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Abstract. In the last few years, eXplainable Artificial Intelligence (XAI)
has been attracting attention in data analytics, as it shows great poten-
tial in interpreting the results of complex machine learning models in the
application of medical problems. The nutshell is that the outcome of the
machine learning-based applications should be understood by end users,
specially in medical data context where decisions have to be carefully
taken. As such, many efforts have been carried out to explain the outcome
of a deep learning complex model in processes where image recognition
and classification are involved, as in the case of Melanoma cancer. This
paper represents a first attempt (to the best of our knowledge) to exper-
imentally and technically investigate the explainability of modern XAI
methods Local Interpretable Model-Agnostic Explanations (LIME) and
Shapley Additive exPlanations (SHAP), in terms of reproducibility of
results and execution time on a Melanoma image classification data set.
This paper shows that XAI methods provide advantages on model result
interpretation in Melanoma image classification. Concretely, LIME per-
forms better than SHAP gradient explainer in terms of reproducibility
and execution time.

Keywords: eXplainable Artificial Intelligence · Melanoma medical im-
age classification · LIME · SHAP · Deep Learning

1 Introduction

Explainable AI (XAI) is an artificial intelligence approach oriented to explain the
results of complex machine learning algorithms [2]. Generally, it is believed that
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as the complexity of a machine learning algorithm increases, the understandabil-
ity of the results become harder [3]. Previously, the robustness of a classification
algorithm was evaluated using well-known criteria such as accuracy, precision,
recall, Fscore, and etc. However, in real-world scenarios, human experts usually
prefer the use of understandable algorithms, even though they usually have mod-
erate, sometimes limited, performance that other complex black-box techniques,
such as deep learners. In fact, explainability besides accuracy are two important
factors to assess the output of any machine learning algorithms [9]. One of the
main categories of explainers are post hoc model-agnostic. Post hoc refers to
those methods that are applied after training the model and not at the middle
of the model training process. Model-agnostic refers to the group of explainers
that are not specifically designed for a certain machine learning algorithm. XAI
specifically well-adapted to provide explanation ability to deep learning output
on medical datasets [5], where Melanoma cancer is not an exception.

Melanoma is the most aggressive skin tumour, with a 5-year survival rate
of 93% if diagnosed in early stages, but only 27% if diagnosed at an advanced
stage with the presence of metastatic disease6. In Spain, 6,108 cases of melanoma
were estimated in 2021 (2,480 men and 3,678 women), being the fifth most
frequent cancer in men and women 7. Diagnosis in the early stages is what
allows better survival rates, although it entails the difficulty of differentiating
it from other pigmented skin lesions (nevus and seborrheic keratosis, mainly),
which are followed up. The inclusion of artificial intelligence in the diagnosis
would allow a more accurate diagnosis. In concrete, there are many efforts to
melanoma diagnosis using deep learning [1][7]. In order to realize trustworthy AI,
XAI can be used as a technical method to ensure transparency of deep learning
by helping better understand the neural network’s underlying mechanisms and
explaining system behaviours to users (in our case clinicians).

This paper is, to the best of our knowledge, a first attempt to evaluate
two well-known post hoc model-agnostic methods in XAI, namely: Local In-
terpretable Model-Agnostic Explanations (LIME) [8] and SHapley Additive ex-
Planations (SHAP) [6], on explaining the deep learning prediction on Melanoma
image dataset technically. Reproducibility and execution time are introduced
as two major criteria for comparing LIME and SHAP. This paper finally con-
cludes which of the aforementioned method is most suitable for explanation of
Melanoma detection from an engineering point of view. The rest of this paper is
organized as follow. Section 2 provides related information for LIME and SHAP.
Section 3 demonstrates the methodology and the results achieved. Finally, sec-
tion 4 concludes the paper by summarizing the findings.

6 Melanoma Cancer statistics approved by the Cancer.Net Editorial Board, 01/2021
https://www.cancer.net/cancer-types/melanoma/statistics

7 https://seom.org/images/Cifras del cancer en Espnaha 2021.pdf



Title Suppressed Due to Excessive Length 3

2 Preliminaries

This research focuses on the model-agnostic AI explainers, which provide post-
hoc interpretability i.e. why the prediction model predicted its output through
providing after-the-fact evidence for the outputs. These explainers are prob-
ably the most popular ones in the current literature, which consist in Local
Interpretable Model-Agnnostic Explanations (LIME) [8] and SHapley Additive
exPlanations (SHAP), both comprising a group of techniques that help humans
visualize what an already-trained model thinks is important.

LIME uses Equation 1 to minimize ξ(x) so that f is the prediction model
which is assumed as black box, g is a model in G as a class of potentially
interpretable models that tries to approximate f, Πx is used to define the locality
around the sample to be explained (perturbations from x ), and Ω(g) represents
the complexity of explanation that should be minimized as well as L(f, g,Πx).

ξ(x) = argming∈G L(f, g,Πx) +Ω(g) (1)

SHAP values are concepts coming from game theory [6]. Shapely quantifies to
what extent each player (features) contributes to the game (output of prediction
model). Shapely creates a power set of features firstly. The cardinality of power
set is 2n where n is the total number of features. Likewise, SHAP also requires
to train 2n models with different set of features according to the power set. It
is obvious that as the number of features is higher the number of models to be
trained increases exponentially, which is treated by Lundberg et al.[6] through
some approximations and samplings. Basically, calculating SHAP values has two
steps, namely calculating marginal contributions of each feature and weighing
the marginal contributions which can be shown in general in Equation 2, so that
F is the entire number of (f) features and set = 1, ..., F .

SHAPf (x) =
∑
f∈set

[|set| ×
(

F

|set|

)
]−1[Predictset(x)− Predictset/f (x)] (2)

Fig. 1 illustrates the difference between SHAP and LIME in general. Ac-
cording to this figure, LIME initially perturbs the sample to explain x to create
the set Z = z1, z2, ..., zm. Next, it selects an interpretable model (such as linear
regression) to calculate the importance of features (calculating the coefficients
related to each feature) via g(Z). LIME finally selects the most effective fea-
tures (through sorting coefficients if g is linear regression). However, SHAP build
SHAP values by calculating the marginal contribution of features and weighing
them. Effective features are those with greater SHAP values. Moreover, sum-
ming the SHAP values gives exactly the difference between the output of full
model and null model, which shows the additive explanations of SHAP.

While SHAP explainers are model agnostic, there exists two variations that
could be used for deep learning, namely deep explainer and gradient explainer.
Deep explainer approximates the conditional expectations of SHAP values using
a selection of background samples, while gradient explainer explains a model
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Fig. 1. General workflow of SHAP and LIME

using expected gradients which reformulates the integral as an expectation and
combines that expectation with sampling reference values from the background
dataset.

3 Methodology

The methodology of the paper is illustrated using a pipeline in Fig. 2. The image
dataset is online available in Kaggle Skin Lesion Images for Melanoma Classifi-
cation (ISIC2019) repository8. It comprises more than 25,000 images with im-
balanced classes (the majority of training data is nevus) which could cause an
erroneous accuracy and incorrect predictions. There are many methods to bal-
ance training data including undersampling the majority class, oversampling the
minority classes, applying SMOTE, and etc depending on the dataset. However,
our experiments reveal that the best technique for image datasets like Melanoma
is the combination of random oversampling the minority classes following by ap-
plying data augmentation.

Fig. 2. Proposed methodology.

Thus, in the preprocessing step, the distribution of classes were equalized us-
ing random oversampling initially. Oversampling solely can lead to overoptimism
in prediction. Assuming the training data is split into train and validation sets.
It is expected that some images in the training data appear in the validation

8 In URL https://www.kaggle.com/andrewmvd/isic-2019
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set, since there exist multiple replicated images as a result of random oversam-
pling the minority classes. As such overfitting could happen where the model
prediction will be high in training data, but very low in unseen data. Here data
augmentation could alleviate overfitting. The data augmentation in this study
is done through rescaling, rotating, width-shift, height-shift, and horizontal-flip
augmentation. The pipeline in Fig. 2 follows by applying pre-trained ResNet [4]
convolutional Deep Learning model and saving the best weights. Then, model
agnostic post hoc explainers (SHAP with Deep and Gradient explainers, LIME
with three well-known segmentation algorithms) are used to evaluate the results
based on reproducibility of the results and execution time.

Reproducibility means the ability of the method to successfully reproduce
same explanations in multiple runs. Likewise, execution time refers to the elapsed
time starting from creating the explainer until calculating the explanation and
generating the pictorial results. Table 1 also shows the main characteristics of the
Melanoma dataset prior to oversampling and augmentation. After oversampling
the distribution of each class in training set is equal to 1,372 so that the the
entire training set contains 4,116 observations.

Table 1. Melanoma dataset description after oversampling class imbalance

Data #Observations Distribution of observations

Train 2000 374/Melanoma, 1372/Nevus, 254/Seborrheic-keratosis
Validation 150 30/Melanoma, 78/Nevus, 42/Seborrheic-keratosis
Test 600 117/Melanoma, 393/Nevus, 90/Seborrheic-keratosis

Table 2. Description of four selected samples for experimentation

Test observation Real label Melanoma Nevus Seborrheic-keratosis

Sample 1 Nevus 0.31 0.57 0.12

Sample 2 Melanoma 1.00 0.00 0.00

Sample 3 Nevus 0.00 1.00 0.00

Sample 4 Seborrheic-keratosis 0.00 0.00 1.00

3.1 Evaluation

This section provides related information for calculated metrics. All the experi-
ments have been conducted in a virtualization environment running on a private
high-performance cluster computing platform. This infrastructure is located at
the Ada Byron Research Center at the University of Málaga (Spain), and com-
prises a number of IBM hosting racks for storage, units of virtualization, server
compounds and backup services. Our virtualization platform is hosted in this
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computational environment. Concretely, this platform is made up of a CPU with
Intel(R) Xeon(R) Gold 6130 @ 2.10GHz, maximum 2 TB of HDD, maximum 64
GB of RAM, and Ubuntu 20.04.3 LTS(GNU/Linux 5.4.0-1049-kvm x86 64).

Since it is impossible to illustrate the entire test samples four test samples
were selected to investigate the reproducibility and execution time analysis as
explained in Table 2, so that for each sample the real labeling and the prediction
of deep learning are shown.

3.2 Evaluation of LIME

Fig 3 illustrates the reproducibility of LIME using three well-known segmenta-
tion algorithm namely, quick shift, Simple Linear Iterative Clustering (SLIC)
and felzenswalb. Quick shift uses approximation of kernelized mean-shift and
it belongs to the family of local mode-seeking algorithms. SLIC uses k-means
which is a simpler clustering method in comparison with the clustering method
in quick shift. In contrast, felzenswalb uses a graph-based approach for image
segmentation.

Fig 3 is the result of 5 multiple runs of LIME algorithm for 5 top features with
different number of perturbations regarding each of the four images in Table 2.
The original segmentation is illustrated for each image using quick shift, SLIC,
and felzenswalb in Fig 3 initially, so that the segmentation algorithms are tuned
to contain roughly same number of segments for each algorithm, to have a fair
comparison between them. Under each image is a fraction that shows how many
times LIME is able to generate exactly same 5 top features in 5 multiple runs
using each segmentation algorithm. For example, 4/5 for sample 1 with quick
shift algorithm and 5,000 perturbations means the result of LIME in 4 runs from
5 runs are exactly same. As such, sample 1 achieves 1/5 for 100 perturbations
using quick shift algorithm, which means that there are five unique results so
that one of them is selected randomly.

It is noteworthy mentioning that, quick shift and SLIC have relatively same
segmentation trend in comparison with felzenswalb so that this last sometimes
results in segments with sizes that vary greatly as in sample 2 and sample 3.
This may affect the reproducibility of LIME either positively in sample 3 or
negatively in sample 2.
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While Fig 3 analyzes reproducibility strictly, Fig 4 checks the reproducibility
of LIME more gently by calculating the number of features in each perturbation
(100, 500, and 1,000) that have also been observed when the perturbation is
5,000. Fig 4 shows that as the number of perturbation increases from 100 to
1,000, more features from that perturbation are observed within 5,000 pertur-
bation. If two superpixels are equally good at explaining, LIME may pick an
arbitrary one which sometimes result in not reproducible explanations. Fig 4
shows that by increasing the number of perturbation, LIME converges to repro-
ducibility.

Fig. 4. Gentle analysis of LIME reproducibility by increasing number of perturbations

Recalling that good segmentation often depends on the application, illustra-
tions in Fig 3 and 4 show that the reproducibility in LIME mostly increases while
the number of perturbation increases from 500 to 5,000 using any segmentation
algorithm (the default number of perturbation in LIME is 1,000). While increas-
ing number of perturbations has a positive effect in reproducibility of LIME,
another approach is to fix the random seed to initialize the random number gen-
erator. This way, using any number of perturbations the explainability results are
same. Nonetheless, greater number of perturbations together with fixed random
seed result in better accuracy as well. Nonetheless, Fig 5 shows how successfully
LIME recognizes regions contributed to target label by increasing the number
of perturbations and using fixed random seed. This last figure also reveals that
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LIME intelligently did not recognize mm scale and hair as effective features, but
considers the stain in sample 3 within 5 most important superpixels.

Fig. 5. Reproducibility analysis of LIME using fixed random seed and variable number
of perturbations

3.3 Evaluation of SHAP

As commented before, there exists two variations of SHAP optimized for deep
learning, namely gradient explainer and deep explainer. The SHAP kernel ex-
plainer could also be used because it works for all models, but is slower than
the other model type-specific algorithms, as it makes no assumptions about the
model type. Thus, to avoid redundancy of figures with same results and for the
sake of hardware limitation (passing more than 100 background data was un-
reasonably expensive), the reproducibility of SHAP has been tested using solely
with gradient explainer, shown in Fig 6. Generally, pink pixels contribute to the
model output and blue pixels contribute not being of that class. The intensity
of color shows the intensity of contribution. Since gradient and deep explainer
explains the prediction using pixels and not superpixels, it is difficult to trace
the reproducibility numerically as it was done for LIME.
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The nsamples parameter in gradient explainer (by default = 200) indicates
the number of samples are taken to compute the expectation and shows accuracy
of explanation. This gives better estimates of SHAP values as the nsamples
increases, which leads to low variate estimation of the SHAP values, however
the execution time increases. Fig 6 shows that as the nsamples increases from
100 to 5,000 the explainability becomes a bit more reproducible, which is less
obvious in sample 1 because the deep learning model is not completely sure
about its prediction. Fig 6 also shows that gradient explainer considers the stain
in sample 3 same as LIME in Fig 5. The gradient explainer in Fig 6 uses the entire
4,116 images in train set as a background data (the random seed in calculation
of SHAP values is set to 42).

Fig. 6. Visual reproducibility analysis of SHAP gradient explainer

3.4 Computational Effort

From the point of view of the computational effort, Fig 7 compares LIME (using
quick shift) and SHAP gradient explainer in terms of execution time, so that N is
the number of perturbation and nsamples for LIME and SHAP, respectively. It
is clear that LIME spends less amount of time for explainability as N increases,
while SHAP gradient explainer is almost three times slower than LIME. It is
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noteworthy mentioning that changing the segmentation algorithm does not have
a considerable difference in execution time of LIME. SLIC is very competitively
faster than quick shift and also quick shift is very closely faster than felzenswalb.
Thus, Fig 7 the better performance in terms of execution time of LIME using
quick shift as a moderate segmentation algorithm. Technically speaking, LIME
has more reproducibility power and is almost much faster than SHAP gradient
on melanoma dataset. Thus, there are sufficient engineering justifications to
use LIME for explanability of deep learning on melanoma dataset for a single
prediction rather than SHAP gradient explainer.

Fig. 7. Efficiency of LIME Vs SHAP

4 Conclusion

This paper investigated the explainability of Local Interpretable Model-Agnostic
Explanations (LIME) and SHapley Additive exPlanations (SHAP) in order to
help in the differential diagnosis of pigmented skin lesions. The evaluation cri-
teria focuses on the reproducibility of the results, as well as the execution time.
Three variations of LIME ( using three well-known segmentation algorithms) are
used and gradient explainer is selected for SHAP. From the engineering point of
view, LIME was faster than SHAP. The idea is that while acceptable results are
achieved by LIME in the case of differential diagnosis of pigmented skin lesions,
there is no need to use SHAP because of its expensive efficiency. LIME works
with super pixels and the reproducibility of results were more controllable than
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SHAP gradient explainer. Thus, it can be concluded that XAI methods show
potentials in providing interpretable results for the specific case of pigmented
skin lesions classification, in the context of Melanoma cancer diagnosis. Specif-
ically, LIME shows better performance than SHAP gradient explainer in terms
of reproducibility and execution time.

The general idea for future work is to approach explainability of deep learning
on melanoma data set through improving LIME, as well as to tacking with other
different kind of medical image datasets.
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