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Abstract. Numerous real-world problems from a diverse set of appli-
cation areas exist that exhibit temporal dependencies. We focus on a
specific type of time series classification which we refer to as aggre-
gated time series classification. We consider an aggregated sequence of
a multi-variate time series, and propose a methodology to make predic-
tions based solely on the aggregated information. As a case study, we
apply our methodology to the challenging problem of household water
end-use dissagregation when using non-intrusive water monitoring. Our
methodology does not require a-priori identification of events, and to
our knowledge, it is considered for the first time. We conduct an exten-
sive experimental study using a residential water-use simulator, involving
different machine learning classifiers, multi-label classification methods,
and successfully demonstrate the effectiveness of our methodology.

Keywords: time series classification · multi-label classification · water
monitoring · household end-use disaggregation

1 Introduction

The ever-increasing volume of data that is accumulated in various application
areas in recent years has accelerated the development of time series methods
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Foundation of Cyprus, the European Regional Development Fund and Structural
Funds of the European Union in Cyprus.
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for forecasting or classification purposes. Examples include critical infrastruc-
ture systems, such as, water distribution networks and power load balancing,
as well as areas such as healthcare, finance, environmental monitoring, and re-
tail. What real-world problems from the aforementioned areas have in common
is the existence of temporal dependencies. One unique attribute of time series
data underlies in the chronological order of the observations which constitutes a
challenging factor in their analysis. Thus, time series modelling has significant
importance as it needs to account for trends, seasonality and abrupt changes
that are often exhibited in time series data [9].

Time series classification is a general task which is useful in numerous areas
and applications. It is a type of a supervised machine learning problem, where
time series data are described by a class label. The difference with other classifi-
cation problems is that the natural temporal order in the data is significant, and
a learning algorithm has to identify and exploit the temporal characteristics.

In this work, we consider the problem of non-intrusive water usage monitoring
in households as our case study [13]. As water scarcity is increasingly affecting
the world, the development of new strategies focusing on water conservation
has become crucial. To this direction, many investments have been made the
last years in data and information technologies to facilitate the use of smart
water meters for domestic use. Smart metering of domestic water consumption
to continuously monitor the usage of different water fixtures and appliances has
been shown to have an impact on people’s behavior towards water conservation
[7]. However, the installation of multiple sensors to monitor each appliance may
have a high initial cost and there is currently no simple and cost-effective method
to monitor end-use water consumption. This work aims to address this issue by
identifying active water consuming fixtures and appliances using only data from
the main water flow meter, measuring the total household consumption.

Towards this direction, studies have focused on using measurements of the
total domestic consumption with Machine Learning (ML) methods to disaggre-
gate water usage into each appliance [14]. Identifying which appliances are in
use through ML is challenging since their operation may be overlapping, while
specific appliances may operate with intermittent flow, making individual con-
sumption events hard to distinguish. Decision trees and Machine learning al-
gorithms with a combination of unsupervised learning with feature extraction
and clustering evaluation have been identified as the major disaggregation tech-
niques to classify water end-use appliances using total consumption data [6]. The
authors in [10] used a Bayesian approach coupled with a template classifier, a
language model, grammar and prior probabilities to classify water events, us-
ing however additional measurements from pressure sensors. The study achieved
90% and 94% accuracy at fixture level based on data collected form five sites
during a five-week period. An adaptable neuro fuzzy network called Anfis has
been proposed in [15] using two approaches to estimate each class: the space and
the mean values and standard deviation of each class. This method achieved a
91% score on classifying water end-uses using a limited dataset of flow measure-
ment from one point in a single house. The authors in [13] propose a rule-based
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methodology for end-use disaggregation, by prioritizing the identification of ap-
pliances with comparably regular behavior. The methodology was applied to a
sample of four households in Italy where detailed water-use data were collected
at the inlet point and at each end-use over a period of 2 months. The results
were consistent with those obtained in similar studies making use of synthetic
data [5]. In [3], the authors examine the use of a novel flow indicator to deal with
simultaneous water consumption events. Six water usage features are extracted
from each event : duration, volume, flow peak, mode, time of day, and day of
week. A Random Forest classifier is used to identify the category of each event
based on the extracted features. It is a common characteristic of the aforemen-
tioned studies to use pre-processing algorithms to identify consumption events
before classification. This work makes two key contributions as follows:

1. We consider a specific type of time series classification which we refer to
as aggregated time series classification. This setting is largely unexplored in
the literature, and considers an aggregated sequence of a multi-variate time
series. We propose a methodology to make predictions based solely on the
aggregated information.

2. As a case study we consider the challenging problem of non-intrusive water
end-use monitoring, where the proposed methodology, which uses only a
sliding window of measurements and does not require a-priori identification
of events, is considered for the first time, to the authors knowledge.

The paper is organised as follows. We formulate the problem in Section 2.
The experimental setup is described in Section 3. An empirical analysis of the
proposed methodology is provided in Section 4, while in Section 5 we compare
the performance of various learning algorithms. We conclude in Section 6.

2 Problem Formulation

We consider a data generating process that provides at each time step t a se-
quence of instances S = {(xt, yt)}Tt=1 from an unknown probability distribution
pt(x, y), where T ∈ [1,∞).

The input xt = {xt
i}di=1 ∈ Rd is a d-dimensional vector belonging to input

space X ⊂ Rd. The instances constitute a multivariate time series with d
number of time series, and each corresponds to a univariate time series defined
as zi = {xt

i}Tt=1 ∈ RT .
The label (i.e., the ground truth) of the classification task is denoted by

yt ∈ Y . When Y = {1, ...,K}, K ≥ 2, it is termed multi-class classification,
that is, it refers to a task with more than two classes. When Y ∈ {0, 1}K it is
termed multi-label classification, i.e., it assigns to each instance a set of labels.
Each digit corresponds to the inclusion (1) or absence (0) of the relevant label.

A classifier h receives a new example xt at time step t and makes a prediction
ŷt based on a concept h : X → Y such that ŷt = h(xt). We refer to this as time
series classification. To capture the temporal aspects of the data, it is possible
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Fig. 1: Piping connectivity in a domestic water system.

to introduce a memory component, such as, a sliding window to facilitate with
the prediction task, i.e., ŷt = h(xt, xt−1, ..., xt−W ), where W is the window size.

Let us define the aggregated sequence x∗t = {xt
1 ⊗ xt

2 ⊗ ...⊗ xt
d}, where the

classifier makes a prediction based solely on the aggregated sequence x∗t at time
step t, where ⊗ is an aggregation operator depending on the application. We
refer to this as aggregated time series classification.

We formulate the non-intrusive water end-use monitoring problem as an ag-
gregated time series classification task. For the generation of the dataset, we
use a residential water demand simulator [5] (descibed below) that synthesises
a sequence of instances S at each time step t based on the water consumption
profiles of appliances in U.S. households.

The generated time series consists of five signals, that correspond to the water
flow consumption of the toilet (z1), shower (z2), faucet (z3), clothes washer (z4)
and dish washer (z5). From the consumption of these five appliances, we compose
an aggregated sequence x∗t, by summing the water flow consumption from each
sequence zi at time step t. The aggregated sequence x∗t is described by a set of
binary labels that correspond to the appliances that were active (1) or inactive
(0) at each time step t. To improve the efficacy of the predictions, we use a
sliding window approach that allows the classifier to capture information from
previous time steps, thus extracting underlying temporal patterns.

3 Experimental Setup

3.1 Simulator and dataset

This case study uses the STochastic Residential water End-use Model (STREaM)
[5], a modelling software developed to generate synthetic time series data of a
household with resolution of up to 10s. STREaM generates time series of each
water end-use fixture characterised by its signature (i.e., typical consumption
pattern), as well as its probability distributions of number of uses per day, sin-
gle use durations, water demand contribution, and time of use during the day.
STREaM takes into consideration the number of house occupants in the calcula-
tion of total household water demand. STREaM was calibrated on a large dataset
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Fig. 2: Household water consumption per appliance

including observed and disaggregated water end-uses from over 300 single-family
households in nine U.S. cities [8]. The following water end-uses were considered
in this dataset: toilet, shower, faucet, clothes washer, dishwasher. The end-uses
are further distinguished in standard and high efficiency appliances, which have
different consumption characteristics. Each fixture can be activated only once
during each time step but multiple fixtures can be active during the same time.
The dataset provides the water flow reading at each time step for each fixture
and their sum as the total consumption. Figure 1, illustrates the connectivity
of a domestic water system. The main flow meter is located at the outflow of
a domestic house water tank thus allowing us to measure water flow for each
time step. The system consists of the main water tank, the main water pipe
connecting the tank to the manifold, the manifold which distributes the water
to the house piping system and the end-use appliances.

The dataset used in this study considers the use of standard toilet, standard
shower, standard faucet, high efficiency clothes washer and standard dishwasher
in a 2-person household for a period of 180 days (6 months) and it has a resolution
of 10s. Figures 2a-2e depict the household water consumption for each appliance
for a random day. Figure 2f shows the total water consumption. Figure 3 displays
each class’ size (i.e., time series records), where it is clear that imbalance is severe.

We split the dataset into three subsets, 3-months worth of data are held for
training, and two sets of 1.5 months of historical data are reserved for valida-
tion and test sets. That equates to a set of 777600 samples for the training and
388800 samples for both validation and test sets. The training subset consists of
the samples that are given to the model, to identify and learn any underlying
patterns of the data. The validation subset contains data that is used for evalu-
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Fig. 3: Dataset’s class sizes

ation purposes in order to optimize the model. Lastly, the test subset is a set of
unseen samples that are used only to assess the performance of the algorithms,
to determine how well the algorithms can generalize on unseen data.

3.2 Classification algorithms

Random Forest (RF) [1]: It is a tree-based, ensemble learning algorithm, i.e., it
depends on multiple tree-based learners which make individual predictions that
are then averaged together. Typically, the more trees it has, the more robust
model it is as its performance does not rely on a single tree.

Extreme Gradient Boosting (XGBoost) [4]: It is a machine learning
technique that produces a prediction model in the form of an ensemble of weak
prediction models, which are typically tree-based. This technique builds a model
in a stage-wise fashion and combines weak learners into a single strong learner.
As each weak learner is added, a new model is fitted to provide a more accurate
estimation. The XGBoost classifier is a tree-based ensemble machine learning
algorithm with Gradient Boosting as its main component. Moreover, XGBoost
has the ability to handle missing values on its own and it is very effective and
efficient in terms of performance as well as training time even on large datasets.

Multilayer Perceptron (MLP) [1]: It is a feed-forward neural network
that consists of an input and an output layer, and can have multiple hidden
layers. MLP uses the backpropagation algorithm for training which computes the
gradient of the loss function with respect to the weights of the neural network.

3.3 Multi-task classification methods

Multi-task classification [2] combines (related or unrelated) tasks by using the
principles of transfer learning. It focuses on the preservation of the knowledge
gained while solving a particular task and then applying it to a different task.
It improves the generalisation by associating information of multiple tasks. The
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learning process happens simultaneously across all tasks while using shared rep-
resentation, which may lead to performance improvements. In this work we use
the terms multi-task and multi-label classification interchangeably.

Meta-estimators have the flexibility to appropriately leverage all the charac-
teristics of a base estimator in multiple forms. They can utilize the information
of each individual base estimator in a way that extends their capabilities. The
following meta-estimators describe how they can consolidate a multi-class binary
classification problem into a more generalised version, a multi-task problem.

– Binary Relevance (BR) [12]: It is a problem transformation technique,
where each label is treated separately, as a binary classification problem.
Thus, the multi-task problem is split into binary classification sub-tasks,
where any type of supervised classification algorithm can be defined as the
base-estimator. Subsequently, the meta-estimator is constructed that fits
each individual base-estimator in order to optimize its loss function. The
predictions are then combined into a multi-output format.

– Classifier Chain (CC) [16]: It operates similarly to Binary Relevance,
however, it is capable of exploiting correlations among target variables. The
difference between this approach and BR is that in a multi-label classifica-
tion setting with N -classes, N -binary classifiers are assigned a number that
corresponds to their order in the classifier’s chain. The training process fol-
lows the order of the models in the chain, where each binary classifier is fit
on the available training data with the addition of the actual target labels
of the classes whose models were assigned a lower order in the chain.

3.4 Evaluation metrics

Classifiers are typically evaluated using the accuracy metric. However, this
metric becomes unsuitable as it is biased towards the majority (normal) class. A
widely accepted metric which is less sensitive to imbalance is F1-Score, defined
below as the harmonic mean of the model’s precision and recall [11]. For multi-
label classification, we will use the micro-averaging F1-score or F1-Micro.

F1 = 2× precision× recall

precision+ recall
(1)

4 Empirical Analysis

4.1 Hyper-parameter tuning

We have tuned all the algorithms (RF, XGBoost, MLP) using both multi-task
methods (BR, CC). We have also used four different sliding windows that capture
the previous 60, 120, 240 and 480 time steps that correspond to 10, 20, 40 and 80-
minute intervals respectively. To facilitate the reproducibility of our results, this
section provides the values of the hyper-parameters after tuning. Due to space
restrictions, we present the hyper-parameter values using the CC multi-label
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method. Table 1 shows the hyper-parameters which yield the best performance
for the Random Forest using the CC multi-task method. Table 2 shows the
hyper-parameters which yield the best performance for XGBoost using the CC
multi-task method. Table 3 shows the hyper-parameters which yield the best
performance for MLP using the CC multi-task method.

Window 60 Window 120 Window 240 Window 480
Number of estimators 325 225 475 375
Criterion Gini Gini Gini Entropy
Max Depth 8 8 9 9
Max Features Auto Auto Sqrt Sqrt
Class Weight Balanced Balanced Balanced Balanced

Table 1: Tuned hyper-parameter values for RF (CC)

Window 60 Window 120 Window 240 Window 480
Number of estimators 275 100 275 125
Max Depth 3 10 3 6
Learning rate 0.05 0.03 0.05 0.03
Booster Dart Dart Gbtree Gbtree
Subsample 0.4 0.1 0.7 0.2
Colsample by tree 0.3 0.7 0.7 0.7
Colsample by level 0.8 0.4 0.5 0.6
Colsample by node 0.9 0.7 0.6 0.8
L1 Regularisation 0.03 0.06 0.02 0.03
L2 Regularisation 0.05 0.05 0.02 0.0006

Table 2: Tuned hyper-parameters values for XGBoost (CC)

4.2 Role of the sliding window size

We now examine the role of the window size. Four different sliding window sizes
are examined that capture the previous 60, 120, 240 and 480 time steps that
correspond to 10, 20, 40 and 80-minute intervals respectively. In all experiments,
we have used the models that yielded the best performance after tuning. Due to
space constraints, we present the results only for the CC method.

Random Forest: Table 4 shows the RF’s performance using the CC multi-
task method for different window sizes. It can be observed that the performance
of the Random Forest declines as the sliding window size becomes larger. The
best performance is obtained when the window size is 60.

XGBoost: Table 5 shows the XGBoost’s performance using CC for different
window sizes. Its performance improves as the sliding window grows, for instance,
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Window 60 Window 120 Window 240 Window 480
#hidden layers 2 2 3 2
#hidden units 32 32 16 64
Activation Tanh Tanh Tanh Tanh
Epochs 100 75 175 125
Optimizer Adam SGD SGD SGD
Learning rate 0.01 0.05 0.09 0.04
Batch size 256 256 128 32
L2 Regularisation 0.04 0.07 0.06 0.01

Table 3: Tuned hyper-parameters values for MLP (CC)

the highest performance in Table 5 is obtained when the window size is 480.
XGBoost can better capture the time correlations in the time-series data.

MLP: Table 6 show the MLP’s performance using CC for different window
sizes. As with XGBoost, the models’ performance increases when the window
size becomes larger, however, after some point its performance declines. The
best performance is obtained when the size is 120.

Overall, the role of the sliding window is very important as it appears to
affect the performance of all models. Overall, a larger window size helps a model
capture time correlations in time-series data, however, the performance may
start to decline after very large windows as in the case of MLP. Moreover, some
models fail to capture time correlations in this domain area despite the increase
in the window size; this has been the case with the RF model. While the above
serve as guidelines, tuning the sliding window size is necessary.

Window 60 Window 120 Window 240 Window 480
Accuracy 96.51 96.43 96.18 96.44
F1-Micro 55.75 54.22 52.39 48.60

Table 4: Performance of Random Forest (CC)

Window 60 Window 120 Window 240 Window 480
Accuracy 98.80 98.86 98.78 98.76
F1-Micro 68.91 71.94 71.98 72.38

Table 5: Performance of XGBoost (CC)
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Window 60 Window 120 Window 240 Window 480
Accuracy 98.48 98.62 98.47 98.31
F1-Micro 62.70 65.82 64.87 61.58

Table 6: Performance of MLP (CC)

4.3 Role of the multi-label classification method

We examine now the role of the multi-task methods Binary Relevance (BR) and
Classifier Chain (CC). We set the window sizes that yielded the best performance
earlier, and we compare which method is more effective. For the Random Forest,
we set the window size to 60. For the MLP, we set the window size to 120. For the
XGBoost, we set the window size to 240, even though one of the models achieved
better performance on larger window size (Table 5). This decision was based on
the negligible difference of the two models, and due to the lower dimensionality
of the dataset which results in a more simplified and efficient model.

Random Forest: Table 7 compares the performance of the Random Forest
with a fixed sliding window size of 60, using BR and CC. The results indicate
that CC outperforms BR with a considerable performance improvement.

XGBoost: Table 8 presents the role of the multi-task method using XGBoost
on the dataset with a fixed sliding window size of 240. Similarly, with the Random
Forest model, the XGBoost using CC achieves a better performance.

MLP: Table 9 shows the comparison between the Binary Relevance and the
Classifier Chain methods using the MLP model with a dataset that has a fixed
sliding window size of 120. Likewise, with the previous models, the Classifier
Chain approach proves to be more effective using the MLP classifier.

Random Forest (BR) - Window 60 Random Forest (CC) - Window 60
Accuracy 97.04 96.51
F1-Micro 49.92 55.75

Table 7: Comparison of multi-task methods with RF

XGBoost (BR) - Window 240 XGBoost (CC) - Window 240
Accuracy 98.37 98.78
F1-Micro 70.14 71.98

Table 8: Comparison of multi-task methods with XGBoost

Overall, we can conclude that the Classifier Chain approach proved to be
more effective on all occasions that were tested. It had a drastic impact on
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MLP (BR) - Window 120 MLP (CC) - Window 120
Accuracy 98.29 98.62
F1-Micro 64.21 65.82

Table 9: Comparison of multi-task methods with MLP

Random Forest (CC) –
Window 60

XGBoost (CC) –
Window 240

MLP (CC) –
Window 120

Accuracy 96.51 98.78 98.62
F1-Micro 55.75 71.98 65.82

Table 10: Comparison of different classifiers

the improvement of the performance of the Random Forest method, but it also
demonstrated a noticeable improvement for both XGBoost and MLP models.

5 Comparative Study

We now examine the performance of each classifier. We keep the same window
sizes identified previously, and we set the multi-task method to the Classifier
Chain as it outperformed the Binary Relevance method on every experimental
series. Table 10 compares the performance of each classifier, where it is evident
that the XGBoost model significantly outperforms the other classifiers.

Figures 4a - 4e, depict the confusion matrices of XGBoost (CC) with a win-
dow of 240-time steps. The confusion matrices are computed in a class-wise
fashion. The multi-class data are treated as if they were binarised under a one-
versus-rest transformation. The y-axis includes the actual class labels and the
x-axis shows the algorithm’s predictions. Notice that the different colours repre-
sent the percentage range, with white being 100% and black 0%.

Figure 4a presents the confusion matrix of the class label Toilet versus the
rest of the classes. The model has difficulty identifying this class as it manages
to correctly identify when the toilet was used approximately half of the time.
On the other hand, it manages to identify almost all the other events correctly,
while misclassifying as “Toilet” only 573 samples.

In Figure 4b we examine the predictions for the class “Shower”. The model
identifies correctly almost 75% of the samples that are labelled as a shower.
Also, it has very few false positives as it distinguishes the rest of the samples
with ease. Figure 4c, depicts the performance for the class Faucet. We observe
that the classifier learnt to identify cases where the faucet was in operation with
high accuracy, as it was classified correctly approximately 90% of the time.

In Figure 4d, we examine the performance of the classifier when identifying
the cases where the dish washer was active. As it is evident, the model struggles
to classify correctly any of the dish washer samples. Specifically, in 235 (out of the
249) cases only the dishwasher is operating, from which 211 cases are predicted
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Fig. 4: Confusion matrices

as faucet. In 14 (out of the 249) cases the dishwasher is operating simultaneously
with another appliance. In 9 cases (out of the 14) the dishwasher and shower are
operating, and the model correctly predicts only the shower. This is attributed
partly to the fact that the dishwasher constitutes the minority class with just
1.9% relative to the other class as shown in Fig. 3, and partly to the fact that
the dish washer cycle exhibits intermittent behavior, thus making it harder for
the model to distinguish between the dishwasher and faucet.

The results from the predictions for the clothes washer appliance are pre-
sented in Figure 4e. We can observe that the classifier correctly identifies cases
where the clothes washer was in operation. Also, we can see that there are very
few cases that were misclassified as clothes washers by the model.

Overall, the problem of identifying active appliances from the aggregated
water consumption is challenging. We conclude that there are cases which the
model performs well, while in others it fails to give accurate predictions. This
inconsistency in the performance for some classes can be attributed to three key
reasons: (1) Class imbalance constitutes a key challenge. Recall that the majority
of the samples constitute cases where none of the appliances was active (Fig. 3).
Moreover, the imbalance among the appliances has a significant role, especially
for the underrepresented appliances, such as the dish washer. (2) Another key
factor lies in the aggregated sequence, where some consumption profiles might
look similar, especially in the case of appliances, e.g., the dishwasher which has
a long and intermittent cycle. The use of a sliding window and the absence of
an event detection algorithm to specifically search for these intermittent events,
misleads the classifier during inference. (3) The simultaneous use of multiple ap-
pliances could also yield a water consumption profile which is similar to another.
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6 Conclusions and Future Work

In this work, we have considered an aggregated sequence of a multi-variate time
series, and propose a methodology to make predictions based solely on this aggre-
gated information. As a case study, we have considered the challenging problem
of non-intrusive water monitoring. The proposed methodology has been demon-
strated to be very effective. Identified difficulties are the class imbalance, and
the noisy information as a result of the time series aggregation. Future work
will attempt to better capture longer temporal correlations using deep neural
models, such as, LSTMs and convolutional neural networks [9].
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