Skip to main content

Assessment of Inflammation in Non-calcified Artery Plaques with Dynamic 18F-FDG-PET/CT: CT Alone, Does-It Detect the Vulnerable Plaque?

  • Conference paper
  • First Online:
Book cover Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13346))

  • 856 Accesses

Abstract

Background: The goal of this work was to measure artery inflammation in aged volunteers with atherosclerosis using computed tomography (CT) and positron emission tomography (PET) with 18F-FDG. The artery plaques are composed of lipid rich fibrous tissue and foamy macrophages and are the most vulnerable for detachment. Such plaques can be differentiated by their density with CT imaging. Methods: A healthy artery (NAR) was considered with no plaque on a CT images and with density between 51 and 130 Hounsfield Units (HU). A non-calcified plaque (NCP) and a calcified plaque (CP) were respectively identified as having a density ≤ 50 HU and >130 HU. In the calcified arteries, the calcification area divided by the artery area (RCA) and the calcification score (ACS) were classified with Hierarchical K-means algorithm into 4 clusters and were correlated with the metabolic rate of 18F-FDG (MRG). Results: we found MRG statistically higher in NCP in comparison to NAR and CP in subjects without medication (P < 0.05). In subjects under-medication, NCP values were found the lowest. MRG of NCP in non-medication subjects was statistically significantly different from CP with small area but not from CP with large areas (P = 0.40). In under-medication subjects, no statistical differences were found between NCP and CP independently of plaque area and density. Conclusion: Since the low-density plaque was reported as the vulnerable plaque, based on the present work, this latter can be simply identified on CT images with intensity between 30 HU and 50 HU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agnelli, G., Belch, J.J.F., Baumgartner, I., Giovas, P., Hoffmann, U.: Morbidity and mortality associated with atherosclerotic peripheral artery disease: a systematic review. Atherosclerosis 293, 94–100 (2020). https://doi.org/10.1016/j.atherosclerosis.2019.09.012

    Article  CAS  PubMed  Google Scholar 

  2. Rafieian-Kopaei, M., Setorki, M., Doudi, M., Baradaran, A., Nasri, H.: Atherosclerosis: process, indicators, risk factors and new hopes. Int. J. Prev. Med. 5, 927–946 (2014)

    PubMed  PubMed Central  Google Scholar 

  3. Saremi, F., Achenbach, S.: Coronary plaque characterization using CT. Am. J. Roentgenol. 204, W249–W260 (2015). https://doi.org/10.2214/AJR.14.13760

    Article  Google Scholar 

  4. Owen, D.R.J., Lindsay, A.C., Choudhury, R.P., Fayad, Z.A.: Imaging of atherosclerosis. Annu. Rev. Med. 62, 25–40 (2011). https://doi.org/10.1146/annurev-med-041709-133809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, X., et al.: Association between osteogenesis and inflammation during the progression of calcified plaque evaluated by 18F-Fluoride and 18F-FDG. J. Nucl. Med. 58, 968–974 (2017). https://doi.org/10.2967/jnumed.116.182790

    Article  PubMed  Google Scholar 

  6. Kitagawa, T., et al.: 18F-sodium fluoride positron emission tomography for molecular imaging of coronary atherosclerosis based on computed tomography analysis. Atherosclerosis 263, 385–392 (2017). https://doi.org/10.1016/j.atherosclerosis.2017.04.024

    Article  CAS  PubMed  Google Scholar 

  7. Blomberg, B.A., et al.: Thoracic aorta calcification but not inflammation is associated with increased cardiovascular disease risk: results of the CAMONA study. Eur. J. Nucl. Med. Mol. Imaging 44(2), 249–258 (2016). https://doi.org/10.1007/s00259-016-3552-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Miyamoto, Y., et al.: Plaque characteristics of thin-cap fibroatheroma evaluated by OCT and IVUS. JACC Cardiovasc. Imaging 4, 638–646 (2011). https://doi.org/10.1016/j.jcmg.2011.03.014

    Article  PubMed  Google Scholar 

  9. Ehara, S., et al.: Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 110, 3424–3429 (2004). https://doi.org/10.1161/01.CIR.0000148131.41425.E9

    Article  PubMed  Google Scholar 

  10. Chai, J.T., et al.: Quantification of lipid-rich core in carotid atherosclerosis using magnetic resonance T2 mapping: relation to clinical presentation. JACC Cardiovasc. Imaging 10, 747–756 (2017). https://doi.org/10.1016/j.jcmg.2016.06.013

    Article  PubMed  PubMed Central  Google Scholar 

  11. Trivedi, R.A., et al.: MRI-derived measurements of fibrous-cap and lipid-core thickness: the potential for identifying vulnerable carotid plaques in vivo. Neuroradiology 46, 738–743 (2004). https://doi.org/10.1007/s00234-004-1247-6

    Article  PubMed  Google Scholar 

  12. Corti, R., Fuster, V.: Imaging of atherosclerosis: magnetic resonance imaging. Eur. Heart J. 32, 1709–1719 (2011). https://doi.org/10.1093/eurheartj/ehr068

    Article  PubMed  Google Scholar 

  13. Kramer, C.M., Anderson, J.D.: MRI of atherosclerosis: diagnosis and monitoring therapy. Expert Rev. Cardiovasc. Ther. 5, 69–80 (2007). https://doi.org/10.1586/14779072.5.1.69

    Article  PubMed  PubMed Central  Google Scholar 

  14. Motoyama, S., et al.: Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J. Am. Coll. Cardiol. 50, 319–326 (2007). https://doi.org/10.1016/j.jacc.2007.03.044

    Article  PubMed  Google Scholar 

  15. Marwan, M., et al.: In vivo CT detection of lipid-rich coronary artery atherosclerotic plaques using quantitative histogram analysis: a head to head comparison with IVUS. Atherosclerosis 215, 110–115 (2011). https://doi.org/10.1016/j.atherosclerosis.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  16. Maurovich-Horvat, P., et al.: The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc. Imaging 5, 1243–1252 (2012). https://doi.org/10.1016/j.jcmg.2012.03.019

    Article  PubMed  Google Scholar 

  17. Tzolos, E., et al.: Repeatability of quantitative pericoronary adipose tissue attenuation and coronary plaque burden from coronary CT angiography. J. Cardiovasc. Comput. Tomogr. 15, 81–84 (2021). https://doi.org/10.1016/j.jcct.2020.03.007

    Article  PubMed  Google Scholar 

  18. Tarkin, J.M., Joshi, F.R., Rudd, J.H.F.: PET imaging of inflammation in atherosclerosis. Nat. Rev. Cardiol. 11, 443–457 (2014). https://doi.org/10.1038/nrcardio.2014.80

    Article  CAS  PubMed  Google Scholar 

  19. Tarkin, J.M., et al.: Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J. Am. Coll. Cardiol. 69, 1774–1791 (2017). https://doi.org/10.1016/j.jacc.2017.01.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moghbel, M., Al-Zaghal, A., Werner, T.J., Constantinescu, C.M., Høilund-Carlsen, P.F., Alavi, A.: The role of PET in evaluating atherosclerosis: a critical review. Semin. Nucl. Med. 48, 488–497 (2018). https://doi.org/10.1053/j.semnuclmed.2018.07.001

    Article  PubMed  Google Scholar 

  21. Leccisotti, L., Nicoletti, P., Cappiello, C., Indovina, L., Giordano, A.: PET imaging of vulnerable coronary artery plaques. Clin. Transl. Imaging 7(4), 267–284 (2019). https://doi.org/10.1007/s40336-019-00334-3

    Article  Google Scholar 

  22. Saito, H., et al.: Validity of dual MRI and F-FDG PET imaging in predicting vulnerable and inflamed carotid plaque. Cerebrovasc. Dis. 35, 370–377 (2013). https://doi.org/10.1159/000348846

    Article  PubMed  Google Scholar 

  23. Phelps, M.E.E., Huang, S.C.C., Hoffman, E.J.J., Selin, C., Sokoloff, L., Kuhl, D.E.E.: Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann. Neurol. 6, 371–388 (1979). https://doi.org/10.1002/ana.410060502

    Article  CAS  PubMed  Google Scholar 

  24. Chen, W., Dilsizian, V.: PET assessment of vascular inflammation and atherosclerotic plaques: SUV or TBR? J. Nucl. Med. 56, 503–504 (2015). https://doi.org/10.2967/jnumed.115.154385

    Article  CAS  PubMed  Google Scholar 

  25. Rudd, J.H.F., et al.: Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J. Nucl. Med. 49, 871–878 (2008). https://doi.org/10.2967/jnumed.107.050294

    Article  PubMed  Google Scholar 

  26. Lammertsma, A.A.: Forward to the past: the case for quantitative PET imaging. J. Nucl. Med. 58, 1019–1024 (2017). https://doi.org/10.2967/jnumed.116.188029

    Article  CAS  PubMed  Google Scholar 

  27. Achenbach, S., Raggi, P.: Imaging of coronary atherosclerosis by computed tomography. Eur. Heart J. 31, 1442–1448 (2010). https://doi.org/10.1093/eurheartj/ehq150

    Article  PubMed  Google Scholar 

  28. Kitagawa, T., et al.: Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography. JACC Cardiovasc. Imaging 2, 153–160 (2009). https://doi.org/10.1016/j.jcmg.2008.09.015

    Article  PubMed  Google Scholar 

  29. Schroeder, S., et al.: Reliability of differentiating human coronary plaque morphology using contrast-enhanced multislice spiral computed tomography: a comparison with histology. J. Comput. Assist. Tomogr. 28, 449–454 (2004). https://doi.org/10.1097/00004728-200407000-00003

    Article  PubMed  Google Scholar 

  30. Schlett, C.L., et al.: Histogram analysis of lipid-core plaques in coronary computed tomographic angiography: ex vivo validation against histology. Invest. Radiol. 48, 646–653 (2013). https://doi.org/10.1097/RLI.0b013e31828fdf9f

    Article  PubMed  Google Scholar 

  31. Khalil, A., Orellana, M.R.M., Fulop, T., Turcotte, E.E., Bentourkia, M.: Positron emission tomography imaging for vascular inflammation evaluation in elderly subjects with different risk factors for cardiovascular diseases. Am. J. Nucl. Med. Mol. Imaging 4, 283 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Torizuka, T., et al.: Short dynamic FDG-PET imaging protocol for patients with lung cancer. Eur. J. Nucl. Med. 27(10), 1538–1542 (2000). https://doi.org/10.1007/s002590000312

    Article  CAS  PubMed  Google Scholar 

  33. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997). https://doi.org/10.1023/A:1007979827043

    Article  Google Scholar 

  34. Derlin, T., et al.: In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J. Nucl. Med. 52, 362–368 (2011). https://doi.org/10.2967/jnumed.110.081208

    Article  PubMed  Google Scholar 

  35. Ohya, M., et al.: Vascular calcification estimated by aortic calcification area index is a significant predictive parameter of cardiovascular mortality in hemodialysis patients. Clin. Exp. Nephrol. 15, 877–883 (2011). https://doi.org/10.1007/s10157-011-0517-y

    Article  CAS  PubMed  Google Scholar 

  36. Arai, K., Ridho Barakbah, A.: Hierarchical K-means: an algorithm for centroids initialization for K-means (2007)

    Google Scholar 

  37. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7

    Article  Google Scholar 

  38. Agatston, A.S., Janowitz, W.R., Hildner, F.J., Zusmer, N.R., Viamonte, M., Detrano, R.: Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 15, 827–832 (1990). https://doi.org/10.1016/0735-1097(90)90282-T

    Article  CAS  PubMed  Google Scholar 

  39. Van Der Bijl, N., et al.: Assessment of Agatston coronary artery calcium score using contrast-enhanced CT coronary angiography. Am. J. Roentgenol. 195, 1299–1305 (2010). https://doi.org/10.2214/AJR.09.3734

    Article  Google Scholar 

  40. McEvoy, J.W., et al.: Coronary artery calcium progression: an important clinical measurement? J. Am. Coll. Cardiol. 56, 1613–1622 (2010). https://doi.org/10.1016/j.jacc.2010.06.038

    Article  PubMed  Google Scholar 

  41. Bentourkia, M.: Kinetic modeling of PET data without blood sampling. IEEE Trans. Nucl. Sci. 52, 697–702 (2005). https://doi.org/10.1109/TNS.2005.851442

    Article  CAS  Google Scholar 

  42. De Geus-Oei, L.F., et al.: Comparison of image-derived and arterial input functions for estimating the rate of glucose metabolism in therapy-monitoring 18F-FDG PET studies. J. Nucl. Med. 47, 945–949 (2006)

    PubMed  Google Scholar 

  43. Chen, W., Dilsizian, V.: Targeted PET/CT imaging of vulnerable atherosclerotic plaques: microcalcification with sodium fluoride and inflammation with fluorodeoxyglucose. Curr. Cardiol. Rep. 15(6), 1–6 (2013). https://doi.org/10.1007/s11886-013-0364-4

    Article  Google Scholar 

  44. Blaha, M.J., Mortensen, M.B., Kianoush, S., Tota-Maharaj, R., Cainzos-Achirica, M.: Coronary artery calcium scoring: is it time for a change in methodology? JACC Cardiovasc. Imaging 10, 923–937 (2017). https://doi.org/10.1016/j.jcmg.2017.05.007

    Article  PubMed  Google Scholar 

  45. Li, Z., et al.: Effects of statin therapy on progression of mild noncalcified coronary plaque assessed by serial coronary computed tomography angiography: a multicenter prospective study. Am. Heart J. 180, 29–38 (2016). https://doi.org/10.1016/j.ahj.2016.06.023

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M’hamed Bentourkia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-enezi, M.S., Khalil, A., Fulop, T., Turcotte, É., Bentourkia, M. (2022). Assessment of Inflammation in Non-calcified Artery Plaques with Dynamic 18F-FDG-PET/CT: CT Alone, Does-It Detect the Vulnerable Plaque?. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13346. Springer, Cham. https://doi.org/10.1007/978-3-031-07704-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07704-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07703-6

  • Online ISBN: 978-3-031-07704-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics