Skip to main content

Modern Approaches to Cancer Treatment

  • Conference paper
  • First Online:
  • 882 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13346))

Abstract

Cancer remains the most common worldwide problem with the highest impact on global health. It is the second leading cause of death, due to the lack of early diagnosis and high recurrence rate after conventional therapies. Although every year several new therapeutic approaches are proposed the urgent need for more effective therapeutic strategies to improve the survival rate and life expectancy of cancer patients rapidly grows.

A recent promising anticancer strategy is based on multinuclear heterocycles as widely investigated bioactive molecules, considered important synthetic targets for the development of novel therapeutic agents. Many nitrogen heterocycles are known for a long time as natural alkaloids, known to possess the broad and diverse biological activity and medicinal applicability. Nowadays however novel multinuclear drug-like heterocyclic structures are generated by methods of artificial intelligence. Novel approaches are required as more expeditious ways of studying their biological activity, capable of more than explaining their activity, and even prognosticating it.

This study highlights our and other authors’ recent results on the biological activity of multinuclear heterocyclic molecules on cancer cells, explicitly based on their capacity to bind to G-quadruplexes. It further stresses the need for novel G-quadruplex binding compounds, with elucidated biochemical mechanisms of action for biomedical applications, namely in anticancer therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. Spiegel, J., Adhikari, S., Balasubramanian, S.: The structure and function of DNA G-quadruplexes. Trends Chem. 2, 123–136 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gellert, M., Lipsett, M.N., Davies, D.R.: Helix formation by guanylic acid. Proc. Natl. Acad. Sci. U.S.A. 48, 2013 (1962)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Simone, R., Fratta, P., Neidle, S., Parkinson, G.N., Isaacs, A.M.: G-quadruplexes: emerging roles in neurodegenerative diseases and the non-coding transcriptome. FEBS Lett. 589, 1653–1668 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. Biffi, G., Tannahill, D., McCafferty, J., Balasubramanian, S.: Quantitative visualization of DNA G-quadruplex structures inhuman cells. Nat. Chem. 5(3), 182–186 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Masai, H., Tanaka, T.: G-quadruplex DNA and RNA: their roles in regulation of DNA replication and other biological functions. Biochem. Biophys. Res. Commun. 531, 25–38 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. Wang, K.-B., Elsayed, M.S.A., Wu, G., Deng, N., Cushman, M., Yang, D.: Indenoisoquinoline topoisomerase inhibitors strongly bind and stabilize the MYC promoter G-quadruplex and downregulate MYC. J. Am. Chem. Soc. 141, 11059–11070 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clark, G.R., Pytel, P.D., Squire, C.J., Neidle, S.: Structure of the first parallel DNA quadruplex-drug complex. J. Am. Chem. Soc. 125, 4066–4067 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Drygin, D., et al.: Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Can. Res. 69, 7653–7661 (2009)

    Article  CAS  Google Scholar 

  10. Neidle, S.: Quadruplex nucleic acids as novel therapeutic targets. J. Med. Chem. 59, 5987–6011 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. Cushman, M.: Design and synthesis of indenoisoquinolines targeting topoisomerase I and other biological macromolecules for cancer chemotherapy. J. Med. Chem. 64, 17572–17600 (2021)

    Article  CAS  PubMed  Google Scholar 

  12. Xiao, X., Cushman, M.: An ab initio quantum mechanics calculation that correlates with ligand orientation and DNA cleavage site selectivity in Camptothecin− DNA− Topoisomerase I ternary cleavage complexes. J. Am. Chem. Soc. 127, 9960–9961 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haider, S.: Computational methods to study G-quadruplex–ligand complexes. J. Indian Inst. Sci. 98, 325–339 (2018)

    Article  Google Scholar 

  14. Clay, E.H., Gould, I.R.: A combined QM and MM investigation into guanine quadruplexes. J. Mol. Graph. Model. 24, 138–146 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. Gkionis, K., Kruse, H., Sponer, J.: Derivation of reliable geometries in QM calculations of DNA structures: explicit solvent QM/MM and restrained implicit solvent QM optimizations of G-quadruplexes. J. Chem. Theory Comput. 12, 2000–2016 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. Zaccaria, F., van der Lubbe, S.C., Nieuwland, C., Hamlin, T.A., Fonseca Guerra, C.: How divalent cations interact with the internal channel site of guanine quadruplexes. ChemPhysChem 22, 2286–2296 (2021)

    Article  CAS  PubMed  Google Scholar 

  17. Zaccaria, F., Fonseca Guerra, C.: RNA versus DNA G-quadruplex: the origin of increased stability. Chem. Eur. J. 24, 16315–16322 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. Islam, B., Stadlbauer, P., Neidle, S., Haider, S., Sponer, J.: Can we execute reliable MM-PBSA free energy computations of relative stabilities of different guanine quadruplex folds? J. Phys. Chem. B 120, 2899–2912 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. Sponer, J., Mladek, A., Spackova, N., Cang, X., Cheatham III, T.E., Grimme, S.: Relative stability of different DNA guanine quadruplex stem topologies derived using large-scale quantum-chemical computations. J. Am. Chem. Soc. 135, 9785–9796 (2013)

    Google Scholar 

  20. Kaneti, J., et al.: Biological activity of quinazoline analogues and molecular modeling of their interactions with G-quadruplexes. Biochim. Biophys. Acta Gen. Subj. 1865, 129773 (2021)

    Article  CAS  PubMed  Google Scholar 

  21. Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. Hänsel-Hertsch, R., et al.: Landscape of G-quadruplex DNA structural regions in breast cancer. Nat. Genet. 52, 878–883 (2020)

    Article  PubMed  Google Scholar 

  23. Maizels, N., Gray, L.T.: The G4 genome. PLoS Genet. 9, e1003468 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neidle, S.: Quadruplex nucleic acids as novel therapeutic targets. J. Med. Chem. 59, 5987–6011 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. Roxo, C., Kotkowiak, W., Pasternak, A.: G4 matters-the influence of G-quadruplex structural elements on the antiproliferative properties of G-rich oligonucleotides. Int. J. Mol. Sci. 22, 4941 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Monchaud, D., Teulade-Fichou, M.-P.: A hitchhiker’s guide to G-quadruplex ligands. Org. Biomol. Chem. 6, 627–636 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. Di Somma, S., et al.: G-quadruplex binders induce immunogenic cell death markers in aggressive breast cancer cells. Cancers (Basel) 11, 1797 (2019)

    Google Scholar 

  28. Xu, H., et al.: CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat. Commun. 8, 14432 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Derenzini, M., Trerè, D., Pession, A., Govoni, M., Sirri, V., Chieco, P.: Nucleolar size indicates the rapidity of cell proliferation in cancer tissues. J. Pathol. 191, 181–186 (2000)

    Article  CAS  PubMed  Google Scholar 

  30. Duan, W., et al.: Design and synthesis of fluoroquinophenoxazines that interact with human telomeric G-quadruplexes and their biological effects. Mol. Cancer Ther. 1, 103–120 (2001)

    CAS  PubMed  Google Scholar 

  31. Bywater, M.J., et al.: Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 22, 51–65 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Asamitsu, S., Obata, S., Yu, Z., Bando, T., Sugiyama, H.: Recent progress of targeted G-quadruplex-preferred ligands toward cancer therapy. Molecules (Basel, Switzerland) 24, 429 (2019)

    Google Scholar 

  33. Sun, D., et al.: Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem. 40, 2113–2116 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. Anantha, N.V., Azam, M., Sheardy, R.D.: Porphyrin binding to quadrupled T4G4. Biochemistry 37, 2709–2714 (1998)

    Article  CAS  PubMed  Google Scholar 

  35. Kim, M.Y., Vankayalapati, H., Shin-Ya, K., Wierzba, K., Hurley, L.H.: Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular g-quadruplex. J. Am. Chem. Soc. 124, 2098–2099 (2002)

    Article  CAS  PubMed  Google Scholar 

  36. Burger, A.M., et al.: The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res. 65, 1489–1496 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. Rodriguez, R., Müller, S., Yeoman, J.A., Trentesaux, C., Riou, J.F., Balasubramanian, S.: A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 130, 15758–15759 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Cian, A., Delemos, E., Mergny, J.L., Teulade-Fichou, M.P., Monchaud, D.: Highly efficient G-quadruplex recognition by bisquinolinium compounds. J. Am. Chem. Soc. 129, 1856–1857 (2007)

    Article  PubMed  Google Scholar 

  39. Tera, M., Ishizuka, H., Takagi, M., Suganuma, M., Shin-ya, K., Nagasawa, K.: Macrocyclic hexaoxazoles as sequence- and mode-selective G-quadruplex binders. Angew. Chem. Int. Ed. Engl. 47, 5557–5560 (2008)

    Article  CAS  PubMed  Google Scholar 

  40. Chung, W.J., Heddi, B., Tera, M., Iida, K., Nagasawa, K., Phan, A.T.: Solution structure of an intramolecular (3 + 1) human telomeric G-quadruplex bound to a telomestatin derivative. J. Am. Chem. Soc. 135, 13495–13501 (2013)

    Article  CAS  PubMed  Google Scholar 

  41. Duarte, A.R., Cadoni, E., Ressurreição, A.S., Moreira, R., Paulo, A.: Design of modular G-quadruplex ligands. ChemMedChem 13, 869–893 (2018)

    Article  CAS  PubMed  Google Scholar 

  42. Maia, E.H.B., Assis, L.C., de Oliveira, T.A., da Silva, A.M., Taranto, A.G.: Structure-based virtual screening: from classical to artificial intelligence. Front. Chem. 8, 343 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Monsen, R.C., Trent, J.O.: G-quadruplex virtual drug screening: a review. Biochimie 152, 134–148 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by Grant Number DN 19/11 of 10.12. 2017 from the National Science Fund of Bulgaria. We also acknowledge the provided access to the e-infrastructure of the NCHDC – part of the Bulgarian National Roadmap on RIs, with the financial support by the Grant No D01-387/18.12.2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Georgieva .

Editor information

Editors and Affiliations

Websites:

Websites:

https://www.who.int/health-topics/cancer

https://www.who.int/health

https://apps.who.int/gb/ebwha/pdf_files/WHA70/A70_R12-en.pdf

https://otavachemicals.com/products/targeted-libraries-and-focused-libraries

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bakalova, S.M., Georgieva, M., Kaneti, J. (2022). Modern Approaches to Cancer Treatment. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13346. Springer, Cham. https://doi.org/10.1007/978-3-031-07704-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07704-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07703-6

  • Online ISBN: 978-3-031-07704-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics