
Title A two-phase hybrid approach for the hybrid flexible flowshop with
transportation times

Authors Armstrong, Eddie;Garraffa, Michele;O'Sullivan, Barry;Simonis,
Helmut

Publication date 2022-06-10

Original Citation Armstrong, E., Garraffa, M., O'Sullivan, B. and Simonis, H. (2022)
'A two-phase hybrid approach for the hybrid flexible flowshop
with transportation times', in Schaus, P. (ed.) Integration of
Constraint Programming, Artificial Intelligence, and Operations
Research. CPAIOR 2022. Lecture Notes in Computer Science,
13292. Springer, Cham. doi: 10.1007/978-3-031-08011-1_1

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://cpaior.org/ - 10.1007/978-3-031-08011-1_1

Rights © 2022, Springer Nature Switzerland AG. This is a post-peer-
review, pre-copyedit version of an article published in Lecture
Notes in Computer Science. The final authenticated version is
available online at: https://doi.org/10.1007/978-3-031-08011-1_1

Download date 2024-04-19 18:01:48

Item downloaded
from

https://hdl.handle.net/10468/13342

https://hdl.handle.net/10468/13342

A Two-Phase Hybrid Approach for the Hybrid

Flexible Flowshop with Transportation Times

Eddie Armstrong1, Michele Garra�a2,3, Barry O'Sullivan2,3, and
Helmut Simonis2,3

1 Johnson & Johnson Research Centre, Limerick, Ireland
2 Con�rm SFI Research Centre for Smart Manufacturing

3 School of Computer Science, University College Cork, Cork, Ireland

Abstract. We present a two-phase heuristic approach for the Hybrid
Flexible Flowshop with Transportation Times (HFFTT) which combines
a metaheuristic with constraint programming (CP). In the �rst phase
an adapted version of a state-of-the-art metaheuristic for the Hybrid
Flowshop [15] generates an initial solution. In the second phase, a CP
approach reoptimizes the solution with respect to the last stages. Al-
though this research is still in progress, the initial computational results
are very promising. In fact, we show that the proposed hybrid approach
outperforms both the adapted version of [15] and earlier CP approaches.

Keywords: Metaheuristics · Constraint Programming · Scheduling ·

Hybrid Flowshop

1 Introduction

Real world scheduling problems are generally tackled by means of two di�erent
types of approaches. On one hand, mixed integer linear programming (MILP)
and constraint programming (CP) approaches put the focus on modelling the
scheduling problem, instead of developing a solution algorithm from scratch. This
approach shortens the development time and provides a high level of �exibility
in the case where the problem formulation needs to be adjusted to take into
account new characteristics. In that case, an optimization specialist just needs
to adapt the MILP/CP model, then a modern solver will provide high quality
solutions by exploiting many years of algorithmic improvements. On the other
hand, metaheuristic algorithms have been widely studied, since they can exploit
problem-speci�c properties to perform the search very e�ciently. In many cases,
this leads to achieving high quality results, at the cost of a higher development
time and a reduction in the �exibility/generality of the solution approach.

The combination of both approaches, so called hybrid heuristics, has been re-
ceiving signi�cant attention from the research community since the early 2000s
(see [2] for a survey about the topic). Most hybrid heuristics rely on e�cient
MILP solvers, due to their use of powerful mathematical programming tech-
niques. However, the performance of MILP solvers is typically poor in cases

2 E. Armstrong et al.

where the model has a weak linear relaxation, e.g. due to the use of big-M vari-
ables to represent logical constraints. MILP-based hybrid heuristics are generally
known as �matheuristics� [9,6], and they have been widely used for scheduling
problems [8,3,5,4]. On the other hand, CP solvers rely on the expressive power of
global constraints, and on the e�ectiveness of propagation algorithms and auto-
matic search heuristics. One of the best known commercial CP solvers, CP Opti-
mizer by IBM [7], o�ers support for e�ciently solving many types of scheduling
problems. It provides a model-and-run paradigm, which is quite simple to master
and is more generic than the one provided by MILP solvers, since non-linearities
and logical constraints can be easily included.

In this paper we propose a hybrid heuristic for a real-world scheduling prob-
lem, which combines a metaheuristic with a local search procedure relying on
CP Optimizer. Hybrid heuristics based on CP for scheduling problems are not
very common, but they have been considered [14,12]. The motivation behind
hybridizing CP with another type of solution approach is usually to exploit the
complementarity of the two in order to achieve a better performance than each
of the two approaches separately. The problem considered in this study is the
Hybrid Flexible Flowshop with Transportation Times (HFFTT) which arises in
modern production facilities and has been recently introduced [1]. The problem
is an extension of the Hybrid Flowshop Problem [13] and of the Hybrid Flexible
Flowshop [10] where transportation times between the machines for the di�erent
production steps of each job are assumed to be non-negligible.

The HFFTT is de�ned as follows. Let J be a set of jobs, M a set of machines
and S a set of production stages. We denote as pj,s the processing time of a job
j ∈ J to complete a stage s ∈ S. All jobs complete the stages in the same order
but some of the stages may be skipped by some jobs. We indicate with Sj ⊆ S
the subset of the production stages performed by job j ∈ J , while we indicate
with Js ⊆ J the set of all jobs that complete a stage s ∈ S. The successor
stage of a stage s ∈ S with respect to a job j ∈ J is denoted as succ(s, j). The
transportation time required to move a job j ∈ J from a machine m ∈ Ms to
another machine m′ ∈ Ms′ , where s, s′ ∈ S and s′ = succ(s, j), is represented
by δm,m′ . Finally, the problem objective is to minimize the makespan.

The paper is organized as follows. Section 2 describes the CP model of the
problem using the global constraints available in CP Optimizer. Section 3 de-
scribes an iterated greedy method, IGT_NEH, which is an adaptation of a state-
of-the-art metaheuristic for the HFP [15]. Section 4 presents a novel two-phase
hybrid approach to solve the HFFTT. Section 5 presents a computational as-
sessment of the di�erent approaches, using the benchmarks de�ned in [1].

2 The Constraint Programming Model

This section presents a CP model of the problem, analogous to the model based
on interval variables presented in [1], and was encoded by using the OPL API
of CP Optimizer [7]. The model is based on the following variables:

� Optional interval variables tmm,j for each j ∈ J and m ∈ M ;

A Two-Phase Hybrid Approach for the HFFTT 3

� Interval variables tss,j for each j ∈ J and s ∈ Sj ;

� Integer variables machines,j for each j ∈ J and s ∈ Sj , with feasible values
in the range {1, · · · , |M |}.

The variables tmm,j are optional interval variables representing the execution of
a job on a certain machine. Given a stage s ∈ S and a job j ∈ J , only one of
these variables is active, which is constrained to be equal to tss,j . The variables
machines,j are linked to the machine used to performed a job j ∈ J at stage
s ∈ S.

The CP model of the HFFTT is as follows:

min max
s∈S,j∈Js

endOf(tss,j) (1)

subject to:

(machines,j = m) =⇒ presenceOf(tmm,j) ∀j ∈ J, s ∈ Sj ,m ∈ Ms (2)

alternative(tss,j , {tmm,j : m ∈ Ms}) ∀j ∈ J, s ∈ Sj (3)

endBeforeStart(tmm,j , tmm′,j , δm,m′) ∀j, s ∈ Sj ,m ∈ Ms,m
′ ∈ Msucc(s,j)

(4)

endBeforeStart(tss,j , tssucc(s,j),j)) ∀j ∈ J, s ∈ Sj : succ(s, j) ̸= ∅ (5)

noOverlap({tmm,j : j ∈ J}) ∀m ∈ M (6)

cumulative({tss,j : j ∈ Js}, |Ms|) ∀s ∈ S (7)

The objective (1) indicates that we minimize the makespan. Constraints 2
deal with assigning a job j ∈ J to one machine m ∈ Ms at each stage s ∈ Sj ,
and setting the corresponding interval variable tmm,j to active. Constraints 3
link the interval variables tmm,j and the interval variables tss,j . Constraints 4
indicate that a job j ∈ J can start being processed by a machine m′ ∈ Msucc(s,j)

after being completed by the previous one m ∈ Ms and spending δm,m′ time
units for the transportation. Constraints 5 are �owshop constraints, meaning
that each job j ∈ J can perform the next stage succ(s, j) ∈ Sj after completing
the previous one s ∈ Sj . Constraints 6 state that each machine can process
one job at a time. Constraints 7 are redundant, requiring that the maximum
number of jobs performing simultaneously at stage s ∈ S is equal to the number
of machines |Ms| available at that stage.

4 E. Armstrong et al.

3 Metaheuristic Approach

State-of-the-art metaheuristic approaches for the HFP, e.g. [15], can be easily
adapted to solve instances of the HFFTT. These approaches are based on forward
scheduling. Given a certain jobs permutation γ, they follow these two steps:

� Assign the jobs by following the order in γ, to the earliest available machine
(�rst stage);

� Assign the earliest available job to the earliest available machine (each of
the other stages).

A random choice is taken in case of ties. In such a way, a feasible solution to the
HFP can be generated given a reference permutation. The adaptation needed to
use forward scheduling on the HFFTT is to consider the transportation times. We
do not consider the transportation time when we compute the earliest available
job, since the job is available once it has been processed by a certain machine.
However, we consider the transportation time when performing the machine
assignment. In this case, we do not evaluate the machines according to their
earliest available time because the job may not be able to reach the machine at
that time. We rank the machines according to the maximum between the:

� Earliest time when the machine is available;
� Earliest time when the job can reach the machine.

This change allows us to replicate approaches based on forward scheduling on
the HFFTT.

In the following, we describe our adaptation of the approach denoted as IGT
(Iterated Greedy with �xed temperature T) [15]. We denote our approach as
IGT_NEH. The most important changes with respect to IGT are:

� IGT_NEH considers transportation times when applying forward scheduling;
� IGT_NEH computes the initial solution using a di�erent procedure;

Section 3.1, Section 3.2 and Section 3.3 describe the main components of the
IGT_NEH heuristic, while its structure is discussed in Section 3.4.

3.1 Computation of the Initial Solution

The NEH heuristic [11] is one of the most common constructive heuristics used for
scheduling problems. It takes its name from the three authors who proposed it for
the �rst time (Nawaz, Enscore and Ham). The approach is quite generic: only the
evaluation strategy and the initial sorting criteria change from one problem to
another. First, the sum of the processing times on all stages, indicated as TPj =∑

s∈S pj,s, is computed for each j ∈ J . The jobs are then sorted by decreasing
order of TPj , in order to have a good job reference permutation γ. The �rst job γ1
of the permutation is selected to establish a partial solution of length one. Then
the other jobs in γ are sequentially inserted into the output permutation γout one
by one. At the i-th iteration, the job γi is chosen and tentatively inserted into all

A Two-Phase Hybrid Approach for the HFFTT 5

the i possible positions of γout, it is then inserted at the position resulting in the
best makespan value. Each evaluation of a permutation is performed by means
of forward scheduling and considering the makespan as the objective. Once the
n-th iteration is reached, the solution constructed is provided as an output.

We now brie�y discuss why we used NEH as a method to compute initial
solutions, instead of the approach denoted as GRASP_NEH in [15]. The computa-
tional complexity of NEH and GRASP_NEH is di�erent (O(n3m) vs O(n4m)). In
our preliminary computational experiments, we explored both variants in the
metaheuristic approach. According to our results, spending too much time on
computing the initial solution a�ected the results in large instances (n ≥ 200),
while the two approaches showed quite similar performance in smaller instances.
For this reason, we decided to use NEH as a method to compute the initial solu-
tion.

3.2 Local Search Approaches

The local search moves used in IGT_NEH are guided by a reference jobs permu-
tation. They are the same as used in IGT, with the only di�erence that forward
scheduling takes into account the transportation times as explained at the be-
ginning of Section 3. These procedures are denoted by RIS (Referenced Insertion
Scheme) and RSS (Referenced Swap Scheme). Given a reference permutation γ
and an initial permutation γin � the job permutation used to generate the initial
solution � we iteratively select a job from γ. In RIS, we remove the job from
γin and re-insert it in the best position. In RSS, we try to swap the selected job
with the others in γin and choose the swap leading to the best objective. The
authors in [15] discuss the fact that a reference permutation associated with a
high-quality solution can improve the performance of the local search moves.
Both local search routines stop whenever n iterations with no improvements are
performed. The best solution found is then provided as an output.

3.3 Deconstruction and Reconstruction

The deconstruction-reconstruction procedure, denoted as DEC_REC, is straight-
forward. First, dS random jobs are removed from the initial permutation γ, then
they are re-inserted one by one at the best possible position. Again, the only
di�erence with IGT is that the transportation times are taken into account when
applying forward scheduling.

3.4 General structure of IGT_NEH

The IGT_NEH procedure is an iterated greedy procedure, which starts from an ini-
tial solution and iteratively applies some local search moves, followed by a shak-
ing step to escape local minima. First, an initial solution is computed by using the
function NEH. Then, a while loop iterates until a time limit Tmax

2 is reached. The
loop starts with the deconstruction-reconstruction procedure DEC_REC, where dS

6 E. Armstrong et al.

jobs are removed from the current permutation and re-inserted to optimality. Af-
terwards, one of the local search moves RIS and RSS is chosen, the �rst one with
probability jP and the second one with probability 1− jP . If the solution com-
puted by the local search is better than the solution considered at the beginning
of the current iteration, the next iteration continues the search from that solu-
tion. Otherwise, the output of the local search is considered as a starting point
of the next iteration with probability exp(−(f(Π ′)− f(Π))/g(I, τP)), where

g(I, τP) =
∑

j∈J

∑
s∈S pj,s

|J||S|10 × τP . The best solution found is updated whenever is

necessary and it is provided as an output when the time limit is reached. The
pseudocode of the procedure is given in Algorithm 1.

Algorithm 1 The IGT_NEH approach

Function IGT_NEH is
Input: Time limit Tmax, Parameters dS, τP , jP
Output: Solution Πbest

Π, γ ← NEH();
Πbest ← Π;
γbest ← γ;
while time limit Tmax not reached do

γ′′ ← DEC_REC(γ, dS);
r ← random value between 0 and 1;
if r < jP then

Π ′, γ′ ← RIS(γbest, γ′′);

else

Π ′, γ′ ← RSS(γbest, γ′′);

if f(Π ′) < f(Π) then
Π ← Π ′;
γ ← γ′;
if f(Π ′) < f(Πbest) then

Πbest ← Π ′;
γbest ← γ′;

else
if r < exp−(f(Π ′)− f(Π))/g(I, τP) then

Π ← Π ′;
γ ← γ′;

return Πbest, γbest;

4 Hybrid Approach

IGT_NEH implements a very di�erent type of search compared to CP-based ap-
proaches. In fact, reference-based heuristics generate a new solution from scratch
each time a di�erent job permutation is considered, which occurs many times

A Two-Phase Hybrid Approach for the HFFTT 7

in the di�erent local search moves. This is the reason why these local search
moves are not suitable for embedding into a CP system. Moreover, reference-
based heuristics do not perform any local search that is devoted to optimizing
the makespan by purely modifying how jobs are scheduled at the last stages. As
an alternative, CP-based approaches branch on speci�c decisions, taken at each
stage and consist of assigning a job to a machine such that the job starts on a
certain time point.

The idea of the proposed hybrid approach is to exploit IGT_NEH to quickly �nd
high quality solutions, while CP is used to intensify the search over the last stages
of the schedule. The approach is based on two phases. The �rst phase consists
of running IGT_NEH until the time limit Tmax

2 is reached. Hence, we consider the
CP model of the problem and we impose that the solution is identical to the
one computed at the �rst phase up to stage ρ. The second phase consists of
solving the resulting CP model, which basically re-optimizes the best solution
found at the �rst phase, with respect to the stages that are successive to stage
ρ. The model is solved using CP Optimizer, and its black-box search routine.
This simpli�es development compared to using the best performing solver in [1],
which is SICStus Prolog, for which we would have to write a new speci�c search
routine. The time limit of the second phase is Tmax

2 , such that the overall time
limit of the approach is equal to Tmax. Figure 1 depicts the structure of the
proposed approach, which we denote as HYBRID.

5 Computational Experiments

This section describes the experiments conducted to assess the performance of
IGT_NEH and HYBRID. The instances considered are the ones in [1], which refer
to a realistic lane scenario in industry with 8 stages, where Stages 4 and 8 may
be skipped by some jobs.

All experiments were performed on an Intel(R) Xeon(R) E5620 processor
running at 2.40GHz with 32GB of memory. Please note that this machine is
slightly slower than the machine used for the experiments in [1]. IGT_NEH was
run by using the same parameter con�guration as the one used in [15] (dS = 2,
τP = 0.5, jP = 0.4). For the sake of performing a fair comparison, HYBRID is run
in single-thread mode. Table 1 and Table 2 show the results obtained when the
overall time limit is set to Tmax = 300 seconds both for IGT_NEH and HYBRID.
The values of each row of both tables are averages over 25 instances and 5 seeds.
Please note that a dash indicates that no improved solutions were found within
the time limit. Table 1 includes:

� the average objective value (obj value),
� the number of runs where an improvement was achieved with respect to

IGT_NEH run for one half of the time limit (imp.),

for IGT_NEH run for 300 seconds, and HYBRID run for 300 seconds with ρ ∈
{0, 4, 6}. Only the average objective values are reported for NEH, and for IGT_NEH
run for 150 seconds. Furthermore, the last two columns of both tables indicate

8 E. Armstrong et al.

Fig. 1. Structure of the approach HYBRID.

A Two-Phase Hybrid Approach for the HFFTT 9

the best results obtained with the di�erent CP approaches published in [1], and
the average of the lower bounds of the instances; see [1] for a description of the
procedure used to compute these bounds.

Table 1. Average objective value and number of improved solutions per approach on
di�erent instance sizes, with the time limit Tmax = 300s.

NEH IGT_NEH
Tmax

2

IGT_NEH

Tmax

HYBRID

Tmax, ρ = 0
HYBRID

Tmax, ρ = 4
HYBRID

Tmax, ρ = 6
n obj obj obj imp. obj imp. obj imp. obj imp. CP21 LB

20 66.72 62.78 62.76 3 62.75 4 62.77 2 62.776 1 62.72 61.88
25 68.84 64.32 64.26 7 64.26 8 64.16 6 64.30 3 64.16 62.84
30 72.52 66.81 66.68 16 66.74 8 66.59 26 66.78 4 66.68 64.12
40 78.2 72.37 72.26 14 72.18 21 71.74 66 72.12 40 72.56 65.32
50 85.42 78.94 78.81 21 78.31 20 77.72 82 78.12 43 78.4 67.24
100 115.56 109.78 109.51 29 - - 108.90 74 109.26 54 113.04 94.72
200 176.24 171.69 170.08 73 - - 169.8 87 170.98 60 176.72 153.08
300 239.12 238.54 234.21 93 - - 235.24 113 240.96 75 240.96 214.96
400 298.82 298.82 298.54 32 - - 296.1 98 298.07 61 303.16 275.36

Table 2 shows the average percentage (optimality) gap from the lower bound
for each approach. It is interesting to note that, as with the previous CP results,
the largest gap occurs for 50 or 100 jobs, while the optimality gap shrinks again
for larger problem sizes.

The �rst key point that we can notice from Table 1 and Table 2 is that
HYBRID is the best performing approach for most of the instance sizes. The best
of its versions is the one with ρ = 4 stages for all the instances, but the ones that
are very small (n = 20). Please note that in those instances the results published
in [1] are slightly better, probably because of a more favorable computational
setting (more powerful CPU, use of multiple threads). We can also note that
IGT_NEH achieves a better result than HYBRID only for n = 300.

Table 3 provides an explanation for this, showing the average sum of squared
deviation of the achieved objective values of runs performed with di�erent seeds.
This value is generally quite low, but very high for n = 300 and again very low
for n = 400. For n = 300, the time limit stopped the search before the di�erent
runs converge to a common value, while for n = 400 there was not even enough
time to �nd initial, but very variable, improvements in the local search routine
over NEH.

Table 4 shows some experiments, performed with just one seed for an in-
creased time limit, showing that HYBRID �nds even better solutions given more
time, and still outperforms IGT_NEH for the same time limit. Table 3 shows that
we achieve a much lower average sum of squared deviations for n = 300, when
the time limit is set to Tmax = 2400s. Thus, an extension of the time limit
helps improve the quality of the solutions provided by the proposed approaches
and reduces the variance in the results. A closely related research question is to

10 E. Armstrong et al.

Table 2. Average percentage gap from the lower bound per approach on di�erent
instance sizes, with the time limit Tmax = 300s.

n NEH IGT_NEH
Tmax

2

IGT_NEH

Tmax

HYBRID

Tmax, ρ = 0
HYBRID

Tmax, ρ = 4
HYBRID

Tmax, ρ = 6
CP21

20 7.25% 1.44% 1.40% 1.40% 1.41% 1.43% 1.34%

25 8.72% 2.30% 2.22% 2.20% 2.06% 2.26% 2.06%
30 11.58% 4.02% 3.84% 3.93% 3.71% 3.98% 3.84%
40 16.47% 9.74% 9.60% 9.50% 8.94% 9.43% 9.98%
50 21.28% 14.82% 14.68% 14.14% 13.48% 13.93% 14.23%
100 18.03% 13.72% 13.51% - 13.02% 13.31% 16.21%
200 13.14% 10.84% 10.00% - 9.85% 10.47% 13.38%
300 10.10% 9.89% 8.22% - 8.62% 10.79% 10.79%
400 7.85% 7.85% 7.76% - 7.00% 7.62% 9.17%

Table 3. Average sum of squared deviation of the objective for IGT_NEH runs with
di�erent seeds on di�erent instance sizes, with time limits Tmax = 300s and Tmax =
2400s.

n IGT_NEH (Tmax = 300) IGT_NEH (Tmax = 2400)

20 0.064 -
25 0.272 -
30 0.336 -
40 0.464 -
50 0.544 -
100 0.88 -
200 8.624 0.624
300 38.56 3.616
400 0.688 5.588

establish what is the best way to split the time limit in HYBRID, which we will
cover in our future studies.

Figure 2 shows how the approaches perform on the �rst instance with n = 100
when di�erent time limits are used, with the exception of NEH which is exe-
cuted once, until the procedure is completed. We notice that HYBRID outperforms
IGT_NEH after 200 seconds and maintains its lead for larger time limits. Figure 3
shows that improvements for the di�erent runs of HYBRID are less common after
a time limit of 1000 seconds, which justi�es the limit of 1200+1200 seconds for
the experiments in Table 4.

In conclusion, the experiments are show a clear bene�t in hybridizing IGT_NEH
with a CP-based step, since HYBRID outperforms both approaches. This is prob-
ably due to the complementarity of the two approaches, which use di�erent
optimization strategies. In fact, the second phase of HYBRID, based on CP, in-
tensi�es the search on the last stages of the schedule. This aspect is not taken
into account by reference-guided heuristics.

A Two-Phase Hybrid Approach for the HFFTT 11

Table 4. Average objective values and gaps obtained with IGT_NEH and HYBRID on
di�erent instance sizes, with time limit Tmax = 2400s.

IGT_NEH (Tmax) HYBRID(Tmax, ρ = 4)

n Obj value Gap Obj value Gap LB

200 168.56 10.11% 167.12 8.40% 153.08
300 230.52 7.24% 229.4 6.75% 214.96
400 291.36 5.81% 291.32 5.48% 275.36

0 200 400 600 800 1,000

106

108

110

112

Time (s)

C
m
ax

IGT_NEH

HYBRID

NEH

Fig. 2. Comparing average Cmax values for IGT_NEH and HYBRID over time for a single
instance with 100 jobs

12 E. Armstrong et al.

0 500 1,000 1,500 2,000

104

106

108

110

112

Time (s)

C
m
ax

Fig. 3. Comparing Cmax value over time for �ve runs of HYBRID for a single instance
with 100 Jobs

6 Conclusions and Future Work

This paper proposed a novel hybrid heuristic for the HFFTT problem, which
combines a metaheuristic with constraint programming. Despite its simplicity,
the proposed approach allowed us to improve the results obtained in [1] by means
of di�erent CP frameworks. At the same time, the hybrid also outperformed the
state-of-the-art metaheuristic for the HFS, adapted to this problem variant.

An interesting research direction is to study how similar hybrid techniques
perform on other variants of hybrid �owshop problems, including the HFP, by
considering instances in reference datasets. The proposed hybrid approach can
be seen as a CP-based decomposition heuristic, where the problem is decom-
posed with respect to the stages. Other alternative CP-based hybrid schemes
may also be considered. One is to decompose the problem with respect to the
jobs, �xing the �rst jobs for all stages to the value in the initial solution, and
then rescheduling for the remaining jobs, even for the initial stages. Another
alternative is to decompose the problem with respect to a certain time instant,
by �xing all the tasks, regardless of stage, starting before, and solving the re-
maining problem. These and other decompositions will be explored in our future
studies.

Acknowledgements

This publication has emanated from research conducted with the �nancial sup-
port of Science Foundation Ireland under Grant Number 16/RC/3918.

A Two-Phase Hybrid Approach for the HFFTT 13

References

1. Armstrong, E., Garra�a, M., O'Sullivan, B., Simonis, H.: The Hybrid Flexible
Flowshop with Transportation Times. In: Michel, L.D. (ed.) 27th International
Conference on Principles and Practice of Constraint Programming (CP 2021).
vol. 210, pp. 16:1�16:18. Schloss Dagstuhl � Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.CP.2021.16

2. Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in
combinatorial optimization: A survey. Applied Soft Computing 11(6), 4135�4151
(2011). https://doi.org/https://doi.org/10.1016/j.asoc.2011.02.032

3. Della Croce, F., Garra�a, M., Salassa, F., Borean, C., Di Bella, G., Grasso, E.:
Heuristic approaches for a domestic energy management system. Computers &
Industrial Engineering 109, 169 - 178 (2017).
https://doi.org/https://doi.org/10.1016/j.cie.2017.05.003

4. Della Croce, F., Grosso, A., Salassa, F.: Minimizing total completion time in the
twomachine noidle nowait �ow shop problem. Journal of Heuristics (2019).
https://doi.org/10.1007/s10732\-019\-09430\-z

5. Fanjul-Peyro, L., Perea, F., Ruiz, R.: Models and matheuristics for the unrelated
parallel machine scheduling problem with additional resources. European Journal
of Operational Research 260(2), 482�493 (2017).
https://doi.org/https://doi.org/10.1016/j.ejor.2017.01.002

6. Kergosien, Y., Mendoza, J.E., T'kindt, V.: Special issue on matheuristics.
Journal of Heuristics 27(1), 1�3 (Apr 2021).
https://doi.org/10.1007/s10732-021-09472-2

7. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for
scheduling. Constraints 23(2), 210�250 (2018).
https://doi.org/10.1007/s10601-018-9281-x

8. Lin, S.W., Ying, K.C.: Optimization of makespan for no-wait �owshop scheduling
problems using e�cient matheuristics. Omega 64 (2015).
https://doi.org/10.1016/j.omega.2015.12.002

9. Maniezzo, V., Stützle, T., Voÿ, S. (eds.): Matheuristics - Hybridizing
Metaheuristics and Mathematical Programming, Annals of Information Systems,
vol. 10. Springer (2010). https://doi.org/10.1007/978-1-4419-1306-7

10. Naderi, B., Gohari, S., Yazdani, M.: Hybrid �exible �owshop problems: Models
and solution methods. Applied Mathematical Modelling 38(24), 5767�5780
(2014). https://doi.org/10.1016/j.apm.2014.04.012

11. Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine,
n-job �ow-shop sequencing problem. Omega 11(1), 91�95 (1983).
https://doi.org/https://doi.org/10.1016/0305-0483(83)90088-9

12. Rendl, A., Prandtstetter, M., Hiermann, G., Puchinger, J., Raidl, G.: Hybrid
Heuristics for Multimodal Homecare Scheduling. In: Beldiceanu, N., Jussien, N.,
Pinson, É. (eds.) Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems. pp. 339�355. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29828-8_22

13. Ruiz, R., Vázquez Rodríguez, J.A.: The hybrid �ow shop scheduling problem.
European Journal of Operational Research 205, 1�18 (2010).
https://doi.org/10.1016/j.ejor.2009.09.024

14. Tang, T.Y., Beck, J.C.: CP and Hybrid Models for Two-Stage Batching and
Scheduling. In: Hebrard, E., Musliu, N. (eds.) Integration of Constraint

https://doi.org/10.4230/LIPIcs.CP.2021.16
https://doi.org/10.4230/LIPIcs.CP.2021.16
https://doi.org/https://doi.org/10.1016/j.asoc.2011.02.032
https://doi.org/https://doi.org/10.1016/j.asoc.2011.02.032
https://doi.org/https://doi.org/10.1016/j.cie.2017.05.003
https://doi.org/https://doi.org/10.1016/j.cie.2017.05.003
https://doi.org/10.1007/s10732\-019\-09430\-z
https://doi.org/10.1007/s10732\-019\-09430\-z
https://doi.org/https://doi.org/10.1016/j.ejor.2017.01.002
https://doi.org/https://doi.org/10.1016/j.ejor.2017.01.002
https://doi.org/10.1007/s10732-021-09472-2
https://doi.org/10.1007/s10732-021-09472-2
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1016/j.omega.2015.12.002
https://doi.org/10.1016/j.omega.2015.12.002
https://doi.org/10.1007/978-1-4419-1306-7
https://doi.org/10.1007/978-1-4419-1306-7
https://doi.org/10.1016/j.apm.2014.04.012
https://doi.org/10.1016/j.apm.2014.04.012
https://doi.org/https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1007/978-3-642-29828-8_22
https://doi.org/10.1007/978-3-642-29828-8_22
https://doi.org/10.1016/j.ejor.2009.09.024
https://doi.org/10.1016/j.ejor.2009.09.024

14 E. Armstrong et al.

Programming, Arti�cial Intelligence, and Operations Research. pp. 431�446.
Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-58942-4_28

15. Öztop, H., Fatih Tasgetiren, M., Eliiyi, D.T., Pan, Q.K.: Metaheuristic
algorithms for the hybrid �owshop scheduling problem. Computers & Operations
Research 111, 177�196 (2019).
https://doi.org/https://doi.org/10.1016/j.cor.2019.06.009

https://doi.org/10.1007/978-3-030-58942-4_28
https://doi.org/10.1007/978-3-030-58942-4_28
https://doi.org/https://doi.org/10.1016/j.cor.2019.06.009
https://doi.org/https://doi.org/10.1016/j.cor.2019.06.009

	A Two-Phase Hybrid Approach for the Hybrid Flexible Flowshop with Transportation Times

