Skip to main content

Biologically Plausible Complex-Valued Neural Networks and Model Optimization

  • Conference paper
  • First Online:
Book cover Artificial Intelligence Applications and Innovations (AIAI 2022)

Abstract

Artificial Neural Networks (ANNs) are thinly based on biological neural pathways. In an ANN, each node computes its activation by applying a non-linearity to a weighted sum of its inputs. While this formulation has been wildly successful for a variety of tasks, it is still a far cry from its biological counterpart, largely due to ANNs lack of phase information during computation. In this paper, we adapt ANNs to operate on complex values which naturally allows the inclusion of phase information during the forward pass. We demonstrate that our complex-valued architecture generally performs better compared to real-valued and other complex-valued networks in similar conditions. Additionally, we couple our model with a biologically inspired form of dimensionality reduction and present our findings on the MNIST and MusicNet data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allard, W.K., Chen, G., Maggioni, M.: Multi-scale geometric methods for data sets II: geometric multi-resolution analysis. Appl. Comput. Harmon. Anal. 32(3), 435–462 (2012)

    Google Scholar 

  2. Cole, E., Cheng, J., Pauly, J., Vasanawala, S.: Analysis of deep complex-valued convolutional neural networks for mri reconstruction and phase-focused applications. Magn. Reson. Med. 86, 1093–1099 (2021). https://onlinelibrary.wiley.com/doi/10.1002/mrm.28733

  3. Dramsch, J., Lüthje, M., Christensen, A.N.: Complex-valued neural networks for machine learning on non-stationary physical data. Comput. Geosci. 146, 104643 (2021). ISSN 0098–3004. https://doi.org/10.1016/j.cageo.2020.104643

  4. Gao, J., Deng, B., Qin, Y., Wang, H., Li, X.: Enhanced radar imaging using a complex-valued convolutional neural network. IEEE Geosci. Remote Sens. Lett. 16(1), 35–39 (2019). https://doi.org/10.1109/LGRS.2018.2866567

    Article  Google Scholar 

  5. Hornickel, J., Kraus, N.: Unstable representation of sound: a biological marker of dyslexia. J. Neurosci. 33(8), 3500–3504 (2013). ISSN 0270–6474. https://doi.org/10.1523/JNEUROSCI.4205-12.2013, https://www.jneurosci.org/content/33/8/3500

  6. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/

  7. Matsumura, M., Chen, D., Sawaguchi, T., Kubota, K., Fetz, E.E.: Synaptic interactions between primate precentral cortex neurons revealed by spike-triggered averaging of intracellular membrane potentials in vivo. J. Neurosci. 16(23), 7757–7767 (1996). ISSN 0270–6474. https://doi.org/10.1523/JNEUROSCI.16-23-07757.1996, https://www.jneurosci.org/content/16/23/7757

  8. Mönning, N., Manandhar, S.: Evaluation of complex-valued neural networks on real-valued classification tasks. CoRR, abs/1811.12351 (2018). http://arxiv.org/abs/1811.12351

  9. Mönning, N., Manandhar, S.: Evaluation of complex-valued neural networks on real-valued classification tasks (2018)

    Google Scholar 

  10. Popa, C.-A.: Complex-valued convolutional neural networks for real-valued image classification, pp. 816–822 (2017). https://doi.org/10.1109/IJCNN.2017.7965936

  11. Prechelt, L.: Early stopping-but when? pp. 55–69 (1998)

    Google Scholar 

  12. Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S.-Y., Sainath, T.N.: Deep learning for audio signal processing. CoRR, abs/1905.00078 (2019). http://arxiv.org/abs/1905.00078

  13. Reichert, D.P., Serre, T.: Neuronal synchrony in complex-valued deep networks (2014)

    Google Scholar 

  14. Rosenblatt, F.: Perceptron simulation experiments. Proc. IRE 48(3), 301–309 (1960). https://doi.org/10.1109/JRPROC.1960.287598

    Article  MathSciNet  Google Scholar 

  15. Singer, W.: Neural synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999)

    Article  Google Scholar 

  16. Stanley, G.B.: Reading and writing the neural code. Nat. Neurosci. 16, 259-263 (2013). https://www.nature.com/articles/nn.3330

  17. Stevens, C., Zador, A.: Novel integrate-and-fire-like model of repetitive firing in cortical neurons (1998)

    Google Scholar 

  18. Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neural networks. CoRR, abs/1905.11946 (2019). http://arxiv.org/abs/1905.11946

  19. Thickstun, J., Harchaoui, Z., Kakade, S.: Learning features of music from scratch (2017)

    Google Scholar 

  20. Trabelsi, C., et al.: Deep complex networks, Negar Rostamzadeh (2018)

    Google Scholar 

  21. Uhlhaas, P.J., et al.: Neural synchrony in the cortical networks: history, concept and current status. Front. Integr. Neurosci. 3, 17 (2009)

    Article  Google Scholar 

  22. Waddington, D., Dickey, C., Hershcovitch, M., Seshadri, S.: An architecture for memory centric active storage (MCAS). arXiv preprint arXiv:2103.00007 (2021)

  23. Waddington, D.G., Hershcovitch, M., Dickey, C.: PYMM: heterogeneous memory programming for python data science. In: PLOS 2021: Proceedings of the 11th Workshop on Programming Languages and Operating Systems, Virtual Event, Germany, 25 October 2021, pp. 31–37. ACM (2021). https://doi.org/10.1145/3477113.3487266

  24. Wood, A., et al.: Non-volatile memory accelerated geometric multi-scale resolution analysis. In: 2021 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–7. IEEE (2021)

    Google Scholar 

  25. Wyse, L.: Audio spectrogram representations for processing with convolutional neural networks. In: Workshop on Deep Learning for Music (2017)

    Google Scholar 

  26. Xu, Y., Kong, Q., Huang, Q., Wang, W., Plumbley, M.D.: Attention and localization based on a deep convolutional recurrent model for weakly supervised audio tagging. CoRR, abs/1703.06052 (2017). http://arxiv.org/abs/1703.06052

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, R., Wood, A., Cohen, S., Hershcovitch, M., Waddington, D., Chin, P. (2022). Biologically Plausible Complex-Valued Neural Networks and Model Optimization. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 646. Springer, Cham. https://doi.org/10.1007/978-3-031-08333-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08333-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08332-7

  • Online ISBN: 978-3-031-08333-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics