Skip to main content

Modelling of Arbitrary Shaped Channels and Obstacles by Distance Function

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Abstract

Numerical simulation is a tool used in multiple scientific domains. There is a wide range of simulations where we model a flow of fluid in a specific geometry, for example in simulations of blood flow in microfluidic channels. In such cases, a complex shape of channels has to be defined by describing its boundaries and rigid obstacles. The purpose of this study is develop a method of defining boundaries and obstacle objects with complex and non-trivial shapes in such numerical simulations. The obstacle or a boundary needs to be described only by a cloud of points defining its surface. Based on this point cloud a distance function determining the position and the shape of the obstacle is defined in the whole simulation domain. This general method is presented on a concrete examples involving several simulations performed within a simulation package ESPResSo. The new method of obstacle creation gives excellent results in terms of the accuracy and simulation time consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zou, Ch., Yin, Y.: Simulation of fluid and complex obstacle coupling based on narrow band FLIP method. Water 10, 811 (2018)

    Article  Google Scholar 

  2. Velísková, Y., Chára, Z., Schügerl, R., Dulovičová, R.: CFD simulation of flow behind overflooded obstacle. J. Hydrol. Hydromech. 66, 448–456 (2018)

    Article  Google Scholar 

  3. Magdalena, I., Hariz, A.A.A., Farid, M., Kusuma, M.S.B.: Numerical studies using staggered finite volume for dam break flow with an obstacle through different geometries. Results Appl. Math. 12, 100193 (2021)

    Article  Google Scholar 

  4. Pipp, P., Hočevar, M., Dular, M.: Challenges of numerical simulations of cavitation reactors for water treatment - an example of flow simulation inside a cavitating microchannel. Ultrason. Sonochem. 77, 105663 (2021)

    Article  CAS  Google Scholar 

  5. Luo, L.-S., Krafczyk, M., Shyy, W.: Encyclopedia of Aerospace Engineering: Lattice Boltzmann Method for Computational Fluid Dynamics. In: Blockley, R., Shyy, W., (eds.) (2010)

    Google Scholar 

  6. Zeiser, T., Lammers, P., Klemm, E., Li, Y.W., Bernsdorf, J., Brenner, G.: CFD-calculation of flow, dispersion and reaction in a catalyst filled tube by the lattice Boltzmann method. Chem. Eng. Sci. 56, 1697–1704 (2001)

    Article  CAS  Google Scholar 

  7. Obrecht, C., Kuznik, F., Merlier, L., Roux, J.-J., Tourancheau, B.: Towards aeraulic simulations at urban scale using the lattice Boltzmann method. Environ. Fluid Mech. 15(4), 753–770 (2014). https://doi.org/10.1007/s10652-014-9381-0

    Article  Google Scholar 

  8. Yakhlef, O., Murea, C.M.: Numerical simulation of dynamic fluid-structure interaction with elastic structure-rigid obstacle contact. Fluids. 6, 51 (2021)

    Article  CAS  Google Scholar 

  9. Arnold, A., et al.: ESPResSo 3.1 - molecular dynamics software for coarse-grained models. Lecture Notes in Computational Science and Engineering, vol. 89, pp. 1–23 (2013). https://doi.org/10.1007/978-3-642-32979-1_1

  10. Jančigová, I., Kovalčíková, K., Weeber, R., Cimrák, I.: PyOIF: computational tool for modelling of multi-cell flows in complex geometries. PLoS Comput. Biol. 16(10), e1008249 (2020)

    Article  Google Scholar 

  11. Jančigová, I., Kovalčíková, K., Bohiniková, A., Cimrák, I.: Spring-network model of red blood cell: from membrane mechanics to validation. Int. J. Numer. Meth. Fluids 92, 1368–1393 (2020)

    Article  Google Scholar 

  12. Tóthová, R., Jančigová I., Bušík, M.: Calibration of elastic coefficients for spring-network model of red blood cell. In: 2015 International Conference on Information and Digital Technologies, pp. 376–380 (2015). https://doi.org/10.1109/DT.2015.7223000

  13. Jančigová, I., Tóthová, R.: Scalability of forces in mesh-based models of elastic objects, In: 2014 ELEKTRO, pp. 562–566 (2014). https://doi.org/10.1109/ELEKTRO.2014.6848960

  14. Bachratý, H., Bachratá, K., Chovanec, M., Kajánek, F., Smiešková, M., Slavík, M.: Simulation of blood flow in microfluidic devices for analysing of video from real experiments. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2018. LNCS, vol. 10813, pp. 279–289. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78723-7_24

    Chapter  Google Scholar 

  15. Bouchiba, H., et al. Computational fluid dynamics on 3D point set surfaces. J. Comput. Phys. 7, 100069 (2020)

    Google Scholar 

  16. Kosa, B., Mikula, K.: Direct simple computation of middle surface between 3D point clouds and/or discrete surfaces by tracking sources in distance function calculation algorithms (2021), arXiv:2112.09808

  17. Roehm, D., Arnold, A.: Lattice Boltzmann simulations on GPUs with ESPResSo. Eur. Phys. J. Special Topics. 210, 89–100 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This publication has been produced with the support of the Integrated Infrastructure Operational Program for the project: Creation of a Digital Biobank to Support the Systemic Public Research Infrastructure, ITMS: 313011AFG4, co-financed by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Cimrák .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 15 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kovalčíková Ďuračíková, K., Bugáňová, A., Cimrák, I. (2022). Modelling of Arbitrary Shaped Channels and Obstacles by Distance Function. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13346. Springer, Cham. https://doi.org/10.1007/978-3-031-07704-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07704-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07703-6

  • Online ISBN: 978-3-031-07704-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics