
HAL Id: hal-03688777
https://inria.hal.science/hal-03688777

Submitted on 5 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A distance geometry procedure using the
Levenberg-Marquardt algorithm and with applications

in biology but not only
Douglas Gonçalves, Antonio Mucherino

To cite this version:
Douglas Gonçalves, Antonio Mucherino. A distance geometry procedure using the Levenberg-
Marquardt algorithm and with applications in biology but not only. 9th International Work-
Conference on Bioinformatics and Biomedical Engineering, Jun 2022, Gran Canaria, Spain. �hal-
03688777�

https://inria.hal.science/hal-03688777
https://hal.archives-ouvertes.fr

A distance geometry procedure using the

Levenberg-Marquardt algorithm

and with applications in biology

but not only

D.S. Gonçalves1 and A. Mucherino2

1Department of Mathematics, UFSC, Florianópolis, SC, Brazil.

douglas.goncalves@ufsc.br

2IRISA, University of Rennes 1, Rennes, France.

antonio.mucherino@irisa.fr

Abstract. We revisit a simple, yet capable to provide good solutions, procedure

for solving the Distance Geometry Problem (DGP). This procedure combines

two main components: the first one identifying an initial approximated solution

via semidefinite programming, which is thereafter projected to the target dimen-

sion via PCA; and another component where this initial solution is refined by

locally minimizing the Smooth STRESS function. In this work, we propose the

use of the projected Levenberg-Marquart algorithm for this second step. In spite

of the simplicity, as well as of its heuristic character, our experiments show that

this procedure is able to exhibit good performances in terms of quality of the so-

lutions for most of the instances we have selected for our experiments. Moreover,

it seems to be promising not only for the DGP application arising in structural bi-

ology, which we considered in our computational experiments, but also in other

ongoing studies related to the DGP and its applications: we finally provide a gen-

eral discussion on how extending the presented ideas to other applications.

1 Introduction

Let G = (V,E,d) be a simple weighted undirected graph, where the weight function

d maps every edge of the graph to a given distance value. We suppose that a unique

numerical label i ∈ {1,2, . . . , |V |} is associated to every vertex in V , so that a vertex

ordering is implicitly given. The focus of this article is a geometric problem having

several real-life applications [12, 15]:

Definition 1.1. Given the graph G and a dimension K > 0, the Distance Geometry

Problem (DGP) asks whether there exists any realization x : V −→ R
K such that the

following distance constraints are satisfied:

∀{i, j} ∈ E, ||xi − x j||= di j, (1)

where || · || is the Euclidean norm and xi = x(i).

Gonçalves and Mucherino

Throughout this article, we will suppose that the considered problem instances admit at

least one solution, which we will refer to as “valid realizations”.

We remark that, in several applications, such as the one arising in the context of

structural biology [5], sensor network localization [4], or even in computer graphics

[11], the distance information cannot be provided with high precision. Most likely, in-

stead of having one precise distance value di j, approximated lower and upper bounds

are actually provided for most of the involved distances. Let us suppose therefore that

our weight function d in G does not provide a single real number, but rather a pair of

real numbers, di j and di j for every {i, j} ∈ E , such that di j < di j. In order to take these

interval distances into consideration, we introduce new variables y indexed on the edge

set E , and modify the problem in eq. (1) as follows:

∀{i, j} ∈ E,

{

||xi − x j||
2 − yi j = 0,

d2
i j ≤ yi j ≤ d

2
i j.

(2)

In spite of the current large efforts of the research community in finding new and

efficient solution methods to the DGP, a general method has not been devised yet. In this

work, we focus our attention on a rather simple procedure, which is basically composed

by two main components: (i) the generation of an initial realization that we can expect

to be in a relatively small neighborhood of a DGP solution; (ii) a refinement step:

from the found initial realization, we locally minimize the sum of squared constraint

violations, with the aim of identifying a better approximation of the DGP solution. In

particular, to tackle part (i), we solve a semidefinite programming relaxation [4] of the

original DGP and project the obtained high-dimensional realization in R
K ; then, from

the obtained initial realization, we run the projected Levenberg-Marquardt algorithm

[8] to tackle the part (ii) of our procedure.

We point out that the general structure of our procedure is not new. One example can

be found in [1], where semidefinite programming also comes to play; another example

can be found in [6]. To the best of our knowledge, however, the procedure used in

our article is the first one that employs the Levenberg-Marquardt algorithm. The main

motivation to use this algorithm is that it provides better convergence results when

compared to other methods (such as gradient descent methods), as our computational

experiments will show. As a result, despite the simplicity of our procedure, we can

report successful computational experiments on relatively small-sized instances (but

not really tiny instances, as in the experiments presented in other works). The use of

our procedure appears therefore to be promising for future studies in the context of the

DGP.

The rest of the paper is organized as follows. The DGP procedure main structure

will be briefly introduced in Section 2. This short section will then contain two sub-

parts, one (Section 2.1) focusing on a semidefinite programming relaxation of our tar-

get problem, and another (Section 2.2) describing the Projected Levenberg-Marquardt

(PLM) algorithm. Computational experiments on a set of protein-like instances will be

reported in Section 3. Finally, we will conclude the paper in Section 4 with an extensive

discussion on the possibilities of use for the described procedure, as well as on the use

of its components in other algorithmic frameworks. A particular emphasis will be given

to the impact of the uncertainty on the distances on sets of DGP solutions.

A DGP procedure based on Levenberg-Marquardt algorithm and applications

2 Our DGP procedure

Given a pair (G,K) representing a DGP instance, our procedure for its solution can be

simply summarized in the following two steps:

Step A. Find a realization via a Semidefinite Programming (SDP) relaxation, fol-

lowing by a Principal Component Analysis (PCA) projection. The realization this way

obtained is our “initial realization” (see Section 2.1);

Step B. Improve the quality of the initial realization found at the previous step by

running the Projected Levenberg-Marquardt (PLM) algorithm (see Section 2.2).

Notice that, from now on, we will be using the acronyms SDP, PCA and PLM for

referring to the methods mentioned above.

2.1 Semidefinite programming relaxation

Let X ∈ R
K×n be a matrix with the vectors xi ∈R

K as its columns. We have:

‖xi − x j‖
2 = (ei − e j)

⊤X⊤X(ei − e j) =: (ei − e j)
⊤Y (ei − e j),

where ei stands for the ith canonical vector of Rn. As a consequence, problem (2) is

equivalent to find a positive semidefinite matrix Y of rank K such that

d2
i j ≤ 〈Ei j,Y 〉 ≤ d

2
i j, ∀{i, j} ∈ E,

where 〈A,B〉 := trace(A⊤B) is the trace inner product and Ei j := (ei − e j)(ei − e j)
⊤.

This reformulation could be cast as a linear SDP except for the (nonconvex) rank con-

straint. Following [1, 4], we suppress the rank constraint and consider the following

SDP relaxation:
min

Y=Y⊤
− γ〈I,Y 〉

s.t. d2
i j ≤ 〈Ei j,Y 〉 ≤ d

2
i j, ∀{i, j} ∈ E

Y1 = 0, Y � 0,

(3)

where 1 ∈ R
n is a vector of ones, γ > 0 is a regularization parameter and Y � 0 means

that Y must be positive semidefinite. The term −〈I,Y 〉 in the objective function corre-

sponds to a rank reduction heuristic [4]. The reasoning behind it is that, under Y 1 = 0,

we have that

〈I,Y 〉= trace(Y) = trace(Y)−
1

n
1⊤Y 1 =

1

2n
∑

i
∑

j

‖xi − x j‖
2,

and by maximizing this quantity we force the corresponding realization to be “more

flat” and hence belonging (hopefully) to a lower dimensional space.

Let Y be a solution to problem (3). Since Y � 0, we have that Y = X⊤X , where

X ∈R
r×n, with r = rank(Y). Although X satisfies all distance constraints, it may happen

Gonçalves and Mucherino

that the rank r is strictly larger than the desired dimension K. This is the reason why

it is necessary to project X onto R
K : we perform this projection by PCA. Let Y =

QΛQ⊤ be the eigendecomposition of Y and assume the eigenvalues are ordered in non-

increasing order λ1 ≥ . . .λn ≥ 0. If ΛK denotes the principal submatrix of Λ containing

the K largest eigenvalues of Y and QK contains the K corresponding eigenvectors in its

columns, then

X0 =
√

ΛKQ⊤
K

gives us the sought “projection”, which is an approximate realization in R
K . We say

approximate because after the projection, X0 may no longer satisfy some distance con-

straints.

In order to recover the feasibility of the violated constraints, we consider a re-

finement step which consists in an iterative method for solving problem (2) using the

columns of X0 as starting point for the vectors xi (the additional variables yi j are ini-

tialized to the values (d2
i j + d

2
i j)/2). For this refinement step, we consider the PLM

algorithm [8], which is briefly reviewed in the next subsection.

2.2 Projected Levenberg-Marquardt algorithm

Consider the following constrained system of nonlinear equations:

{

F(z) = 0,
z ∈C,

(4)

where F : Rn → R
m is continuously differentiable and C is a convex compact set. Let

J(z) denote the Jacobian of F at z and PC(u) the Euclidean projection of u onto C.

Moreover, let us define the following function:

f (z) =
1

2
‖F(z)‖2.

Following [8], we consider the PLM algorithm for solving eq. (4), summarized be-

low.

The Projected Levenberg-Marquardt (PLM)

Given z0 ∈C, σ,η1 ∈ (0,1), M ∈ Z++, η2 > 0, set k = 0.

Step 1. Set µk = ‖F(zk)‖
2 and solve (J(zk)

⊤J(zk)+ µkI)dU
k =−J(zk)

⊤F(zk)

Step 2. Set dC
k = PC(zk + dU

k)− zk. If dC
k satisfies

F(zk)
⊤J(zk)d

C
k ≤−η1‖dC

k ‖
2 (5)

‖dC
k ‖ ≤ η2‖J(zk)

⊤F(zk)‖ (6)

then dk = dC
k , else dk = PC(zk − J(zk)

⊤F(zk))− zk.

A DGP procedure based on Levenberg-Marquardt algorithm and applications

Step 3. Set α = 1. While f (zk +αdk)> max0≤ j≤min{M,k} f (zk− j)+σαd⊤
k J(zk)

⊤F(zk),
update α = α/2.

Step 4. Set αk = α and update zk+1 = zk +αkdk. Go to Step 1.

Given zk ∈ C, the unconstrained LM direction dU
k is computed at Step 1. In Step 2,

the feasible direction dC
k , based on the projection of zk + dU

k onto C, is computed and

it is chosen as search direction if it satisfies the descent conditions in eq. (5) and (6).

Otherwise, the projected gradient direction is taken. A step-size α > 0 verifying a non-

monotone Armijo-like condition [9] is determined in Step 3 by a backtracking process.

For more details about this algorithm, the reader is referred to [8], where a detailed

convergence analysis of the algorithm can also be found. It was proved, in fact, that

every limit point of the sequence {zk} is stationary for the problem of minimizing f (z)
subject to z ∈C. Furthermore, under an error bound condition, a local superlinear con-

vergence was established.

We point out that problem (2) corresponds to problem (4) with z = (X ,y) ∈R
K×n ×

R
|E|, F : RK×n ×R

|E| →R
|E| with

[F(X ,y)]i j = ‖xi − x j‖
2 − yi j, ∀{i, j} ∈ E,

and

C = {(X ,y) ∈R
K×n ×R

|E| | d2
i j ≤ yi j ≤ d

2
i j, ∀{i, j} ∈ E}.

In this case, the least-squares function f takes the form

f (X ,y) =
1

2
‖F(X ,y)‖2 = ∑

{i, j}∈E

(‖xi − x j‖
2 − yi j)

2, (7)

which corresponds to the Smooth STRESS function [18], with d2
i j ≤ yi j ≤ d

2
i j .

3 Computational experiments

We propose in this section some initial computational experiments with the DGP proce-

dure sketched in Section 2. All experiments were carried out on Matlab R2018b running

MacOS X 10.13.6 (personal laptop).

We consider two sets of instances, both related to protein conformations. However,

in the first set that we consider, the instances will only resemble to typical protein in-

stances, because we will not include any additional distance information that is likely

to help DGP solvers to find solutions. This “extra” and helpful distance information

would include, for example, the length of chemical bonds, as well as the angles formed

by triplets of consecutively bonded atoms. Thus, we decide to take, in our instance

generation procedure, no advantage from the typical chemical structure of protein con-

formations. We make this choice for the generation of our first set of instances with the

aim of testing the effectiveness of the procedure for larger classes of DGP instances,

which may be related to different applications.

Gonçalves and Mucherino

PLM SPG

pdb-id |V | |E| γ f0 k f RMSD k f RMSD

2JMY 45 432 1 9.16E+01 93 4.26E-09 0.08 322 4.53E-02 0.08

2LR9 57 505 1 3.72E+03 555 4.90E-09 1.16 801 1.73E-01 1.36

1HJ0 123 1210 1 8.40E+03 73 4.20E+01 3.86 1602 4.22E+01 3.83

1HJ0 123 1210 10 8.37E+03 778 4.94E-09 2.13 1498 5.23E-01 2.57

2KSL 153 1398 1 4.56E+04 250 2.63E+02 7.59 1010 6.58E+02 10.23

2KXA [7] 177 973 1 9.43E+02 172 4.68E-09 0.45 686 2.79E-02 0.62

1DSK [7] 222 1210 10 6.29E+03 268 4.99E-09 2.51 578 1.79E-02 2.44

2ERL [7] 323 1789 1 1.99E+03 245 4.80E-09 0.41 704 2.66E-02 0.41

2JWU [7] 447 2413 1 6.02E+03 219 4.69E-09 1.03 824 4.26E-02 0.99

Table 1. Some experiments showing the effectiveness of our DGP procedure on the two sets of

instances. In the upper row block, we consider the instances generated in this work where no extra

information about the nature of the distances is exploited; in the lower row block, we present the

experiments on the protein instances previously used in [7].

Instead, the second set of instances that we consider in our experiments will include

this additional information. For lack of space, we focus our attention on the main steps

for generating our new instances of the first set, while the reader is referred to [7] for

details on how the 4 instances of the second set were generated.

In order to generate the first set of instances, we consider models of protein confor-

mations obtained from the Protein Data Bank (PDB) [2]. From one selected PDB model

(when more than one model is available in the same PDB file, we simply pick the first

one), we extract the backbone atoms N, Cα and C, and we generate the corresponding

instance by measuring all possible distances between pairs of such backbone atoms, and

by keeping only the distances shorter than 6Å. Noise is thereafter added to the distances

by creating an interval [d,d] of range 0.2Å, where the computed distance is randomly

placed. The procedure outputs a simple weighed graph G that represents an instance of

the DGP. We point out that our procedure introduces the same level of noise in all the

distances, without distinguishing between distances between bonded atoms or other.

To assess the performance of PLM as a refinement tool, we compare it with the

Spectral Projected Gradient (SPG) algorithm [3] for minimizing the function (7) over

C. Notice that SPG was already successfully used in previous works as a local solver

for DGP [17].

In all experiments, the SDP relaxation in eq. (3) was solved using SDPT3 solver

[19] with standard parameters and tolerances. In PLM, we consider the parameters η1 =
10−4, η2 = 104, σ = 10−3, M = 10 and stop the iterations when either ‖F(Xk,yk)‖ ≤
ε = 10−4 or ‖zk −PC(zk −∇ f (zk))‖ ≤ ε. For SPG, we used the same parameters as in

[17], and stopped the iterations when ‖dk‖≤ ε. The maximum number of iterations was

set to 2,000 for both SPG and PLM.

Table 1 summarizes the performed computational experiments. For every instance,

we report the original PDB identifier of the protein in the PDB, together with the total

number of vertices and the total number of edges in the generated graph G. The param-

eter γ is the one involved in SDP, while f0 is set to f (X0,y0), which corresponds to the

value of eq. (7) evaluated at the solution X0 in Step A, where y0 = (d2+d
2
)/2. For both

A DGP procedure based on Levenberg-Marquardt algorithm and applications

PLM and SPG, we report the number of iterations k, the final objective function value

for f (X ,y) (denoted f in the table), and the RMSD with respect to the first model of

the PDB file. Notice that only the Cα atoms in the solution found for our second set of

instances were taken into consideration when computing the RMSD (for example, for

the 2ERL instance, only 40 atoms out of 323 were selected).

The experiments show that, although after the execution of our Step A the value of

eq. (7) for our initial realization is relatively large, such a starting point is nevertheless

close enough to one of the instance solutions. In fact, the Step B in our procedure, when

performed by running the PLM algorithm, is able to decrease the value of the Smooth

STRESS function to a magnitude of 10−9 for the instances 2JMY, 2LR9, 2KXA and 2ERL

belonging to our first instance set. This indicates that all involved distances are satisfied

(i.e, ‖xi−x j‖ ∈ [di j,di j]), or close to be satisfied (i.e, ‖xi−x j‖ /∈ [di j,di j], but ‖xi−x j‖
is close to one of the two bounds). Notice that we can state a similar remark for SPG,

but with a final value for the STRESS function that is about six orders of magnitude

larger. Even if the corresponding RMSD values are similar to those obtained by PLM,

we can remark therefore that the PLM provides solutions in general capable to better

satisfy the available distances.

Concerning the number of iterations of PLM and SPG, we can observe that, al-

though the former requires fewer iterations, it is important to mention that its iterations

are more expensive because requiring the solution of a positive definite linear system.

Two times the instance 1HJ0 is reported in the upper row block of Table 1. In fact,

the former of the two experiments shows that the initial realization from Step A was not

close enough to one of the instance solutions: both PLM and SPG have most certainly

converged towards a local minimizer or a stationary point of (7). In the latter experiment

concerning 1HJ0, however, where the value of the γ parameter was changed from 1 to 10,

we can observe a performance for our procedure which is close to the other experiments,

where the initial realization is actually a good starting point for the refinement step (with

PLM still beating SPG on the STRESS function value). This example is particularly

interesting because, even though the use of a different value for γ leads to a STRESS

function value approaching zero, the final RMSD value in the found solutions does

not change much. This indicates that the instance we have generated by using the first

model in the PDB file does not have only that model in its solution set. The left side of

Fig. 1 shows the model we have obtained with γ = 10.

The last line of the upper row block in Table 1 shows that, for one of the instances

of our first set, we could not find any satisfactory solutions. Trying to use alternative

values for the γ parameter did improve the results in this case; the use of small values

(e.g. 0.01, 0.1) or even larger than 10, did not allow us to get close enough to one of

the solutions for having either SPG or PLM converge to a global minimizer. This is

certainly not the only case where our procedure can fail, because of its simplicity.

Finally, the lower row block of experiments in Table 1 shows the performances

of our procedure on 4 of the instances already used in [7]. As remarked above, these

instances exploit some additional distance information that can help the solvers identi-

fying the solutions, for example by fixing some of the distances to some given precise

values. Our procedure seems to provide similar performances on this second set of in-

stances, and the comparison between PLM and SPG remains the same as well. The

Gonçalves and Mucherino

Fig. 1. A comparison among some obtained solutions and the original PDB model used to gener-

ate the instances: 1HJ0 (γ = 10 version, on the left-hand side), and 2ERL (only Cα atoms, on the

right-hand side). Axis units in Angstroms.

right side of Fig. 1 shows the solution found for the instance 2ERL: since these instances

contain more atoms from the proteins (not only its backbone atoms), for clarity we only

consider in the figure its Cα trace, which is the same considered in the computation of

the RMSD.

4 Discussion and conclusions

We have presented and tested a simple procedure for the solution of DGPs where the

value of the distances is uncertain and generally represented by a real-valued interval.

As pointed out in the Introduction, the general structure of our simple procedure is not

new, as it was already used in previous works, but, to the best of our knowledge, this is

the first time that the projected Levenberg-Marquardt is employed in this context.

Even if it cannot be considered as a general solver for the DGP, our computational

experiments have shown the effectiveness of our procedure on a set of artificially gener-

ated instances related to a typical biological application. The experiments show in fact

that, when the first step of the procedure is able to identify an initial realization that is

close enough to a valid realization (a solution for problem (2)), then its second step is

able to localize that solution in the search domain.

These results open the doors for other possible uses of this procedure (or of one of

its components) in more general solution methods for the DGP. For example, MDJEEP
1

is a solver for DGPs for which the discretization of the search space can be performed,

by transforming the problem in a combinatorial problem [16]. When the value on the

distances is uncertain, however, some nodes of the search domain cannot be associated

to singletons, but rather to relatively small portions of the original continuous search

1 https://github.com/mucherino/mdjeep

A DGP procedure based on Levenberg-Marquardt algorithm and applications

domain. This is the reason why, in MDJEEP, the combinatorics is coupled with a re-

finement step consisting in locally exploring all those small domain portions in the

attempt to improve the overall solution quality [14]. The impact of the current work on

the future developments of MDJEEP can be two-fold. Firstly, the first step of our pro-

cedure may be used to guess the most promising parts of the discretized search domain

to enhance its performance in terms of time. The idea is only to give higher priority

to the identified parts of the search domain, and to remove, a priori, none of them, so

that the entire search domain may, potentially, still be explored. Secondly, since the cur-

rent version of MDJEEP, the version 0.3.2 at the moment we are writing this article,

uses SPG for performing its refinement step, another possible improvement may be to

replace SPG with PLM.

Another interesting application falls in the context of motion adaptation [11]. Here,

a skeletal structure (representing for example a human character) performs a given mo-

tion over time, and the problem of embedding the same motion (or a motion as close as

possible to the original one) on another skeletal structure is considered. One of the main

difficulties in solving such a problem is related to the fact that distorted self-contacts,

which may be either artificially created in the new motion, or rather omitted from the

original one, are likely to make the viewer perceive the motion as different when com-

pared to the original. Self-contact is synonym of high proximity, and hence of near

distances. The dynamical DGP (dynDGP) was introduced in [13] to tackle this class of

problems, and more recently it was applied to motion adaptation in [10]. In this appli-

cation, every frame of the motion can be considered as a separated (and static) DGP,

where every new frame belongs to a small neighborhood, in its search domain, of the

previous frame. SPG was exploited in previous works on distance-based motion adap-

tation: the animations created in [10] were generated by SPG for example. Again, we

propose the use of PLM as a replacement for SPG, which is likely to provide interesting

results in this application context as well.

We remark that, in the two cases where we propose to use PLM as a tool for refine-

ment, the DGP instances to be solved (in both cases, these are actually sub-instances of

the original problems) are rather simple if compared to the ones we used in the compu-

tational experiments in this work. When the refinement step is performed in MDJEEP,

in fact, only a subset of vertices of the original instance is considered, and the local

solver can benefit of a starting point where (in most of the cases) only a few distances

are not satisfied (the best-case scenario being the one where only one distance is vio-

lated). In the case of motion adaptation, since the starting point is always the solution

obtained at the previous frame of the motion, it is expected the new local solution to

be very near the available starting point. Future works will be devoted to these very

promising research directions.

Acknowledgments

The authors are very grateful to CAPES/Brazil for the CAPES-PRINT project, process

number 88887.578009/2020-00, allowing AM to visit DG at UFSC, Florianópolis (SC,

Brazil) for a 2-week time in December 2021. Most of the presented work was per-

formed during such a visit. AM is also thankful to the ANR for the support on the inter-

national France-Taiwan project MULTIBIOSTRUCT (ANR-19-CE45-0019). DG thanks

Gonçalves and Mucherino

the Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq), Grant

305213/2021-0.

References

1. B. Alipanahi, N. Krislock, A. Ghodsi, H. Wolkowicz, L. Donaldson, M. Li, Determining

Protein Structures from NOESY Distance Constraints by Semidefinite Programming, Journal

of Computational Biology 20(4), 296–310, 2013.

2. H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. Shindyalov,

P. Bourne, The Protein Data Bank, Nucleic Acids Research 28, 235–242, 2000.

3. E.G. Birgin, J.M. Martı́nez, M. Raydan, Spectral Projected Gradient Methods: Review and

Perspectives, Journal of Statistical Software 60(i03), 21 pages, 2014.

4. P. Biswas, T. Liang, T. Wang, Y. Ye, Semidefinite Programming Based Algorithms for Sensor

Network Localization, ACM Transactions on Sensor Networks 2(2), 188–220, 2006.

5. G.M. Crippen, T.F. Havel, Distance Geometry and Molecular Conformation, John Wiley &

Sons, 1988.

6. C. D’Ambrosio, V. Ky, C. Lavor, L. Liberti, N. Maculan, New Error Measures and Methods

for Realizing Protein Graphs from Distance Data, Discrete & Computational Geometry 57,

371–418, 2017.

7. D.S. Gonçalves, A. Mucherino, C. Lavor, L. Liberti, Recent Advances on the Interval Dis-

tance Geometry Problem, Journal of Global Optimization 69(3), 525–545, 2017.

8. D.S. Gonalves, M.L.N. Gonçalves, F.R. Oliveira, An Inexact Projected LM Type Algorithm

for Solving Convex Constrained Nonlinear Equations, Journal of Computational and Applied

Mathematics 391(1), 113421, 2021.

9. L. Grippo, F. Lampariello, S. Lucidi, A Truncated Newton Method with Nonmonotone Line

Search for Uncontrained Optimization, Journal of Optimization Theory and Applications 60,

401–419, 1989.

10. S.B. Hengeveld, A. Mucherino, On the Representation of Human Motions and Distance-

based Retargeting, IEEE Conference Proceedings, Federated Conference on Computer Sci-

ence and Information Systems (FedCSIS21), Workshop on Computational Optimization

(WCO21), Sofia, Bulgaria, 181–189, 2021.

11. E.S.L Ho, T. Komura, C-L. Tai, Spatial Relationship Preserving Character Motion Adapta-

tion, Proceedings of the 37th International Conference and Exhibition on Computer Graphics

and Interactive Techniques, ACM Transactions on Graphics 29(4), 8 pages, 2010.

12. L. Liberti, C. Lavor, N. Maculan, A. Mucherino, Euclidean Distance Geometry and Appli-

cations, SIAM Review 56(1), 3–69, 2014.

13. A. Mucherino, D.S. Gonçalves, An Approach to Dynamical Distance Geometry, Lecture

Notes in Computer Science 10589, F. Nielsen, F. Barbaresco (Eds.), Proceedings of Geomet-

ric Science of Information (GSI17), Paris, France, 821–829, 2017.

14. A. Mucherino, D.S. Gonçalves, L. Liberti, J-H. Lin, C. Lavor, N. Maculan, MD-jeep: a New

Release for Discretizable Distance Geometry Problems with Interval Data, IEEE Conference

Proceedings, Federated Conference on Computer Science and Information Systems (Fed-

CSIS20), Workshop on Computational Optimization (WCO20), Sofia, Bulgaria, 289–294,

2020.

15. A. Mucherino, C. Lavor, L. Liberti, N. Maculan (Eds.), Distance Geometry: Theory, Methods

and Applications, 410 pages, Springer, 2013.

16. A. Mucherino, L. Liberti, C. Lavor, MD-jeep: an Implementation of a Branch & Prune

Algorithm for Distance Geometry Problems, Lectures Notes in Computer Science 6327,

K. Fukuda et al. (Eds.), Proceedings of the 3rd International Congress on Mathematical Soft-

ware (ICMS10), Kobe, Japan, 186–197, 2010.

A DGP procedure based on Levenberg-Marquardt algorithm and applications

17. A. Mucherino, J-H. Lin, An Efficient Exhaustive Search for the Discretizable Distance Ge-

ometry Problem with Interval Data, IEEE Conference Proceedings, Federated Conference

on Computer Science and Information Systems (FedCSIS19), Workshop on Computational

Optimization (WCO19), Leipzig, Germany, 135–141, 2019.

18. Y. Takane, F.W. Young, J. de Leeuw, Nonmetric Individual Multidimensional Scaling: an

Alternating Least Squares Method with Optimal Scaling Features, Psychometrika 42(1), 7–

67, 1977.

19. K.C. Toh, M.J. Todd, R.H. Tütüncü, SDPT3 – a Matlab Software Package for Semidefinite

Programming, Optimization Methods and Software 11, 545–581, 1999.

