Skip to main content

An Intelligent Grammar-Based Platform for RNA H-type Pseudoknot Prediction

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops (AIAI 2022)

Abstract

Predicting the secondary structure of RNA sequences has been proved quite a challenging research field for bioinformatics. Predicting structures that encapsulate the pseudoknot motif highlights why it is an NP-complete problem. In this setting, researchers focus on accurately predicting this motif and its variations by leveraging heuristic methodologies that converge while decreasing the prediction time. Any accurate heuristic does not add significant value when it involves an extended execution period, specifically considering lengthy sequences. In this work, we introduce a novel, time-efficient method that employs grammar attributes, parallel execution, and pruning techniques to create an efficient prediction tool that is helpful for biologists, bioengineers, and biomedical researchers. This version of the proposed framework features a pruning technique to reduce the search space of the grammar. It eliminates trees derived from corner-case conditions to reduce execution time by 33% regarding the grammar-based methodology and 43% regarding the brute-force approach without sacrificing the initial accuracy percentage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrikos, C., Makris, E., Kolaitis, A., Rassias, G., Pavlatos, C., Tsanakas, P.: Knotify: an efficient parallel platform for RNA pseudoknot prediction using syntactic pattern recognition. Methods Protoc. 5, 14 (2022)

    Article  Google Scholar 

  2. Lorenz, R., et al.: ViennaRNA package 2.0. Algorithms Mol. Biol. AMB 6, 26 (2011). https://doi.org/10.1186/1748-7188-6-26

    Article  Google Scholar 

  3. Singh, J., Hanson, J., Paliwal, K., Zhou, Y.: RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun. 10, 1–13 (2019)

    Article  Google Scholar 

  4. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–15 (2003). https://doi.org/10.1093/nar/gkg595

    Article  Google Scholar 

  5. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discret. Appl. Math. 104, 45–62 (2000)

    Article  MathSciNet  Google Scholar 

  6. Jabbari, H., Wark, I., Montemagno, C., Will, S.: Knotty: efficient and accurate prediction of complex RNA pseudoknot structures. Bioinformatics 34, 3849–3856 (2018)

    Article  Google Scholar 

  7. Van Batenburg, F., Gultyaev, A.P., Pleij, C.W.: An APL-programmed genetic algorithm for the prediction of RNA secondary structure. J. Theor. Biol. 174, 269–280 (1995)

    Article  Google Scholar 

  8. Isambert, H., Siggia, E.D.: Modeling RNA folding paths with pseudoknots: application to hepatitis delta virus ribozyme. Proc. Natl. Acad. Sci. USA 97, 6515–6520 (2000)

    Article  Google Scholar 

  9. Meyer, I.M., Miklos, I.: SimulFold: simultaneously inferring RNA structures including pseudoknots, alignments, and trees using a Bayesian MCMC framework. PLoS Comput. Biol. 3, 149 (2007)

    Article  MathSciNet  Google Scholar 

  10. Sato, K., Kato, Y., Hamada, M., Akutsu, T., Asai, K.: IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 27, 85–93 (2011)

    Article  Google Scholar 

  11. Bellaousov, S., Mathews, D.H.: ProbKnot: fast prediction of RNA secondary structure including pseudoknots. RNA 16, 1870–80 (2010)

    Article  Google Scholar 

  12. Knudsen, B., Hein, J.: RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 15, 446–454 (1999)

    Article  Google Scholar 

  13. Knudsen, B., Hein, J.: Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res. 31, 3423–3428 (2003). https://doi.org/10.1093/nar/gkg614

    Article  Google Scholar 

  14. Sukosd, Z., Knudsen, B., Vaerum, M., Kjems, J., Andersen, E.S.: Multithreaded comparative RNA secondary structure prediction using stochastic context-free grammars. BMC Bioinform. 12, 103 (2011)

    Article  Google Scholar 

  15. Pedersen, J.S., Meyer, I.M., Forsberg, R., Simmonds, P., Hein, J.: A comparative method for finding and folding RNA secondary structures within protein-coding regions. Nucleic Acids Res. 32, 4925–4936 (2004)

    Article  Google Scholar 

  16. Do, C.B., Woods, D.A., Batzoglou, S.: CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22, e90–e98 (2006)

    Article  Google Scholar 

  17. Pedersen, J.S., et al.: Identification and classification of conserved RNA secondary structures in the human genome. PLoS Comput. Biol. 2, e33 (2006)

    Article  Google Scholar 

  18. Nawrocki, E.P., Kolbe, D.L., Eddy, S.R.: Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009)

    Article  Google Scholar 

  19. Anderson, J.W.: Oxfold: kinetic folding of RNA using stochastic context-free grammars and evolutionary information. Bioinformatics 29, 704–710 (2013)

    Article  Google Scholar 

  20. Mao, K., Wang, J., Xiao, Y.: Prediction of RNA secondary structure with pseudoknots using coupled deep neural networks. Biophys. Rep. 6(4), 146–154 (2020). https://doi.org/10.1007/s41048-020-00114-x

    Article  Google Scholar 

  21. Wang, Y., et al.: ATTfold: RNA secondary structure prediction with pseudoknots based on attention mechanism. Front. Genet. 11, 1564 (2020)

    Google Scholar 

  22. Wang, L., et al.: DMfold: a novel method to predict RNA secondary structure with pseudoknots based on deep learning and improved base pair maximization principle. Front. Genet. 10, 143 (2019)

    Article  Google Scholar 

  23. Kucharík, M., Hofacker, I.L., Stadler, P.F., Qin, J.: Pseudoknots in RNA folding landscapes. Bioinformatics 32, 187–194 (2016)

    Google Scholar 

  24. Rietveld, K., Van Poelgeest, R., Pleij, C.W., Van Boom, J., Bosch, L.: The tRNA-Uke structure at the 3’ terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA. Nucleic Acids Res. 10, 1929–1946 (1982)

    Article  Google Scholar 

  25. Staple, D.W., Butcher, S.E.: Pseudoknots: RNA structures with diverse functions. PLoS Biol. 3, e213 (2005)

    Article  Google Scholar 

  26. Watson, J., Crick, F.: Molecular structure of nucleic acids. Am. J. Psychiat. 160, 623–624 (2003). https://doi.org/10.1176/appi.ajp.160.4.623

    Article  Google Scholar 

  27. Hopcroft, J.E., Ullman, J.D.: Formal Languages and Their Relation to Automata. Addison-Wesley Longman Publishing Co., Inc., Boston (1969)

    Google Scholar 

  28. Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory 2, 113–124 (1956). https://doi.org/10.1109/TIT.1956.1056813

    Article  MATH  Google Scholar 

  29. Sipser, M.: Introduction to the Theory of Computation, vol. 2. Thomson Course Technology, Boston (2006)

    MATH  Google Scholar 

  30. Younger, D.H.: Recognition and parsing of context-free languages in \(n^3\). Inf. Control. 10, 189–208 (1967)

    Article  Google Scholar 

  31. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13, 94–102 (1970). https://doi.org/10.1145/362007.362035

    Article  MATH  Google Scholar 

  32. Graham, S.L., Harrison, M.A., Ruzzo, W.L.: An improved context-free recognizer. ACM Trans. Program. Lang. Syst. 2, 415–462 (1980)

    Article  Google Scholar 

  33. Ruzzo, W.L.: General Context-Free Language Recognition. PhD Thesis, University of California, Berkeley, CA, USA (1978)

    Google Scholar 

  34. Geng, T., Xu, F., Mei, H., Meng, W., Chen, Z., Lai, C.: A practical GLR parser generator for software reverse engineering. JNW 9(3), 769–776 (2014)

    Article  Google Scholar 

  35. Pavlatos, C., Dimopoulos, A.C., Koulouris, A., Andronikos, T., Panagopoulos, I., Papakonstantinou, G.: Efficient reconfigurable embedded parsers. Comput. Lang. Syst. Struct. 35, 196–215 (2009). https://doi.org/10.1016/j.cl.2007.08.001

    Article  MATH  Google Scholar 

  36. Chiang, Y., Fu, K.: Parallel parsing algorithms and VLSI implementations for syntactic pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 6, 302–314 (1984)

    Article  Google Scholar 

  37. https://github.com/vnmakarov/yaep, Accessed 25 Mar 2020

  38. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools, 2nd edn. Addison Wesley, London (2006)

    MATH  Google Scholar 

  39. https://bit.ly/dataset_pseudobase_knotify, Accessed 3 Jan 2022

  40. Ren, J., Rastegari, B., Condon, A., Hoos, H.H.: HotKnots: heuristic prediction of RNA secondary structures including pseudoknots. RNA 11, 1494–1504 (2005)

    Article  Google Scholar 

  41. Jabbari, H., Condon, A.: A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures. MC Bioinform. 15, 147 (2014)

    Google Scholar 

  42. Zuker, M.: Calculating nucleic acid secondary structure. Curr. Opin. Struct. Biol. 10, 303–310 (2000)

    Article  Google Scholar 

  43. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003)

    Article  Google Scholar 

  44. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci. USA 77, 6309–6313 (1980)

    Article  Google Scholar 

  45. Cao, S., Chen, S.: Predicting structures and stabilities for H-type pseudoknots with interhelix loops. RNA (New York, N.Y.) 15, 696–706 (2009). https://pubmed.ncbi.nlm.nih.gov/19237463

Download references

Acknowledgement

The research leading to the results presented in this article has received funding from the European Union’s funded Project PolicyCLOUD under grant agreement No. 870675.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vrettos Moulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Makris, E., Kolaitis, A., Andrikos, C., Moulos, V., Tsanakas, P., Pavlatos, C. (2022). An Intelligent Grammar-Based Platform for RNA H-type Pseudoknot Prediction. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-08341-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08341-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08340-2

  • Online ISBN: 978-3-031-08341-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics