Turing machine encod-
ings < M > which are Panopticons according to Definition 4, then we want to decide
Ld, i.e. to design a Turing machine that, given < M >, decides whether < M > belongs
in Ld or not.

4.1 Behavioral Panopticons

Let Qpan be the set of actions which, when executed, manifest Panopticon behaviour
(see Definition 3). We will show below that Lu is recursive in Lb. This implies that if we
had a decision procedure for Lb then this procedure could also be used for deciding Lu

which is undecidable. Thus, no decision procedure exists for Lb too.

Theorem 3. (Impossibility of detecting behavioural Panopticons) The language Lb is
undecidable.

Proof.Our proof is similar to Cohen’s proof about the impossibility of detecting viruses.
Let < M,w > be an instance of the Halting problem. We will show how we can decide
whether < M,w > belongs in Lu or not using a hypothetical decision procedure (Turing
machine) for the language Lb. In other words, we will show that Lu is recursive in Lb.

Given < M,w > we design a Turing machine Mu−b that modifies the transition
function (see Definition 1) of M so as when a final state is reached (i.e. a state in the
set F of M) a transition takes place that essentially starts the execution of the actions
in Qpan. In a sense, M is now a new Turing machine M ′ containing the actions of M



followed by actions (any of them) described by the states in P . Now, M ′ is given as
input the input of M , i.e. w, and operates as described above.

Let us assume that there exists a Turing machine Mb that decides Lb. Then we can
give to it as input M ′. Suppose that Mb answers that M ′ ∈ Lb. Since a state in Qpan

was finally activated, as Mb decided, this implies that M halted on w since M ′ initially
simulated M on w. Then we are certain that M halts on w.

Assume, now, that Mb decides that M ′ is not a Panopticon. Then a state in Qpan

was never invoked, which implies that no halting state is reached by M on w since a
state Qpan is invoked, in M ′, only from halting states of M , which is simulated by M ′.
Thus, M does not halt on w.

It appears that M ′ is a Panopticon if and only if M halts on w and, thus, we
have shown that Lu is recursive in Lb. There is a catch, however, that invalidates this
reasoning: if M itself can exhibit the Panopticon behaviour, i.e. it can reach a state
in Qpan before reaching a final state. Then Panopticon behaviour can be manifested
without ever M reaching a final state that would lead M ′ to invoke a Panopticon state
in Qpan, by its construction. A solution to this issue is to remove the states in Qpan

from the transition function of M , giving this new version to Mu−b to produce M ′. This
action would validate the equivalence M ′ is a Panopticon if and only if M halts on w,
completing the proof.

More formally, we create a new set of dummy (“harmless” or “no-operation”) “Panop-
ticon” states Q′

pan which contains a new state for each of the states in Qpan. Then we
replace the states from Qpan that appear in the transition function of M with the
corresponding states in Q′

pan. Actually, this transformation removes from a potential
Panopticon the actions that if executed would manifest a Panopticon. We stress, again,
the fact the mere existence of Panopticon actions is not considered Panopticon behaviour.

With this last transformation, M ′ is a Panopticon if and only if M halts on w and,
thus, Lu is recursive in Lb. �

4.2 Deductive Panopticons

We, first, prove the undecidability of S1, i.e. the impossibility of deciding for a given
Turing machine (its encoding, to be precise) whether it accepts a language disjoint from
a given, fixed, finite set of languages. In other words, it is impossible to detect Turing
machines that decide, perhaps with effort, new information sets given some known ones.

Theorem 4. The Halting Problem for Turing machines without oracles, i.e. Lu, is
equivalent to S1.

Proof. We first prove that given an oracle for the S1 we can solve the Halting problem
(or, equivalently, recognize the language Lu). We construct a Turing machine MS1 such
that given 〈M,w〉 constructs a Turing machine M

′

which operates as follows. It ignores
its input and simulates, internally, M on w. If M accepts w, M

′

accepts its input. Then,
L(M

′

) = ∅ if M does not accept w while L(M
′

) = Σ ∗ if M accepts w. Then, MS1 asks
the oracle whether M

′

∈ S1. If the answer is yes, i.e. let L(M
′

) = ∅, then M does not



accept w. If the answer is no, then L(M
′

) = Σ ∗ and, thus, M accepts w. We, thus, can
recognize Lu.

For the other direction, we show that we can recognize S1 given an oracle for the
Halting problem (more precisely, Lu). We will construct a Turing machine M

′′

such that,
given M , it constructs another Turing machine M

′

that operates as follows. M
′

ignores
its own input and uses a generator of triples (i, j, l), 1 ≤ l ≤ k + 1, for simulating the
lth Turing machine, Ml, with Mk+1 = M , on the ith string for l steps. Each time one of
the Turing machines M1, M2, . . . ,Mk accepts a particular input, this fact is recorded on
M

′′

’s tape. Each time Mk+1 accepts an input, M
′′

checks whether the same input was
accepted earlier by one of the M1, M2, . . . ,Mk. If no, the process continues. If yes, M

′

stops the simulation and M
′

accepts its own input. Thus, L(M)∈ S1 if L(M
′

) = ∅ while
L(M)/∈S1 if L(M

′

) = Σ ∗, i.e. M
′

accepts all its inputs, ε in particular. Then, M
′′Lu may

query its oracle set Lu for
〈

M
′

, ε
〉

. If the answer is yes then M
′′

rejects M , otherwise it

accepts it. �

Theorem 5. The problem of deciding whether L(M) = Σ ∗ is equivalent to S2.

Proof.We first show that deciding whether L(M) = Σ ∗ is recursive in S2.We construct
a Turing machine M

′′′S2 that takes as input a Turing machine M and constructs from
it a Turing machine M̂S1 , that is a Turing machine with oracle set S1, that operates in
the following way. It enumerates strings x over the alphabet Σ , and for each such string
it uses oracle S1 in order to decide whether M accepts x. This can be accomplished in
the way described in the first part of the proof of Theorem 4.

Then M̂S1 accepts its own input if and only if a string x is found not accepted by
M , or

L(M̂S1) =

{

∅, if L(M) = Σ ∗

Σ ∗ otherwise.

Now M
′′′S2 asks its oracle S2 whether L(M̂S1) ∈ S2, i.e. whether L(M̂S1) is disjoint

from all sets in N
′

. If the answer is yes, then L(M̂S1) = ∅. Consequently, L(M) = Σ ∗. If
the answer is no, on the other hand, then L(M̂S1) = Σ ∗ and, thus, L(M) 6= Σ ∗. Thus,
deciding whether L(M) = Σ ∗ is recursive in S2.

We not turn to showing that S2 is recursive in the problem of whether L(M) = Σ ∗.
In other words, if by L∗ we denote the codes of the Turing machines which accept
all their inputs, then there exists a Turing machine M

′′′′L∗ , i.e. a Turing machine with
oracle set L∗, which accepts S2.

Given a Turing machine MS1 , we define the notion of a valid computation of MS1

using oracle S1 in a way similar to notion defined in [7,8]. A valid computation is a
sequence of computation steps such that the next one follows from the current one after
a computational (not oracle query) step, according to the internal operation details (i.e.
program) of the Turing machine. If a query step is taken, however, i.e. the Turing machine
MS1 enters state q?, and the next state is qn this means that MS1 submitted a query
to the oracle S1 with respect to whether some given Turing machine, say T , belongs to
the set S1, receiving the answer no. In other words, the oracle replied that L(T )/∈S1 or,



equivalently, L(T ) is not disjoint from all sets in N1. As evidence for the correctness of
this reply from the oracle, we insert a valid computation of the ordinary (i.e. with no
oracle) Turing machine T that shows that a particular string is accepted by, both, T and
one of the Turing machines accepting a language in N1. If, however, after q? the state qy
follows, no computation is inserted. Intuitively, such a computation would be infinite.

We, now, describe the operation of M
′′′′L∗ with MS1 as input. Given MS1 , M

′′′′L∗

constructs a Turing machine M
′

to accept valid computations of MS1 leading to accep-
tance, whenever the accepted string, also, belongs to at least one of the sets L2

1, L
2
2, . . . , L

2
k.

The easy case is when the given computation is malformed, when one step does not fol-
low from the previous one according to the internals of the Turing machine, or when the
added computation inserted in the q?-qn case is not valid. In all these cases M

′

rejects
its input.

However, there is some difficulty in the q?-qy case since, as we stated above, there
is no obvious finite computation evidence for the correctness of the reply. Now the
Turing machine M

′

must decide on its own whether the reply is correct. The reply qy
means that the language accepted by the queried Turing machine T belongs to S1 or,
in other words, it is disjoint from all the sets in S1. As in the proof of Theorem 4,
M

′

generates all triples (i, j, l), 1 ≤ l ≤ k + 1, for simulating the lth Turing machine,
M1

1 ,M
2
2 , . . . ,M

1
k ,Mk+1 = T , on the ith string for l steps. Each time one of the Turing

machines M1, M2, . . . ,Mk accepts a particular input, this fact is recorded on M
′

’s tape.
Each time T accepts an input, M

′

checks whether the same input was accepted earlier
by one of the Turing machines M1

1 ,M
1
2 , . . . ,M

1
k . Also, each time one of these machines

accepts an input, M
′

checks whether the same input was accepted earlier by T . If none
of these two cases apply, the process continues. If one of these two cases, however, holds
M

′

stops the simulation and rejects the computation since it was invalid. It was invalid
because a common element was found between the language accepted by T and the
language of one the Turing machines accepting languages in N1.

If, however, the computation is valid and it ends at an accepting state for a particular
string x which was given as input toMS1 , thenM

′

starts generating pairs (j, l), 1 ≤ l ≤ k,
simulating the lth Turing machine, M2

l , on x for j steps. If x is accepted by any of these
Turing machines, then M

′

accepts its own input.

Based on the above, M
′

accepts all input strings, that is L(M
′

) = Σ ∗, if L(MS1)/∈S2,
i.e. when MS1 has valid computations of strings that, also, belong to at least one of
the sets L2

1, L
2
2, . . . , L

2
k. Otherwise, it accepts the empty set, i.e. L(M

′

) = ∅. Thus,
L(M

′

) = Σ ∗ if and only if L(MS1)/∈S2.

Finally, M
′′′′L∗ asks its oracle whether L(M

′

) = Σ ∗ or not deciding, in this way, S2

and, thus, detecting deductive Panopticons. �

5 Weaknesses of formal systems in characterizing Panopticons

Based on the Recursion Theorem, the following, central to our approach in this Section
theorem is proved in [8]:



Theorem 6. Given a formal system F , we can construct a Turing Machine for which
no proof exists in F that it either halts or does not halt on a particular input. This
Turing Machine, denoted by MG, is the following:

g(i, j) =































1, if there is a proof in F thatfi(j) is not defined
(i.e. does not halt) or, in other words if there is
a proof that the ith Turing Machine does not
halt, given input j

undefined, otherwise

(1)

We now prove the following, based on Theorem 6 and the, effectively constructible,Turing
Machine MG given in (1):

Theorem 7 (Imposibility of proving Panopticon status within formal sys-
tems). Let F be a consistent formal system. Then we can construct a Turing Machine
for which there is no proof in F that it behaves as a Panopticon and no proof that it
does not behave as a Panopticon, based on Definition 4 and the set intersection property
described in Sections 3 and 4.2.

Proof. For some fixed k, we define a set N = {L1, L2, . . . , Lk} of recursively enumerable
languages and a set of corresponding Turing Machines M1,M2, . . . ,Mk which accept
them. We also assume there exists a recursively enumerable language L, accepted by a
Turing Machine M , which is disjoint from N .

These elements can be effectively constructed. For instance, for k = 2, we can
have as L1 = {The set of multiples of 2}, L2 = {The set of multiples of 3}, and L =
{The set of primes}. For each of these languages (in particular L) we may construct
a corresponding Turing Machine that accepts it. Given these elements, we proceed as
follows.

We construct a Turing Machine M? which, given w as input, simulates M on w and
MG, as defined in (1), on some fixed input wG, independently of what w is, by alternating
between them in a way similar to the alternation technique applied in Theorem 4. Then
M? accepts if either of them accepts at some step of the simulation process.

We, now, observe that L(M?) = L(M), if MG does not halt on wG and L(M?) = Σ∗

if MG halts on wG. Then, according to the definition of a deductive Panopticon (see
Definition 4 and Section 3), M? is a Panopticon if and only if MG does not halt on the
particular input wG. But, now, if a proof existed in the formal system F that M? either
is a Panopticon or it is not a Panopticon then the same proof could be used to prove
that MG either halts or does not halt, correspondingly, contradicting, thus, Theorem 6.
�

6 Discussion and directions for future research

Theorems 3, 4, and 5 in Section 4 show that, even for Panopticons with the simple
behaviours described in Definition 3 and Definition 4, it is impossible, in principle,



to detect them. Potential Panopticons, naturally, can have any imaginable, complex,
behaviour but then the problem of detecting them may become harder compared to our
definitions.

Comparing, now, Theorems 3, 4, and 5, Theorem 3 examines the detection of Panop-
ticons based on the execution of specific visible or detectable actions, i.e. on a behavioural
level, such as connecting to a server and sending eavesdropped information or sending
an email to the unlawful recipient. Theorems 4 and 5 examine Panopticon detection
not based on their visible behaviour but from what languages they may accept, with-
out having any visible clue of behaviour or actions, only their descriptions as Turing
machines (i.e. programs or systems). These theorems, that is, examine the detection of
Panopticons at a metabehavioural level.

With respect to the difference between Theorems 4 and 5, we first observe that Lu

is recursively enumerable but not recursive while the {< M > |L(M) = Σ∗} language is
not recursively enumerable (see, e.g., [8]). Although they are, both, not recursive (i.e. not
decidable), their “undecidabilities” are of different levels, with the {< M > |L(M) = Σ∗}
language considered “more difficult” than Lu in restricted types of Turing machines
(Panopticons). For example, the Lu language is decidable for Context-free Grammars (i.e.
for Turing machines modeling Context-free Grammars) while the {< M > |L(M) = Σ∗}
language is still undecidable. Also, for regular expressions, the problem of deciding Lu is
solvable efficiently (i.e. by polynomial time algorithms) while the {< M > |L(M) = Σ∗}
language has been shown, almost certainly, to require exponential time (in the length
of the given regular expression) to solve (see, e.g., [8]). Therefore, a similar decidability
complexity status is expected from S1 (deductive Panopticons without external advice)
and S2 (deductive Panopticons with external advice in the form of an oracle) since they
are equivalent to the languages Lu and {< M > |L(M) = Σ∗} respectively. That is,
when we consider more restricted definitions of Panopticons that render the detection
problem decidable, then deciding which Panopticons belong in S1 is expected to be easier
than deciding which Panopticons belong in S2.

Finally, Theorem 7 shows that for any formal system F , we can, effectively, exhibit a
particular Turing Machine for which there is no proof in F , that it is either a Panopticon
or it is not a Panopticon, emphasizing the difficulty of recognizing Panopticons by formal
means.

As a next step, it is possible to investigate the status of the Panopticon detection
problem under other definitions, either targeting the behaviour (i.e. specific actions) of
the Panopticon or its information deducing capabilities (e.g. accepting languages with
specific closure properties or properties describable in some formal system such as sec-
ond order logic). Our team plans to pursue further Panopticon definitions in order to
investigate their detection status, especially for the decidable (and, thus, more practical)
cases of suitably constrained Panipticons.

In conclusion, we feel that the formal study of the power and limitations of massive
surveillance establishments and mechanisms of today’s as well as of the future Informa-
tion Society can be, significantly, benefitted from fundamental concepts and deep results



of computability and computational complexity theory. We hope that our work will be
one step towards this direction.

References

1. J. Bentham. Panopticon or The Inspection House. Written as a series of letters in 1787.
https://www.ics.uci.edu/~djp3/classes/2012_09_INF241/papers/PANOPTICON.pdf

2. F. Cohen. Computer Viruses. PhD thesis, University of Southern California, 1985.
3. F. Cohen. Computer Viruses: Theory and Experiments. Computers & Security, Volume 6, Issue 1,

pp. 22–35, 1987.
4. M. Davis. The Universal Computer: The Road from Leibniz to Turing. CRC Press, 3rd edition, 2018.
5. D. Evans. Introduction to Computing: Explorations in Language, Logic, and Machines. CreateSpace

Independent Publishing Platform, 2011.
6. M. Foucault. Discipline and Punish: The Birth of the Prison. New York: Random House, 1977.
7. J. Hopcroft and J.D. Ullman. Structure of undecidable problems in automata theory. In Proc. Ninth

Annual IEEE Symposium on Switching and Automata Theory, pp. 327–333, 1968.
8. J. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley series in Computer Science, 1979.
9. S.C. Kleene and E.L. Post. The upper semi-lattice of degrees of recursive unsolvability. Ann. of

Math. 59, 379–407, 1954.
10. E.L. Post. Formal reductions of the general combinatorial decision problem. Amer. J. Math. 65,

197–215, 1943.
11. E.L. Post. Recursively enumerable sets of positive integers and their decision problems. Bull. Amer.

Math. Soc. 50, 284–316, 1944.
12. E.L. Post. Degrees of recursive unsolvability: preliminary report (abstract). Bull. Amer. Math. Soc.

54, 641–642, 1948.
13. A.M. Turing. On Computable Numbers, with an Application to the Entscheidungsprobem. Proceed-

ings of the London Mathematical Society 2, 230–265, 1936–7.
14. A.M. Turing. Systems of logic based on ordinals. Proc. London Math. Soc. 45, Part 3, pp. 161–228,

1939.


	On the undecidability of the Panopticon detection problem

