Skip to main content

Design of an Analysis Method for the Human Cornea’s Bilateral Symmetry. A Case-Study in Healthy Patients

  • Conference paper
  • First Online:
  • 850 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13346))

Abstract

Bilateral symmetry in the human body is a necessary feature for our body to function more efficiently. Apparently, it could be thought that the ocular structure presents a bilateral symmetrical structure, however this does not occur in all cases, especially in those that are pathological. In many cases, symmetry is essential for the achievement of certain optical tasks. This study presents a method for evaluating bilateral symmetry (direct vs mirror) from the differences between the Cartesian coordinates (OD vs OS) in healthy corneas using customized patient-specific models and unprocessed data from corneal tomographs. The results obtained in the central and paracentral regions of the corneas evaluated show that the bilateral mirror symmetry presents differences below 10 microns and the direct bilateral symmetry reaches differences of the order of 30 microns at spatial coordinates level. This study shows that the level of asymmetry in healthy corneas can be evaluated by direct or mirror symmetry, and that the presence of asymmetric anomalies can be useful as a clinical diagnostic tool.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Roguin, A.L., Roguin, A., Roguin, N.: Historical advancements and evolution in understanding human anatomy and pathology: the contribution of the middle ages. Adv. Anat. Pathol. 28, 171–177 (2021). https://doi.org/10.1097/pap.0000000000000296

    Article  PubMed  Google Scholar 

  2. Tubbs, R.S.: Anatomy, the eye of medicine. Clin. Anatomy (New York, N.Y.) 34, 821 (2021). https://doi.org/10.1002/ca.23766

  3. Park, S.H.: Current management of childhood Amblyopia. Korean J. Ophthalmol. KJO 33, 557–568 (2019). https://doi.org/10.3341/kjo.2019.0061

    Article  PubMed  Google Scholar 

  4. Schwarzkopf, D.S., Schindler, A., Rees, G.: Knowing with which eye we see: utrocular discrimination and eye-specific signals in human visual cortex. PLoS ONE 5, e13775 (2010). https://doi.org/10.1371/journal.pone.0013775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Poggio, G.F., Poggio, T.: The analysis of stereopsis. Annu. Rev. Neurosci. 7, 379–412 (1984). https://doi.org/10.1146/annurev.ne.07.030184.002115

    Article  CAS  PubMed  Google Scholar 

  6. Arba Mosquera, S., Verma, S.: Bilateral symmetry in vision and influence of ocular surgical procedures on binocular vision: a topical review. J. Optometry 9, 219–230 (2016). https://doi.org/10.1016/j.optom.2016.01.005

    Article  Google Scholar 

  7. Erkelens, C.J., Muijs, A.J., van Ee, R.: Binocular alignment in different depth planes. Vis. Res. 36, 2141–2147 (1996). https://doi.org/10.1016/0042-6989(95)00268-5

    Article  CAS  PubMed  Google Scholar 

  8. Zha, Y., Feng, W., Han, X., Cai, J.: Evaluation of myopic corneal diameter with the Orbscan II topography system. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 251, 537–541 (2013). https://doi.org/10.1007/s00417-012-2069-6

  9. Prakash, G., Ashok Kumar, D., Agarwal, A., Sarvanan, Y., Jacob, S., Agarwal, A.: Evaluation of bilateral minimum thickness of normal corneas based on Fourier-domain optical coherence tomography. J. Cataract Refract. Surg. 36, 1365–1372 (2010). https://doi.org/10.1016/j.jcrs.2010.02.023

    Article  PubMed  Google Scholar 

  10. Hashemi, H., et al.: Enantiomorphism and rule similarity in the astigmatism axes of fellow eyes: a population-based study. J. Optometry 12, 44–54 (2019). https://doi.org/10.1016/j.optom.2017.12.002

    Article  Google Scholar 

  11. Cavas-Martínez, F., De la Cruz Sánchez, E., Nieto Martínez, J., Fernández Cañavate, F.J., Fernández-Pacheco, D.G.: Corneal topography in keratoconus: state of the art. Eye Vis. (London, England) 3, 5 (2016). https://doi.org/10.1186/s40662-016-0036-8

  12. Bao, F., et al.: Evaluation of the shape symmetry of bilateral normal corneas in a Chinese population. PLoS ONE 8, e73412 (2013). https://doi.org/10.1371/journal.pone.0073412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, Y., Bao, F.J.: Interocular symmetry analysis of bilateral eyes. J. Med. Eng. Technol. 38, 179–187 (2014). https://doi.org/10.3109/03091902.2014.899401

    Article  PubMed  Google Scholar 

  14. Zheng, X., Bao, F., Geraghty, B., Huang, J., Yu, A., Wang, Q.: High intercorneal symmetry in corneal biomechanical metrics. Eye Vis. (London, England) 3, 7 (2016). https://doi.org/10.1186/s40662-016-0037-7

  15. Velázquez, J.S., Cavas, F., Piñero, D.P., Cañavate, F.J.F., Alio del Barrio, J., Alio, J.L.: Morphogeometric analysis for characterization of keratoconus considering the spatial localization and projection of apex and minimum corneal thickness point. J. Adv. Res. 24, 261–271 (2020). https://doi.org/10.1016/j.jare.2020.03.012

  16. Toprak, I., Cavas, F., Velázquez, J.S., Alio del Barrio, J.L., Alio, J.L.: Subclinical keratoconus detection with three-dimensional (3-D) morphogeometric and volumetric analysis. Acta Ophthalmologica 98, e933–e942 (2020). https://doi.org/10.1111/aos.14433

  17. De Boor, C., De Boor, C.: A Practical Guide to Splines, vol. 27. Springer, New York (1978)

    Google Scholar 

  18. Savino, G., Battendieri, R., Riso, M., Traina, S., Poscia, A., DʼAmico, G., Caporossi, A.: Corneal topographic changes after eyelid ptosis surgery. Cornea 35, 501–505 (2016). https://doi.org/10.1097/ico.0000000000000729

Download references

Funding

This publication was carried out within the framework of the project “Desarrollo y validación de un nuevo concepto de caracterización biomecánica-morfofuncional de la córnea” reference number DTS21/00103. This Project has been funded by Instituto de Salud Carlos III (ISCIII) and cofunded by the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Cavas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cavas, F., Velázquez, J.S., Gómez, C., Mira, J., Sáez-Gutiérrez, F.L., Alió, J. (2022). Design of an Analysis Method for the Human Cornea’s Bilateral Symmetry. A Case-Study in Healthy Patients. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13346. Springer, Cham. https://doi.org/10.1007/978-3-031-07704-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07704-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07703-6

  • Online ISBN: 978-3-031-07704-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics