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Abstract. Early stroke risk stratification in individuals with carotid atheroscle-
rosis is of great importance, especially in high-risk asymptomatic (AS) cases. In
this study, we present a new computer-aided diagnostic (CAD) system for the
automated segmentation of the atherosclerotic plaque in carotid ultrasound (US)
images and the extraction of a refined set of ultrasonic features to robustly charac-
terize plaques in carotid US images and videos (AS vs symptomatic (SY)). So far,
we trained a UNet model (16 to 256 neurons in the contracting path; the reverse,
for the expanding path), starting from a dataset of 201 (AS = 109 and SY =
92) carotid US videos of atherosclerotic plaques, from which their first frames
were extracted to prepare three subsets, a training, an internal validation, and final
evaluation set, with 150, 30 and 15 images, respectively. The automated segmen-
tations were evaluated based on manual segmentations, performed by a vascular
surgeon. To assess our model’s capacity to segment plaques in previously unseen
images, we calculated 4 evaluation metrics (mean = std). The evaluation of the
proposed model yielded a 0.736 + 0.10 Dice similarity score (DSC), a 0.583 +
0.12 intersection of union (IoU), a 0.728 % 0.10 Cohen’s Kappa coefficient (KI)
and a 0.65 £ 0.19 Hausdorff distance. The proposed segmentation workflow will
be further optimized and evaluated, using a larger dataset and more neurons in
each UNet layer, as in the original model architecture. Our results are close to
others published in relevant studies.

Keywords: Carotid ultrasound video - Atherosclerotic carotid plaques -
Automated segmentation - Deep learning-based segmentation - Computer-aided
diagnosis
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1 Introduction

Carotid atherosclerosis, which may cause stroke [1] is a dangerous condition, with most
studies assessing its risk of occurrence by detecting and analyzing developed plaques
in carotid ultrasound (US) images. A recent meta-analysis study [2] estimated that, in
2020, approximately 28% of the global population, aged 30 to 79 years, would have
abnormal carotid intima-media thickness (IMT), while 21% of the people would have
carotid plaques detected. Multiple studies have associated presence, size and ultrasonic
appearance of carotid arteries plaques with the risk of ischemic stroke [3-5], while
16% of all ischemic strokes occur due to carotid atherosclerosis [6]. Although carotid-
IMT (c-IMT) has been a valuable marker of subclinical atherosclerosis [7], the focus is
extended towards the automated detection and analysis of carotid atherosclerotic plaques
and their association with future stroke events. In earlier studies, our group has identified
carotid asymptomatic (AS) individuals at high risk [8] by analyzing US image features
of plaques. Additionally, we had investigated how texture features of segmented plaques
in carotid US videos vary among AS and symptomatic (SY) individuals, during the
cardiac cycles [9].

In order to automate the process of localization and visualization of atherosclerotic
plaques in carotid US images, a plethora of machine learning (ML) and deep learning
(DL)-based studies have been presented, during the last 10 years, with convolutional
neural networks (CNN5s) frequently used to segment carotid plaques effectively, such as
in[10, 11] and [12]. Lately, DL models, either trained from scratch or used under transfer
learning (TL), have been widely used to classify atherosclerotic plaques in carotid US
images and videos, into AS or SY [13-15]. Aside from DL-based carotid US plaque
image classification studies, there is notable research on plaque motion characteristics
in the current imaging modality, as well as on whether these characteristics are related
to stable or unstable plaques [16, 17].

In most of the above-mentioned studies, there were multiple attempts to create work-
flows for the accurate detection and characterization of atherosclerotic plaques in US
images, a process crucial for early stroke risk assessment. Even though research in this
area has been extensive over the years, the addition of extra features for better stroke
risk estimation, such as video analysis parameters, is still an open research area.

In this study, we present the first steps towards the development of a new computer
aided design (CAD) system for stroke risk assessment based on the analysis of US carotid
images and videos. The aim of the currently presented work is to establish DL-based
segmentation of US carotid plaques (see also Fig. 1, A, B and C), which is going to be
part of the overall CAD system. The system presented in Fig. 1 will perform carotid US
plaque analysis to support experts in decision making and stroke risk stratification. This
is going to be the evolution of systems presented by our group [8, 9, 13, 17] and will be
based on video analysis, extraction of new additional features and DL-based methods.
More specifically, the proposed system will include: (a) a data preprocessing module
(see Fig. 1, A), (b) a UNet-based model to automatically segment plaques in carotid US
images (see Fig. 1, B and C), (b) extraction of ultrasonic image textural, morphological
and motion features from the segmented plaque regions (see Fig. 1, D), (c) image feature
selection (see Fig. 1, E), and (d) classification of selected mixed features into AS or SY,
using a pre-trained ResNet50 [18] with TL (see Fig. 1, F). The ResNe50 (under T1) has
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demonstrated a promising capacity to classify AS and SY plaques in US images, based
on previous work of our group [13].

The rest of the paper is organized as follows. In Sect. 2, our methodology and
materials are described. Section 3 summarizes the results, which are discussed in Sect. 4.
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Fig. 1. General flow diagram illustrating the different modules in the CAD system proposed in
this work for stroke risk stratification. A: Acquisition of carotid US B-mode videos, B: Video
normalization and frame extraction, C: Automatic plaque ROI segmentation using a UNet and
evaluation of the segmented area, D: Image-based textural, morphological and motion features
extraction per segmented plaque ROI, E: Features selection based on statistical analysis, F: CNN-
based image features classification to derive the plaque type. GT: Ground Truth, IoU: Intersection
of Union; SY: Symptomatic, AS: Asymptomatic.

2 Materials and Methods

2.1 Video Dataset

A dataset of 201 carotid B-mode longitudinal US videos, from 196 subjects (123
males/73 females, AS = 108, SY = 88)), was used in this study. Five subjects had either
2 videos available or were presented with 2 plaques per video. The degree of stenosis
in the subjects ranged between 50-95%. Overall, different carotid areas were included
(Bifurcation, common carotid artery, external carotid artery, and internal carotid artery;
both right and left sides). Plaque regions of interest (ROI) were manually selected on
the first frame of each video, by an expert ultrasonographer, using a Matlab® [19]-based
software created by our group. Each video was intensity-normalized, using the Video
Despeckle Filtering (VDF) tool for carotid US video processing [20] (see also Fig. 1,
A). Then, from each video the first frame was extracted (jpeg format, with the default
OpenCyv settings for the image quality), using OpenCv in Python [21-23] and resulting
in a dataset of 201 different US images, with a total of 201 different plaque ROIs. Each
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of these images was cropped to include the plaque ROI at the image center, but also a
part of the surrounding area (maximum number of included surrounding pixels was 70).

Then, black borders were added to all frames in order to reach 512 x 512 overall
image size. The image input dimensions were set to 512 x 512, in order to accommodate
plaque ROIs having width higher than 500 pixels (x-axis). For each of these new images,
acorresponding mask was generated (type: uint8, black and white), following given ROIs
coordinates (see Fig. 1, B) and using OpenCv to derive mask contours. It is important
to mention that no resizing took place for the plaque ROIs. The images were separated
into training, validation and evaluation subsets, with 156 (76 SY and 80 AS), 30 (14 SY
and 16 AS) and 15 (6 SY and 9 AS) images, respectively.

2.2 Model for the Automatic Plaque Segmentation

An edited version of UNet architecture [24] (see Fig. 2), for binary segmentation (plaque
ROI in white, background in black), was used in Keras-Tensorflow [22, 25], and Ana-
conda [26]. Compared to the original model, we trained in this work, less filters per
convolutional layer (CNVL, from 16 to 256 filters), due to current GPU memory con-
straints. Binary cross-entropy was the loss function and ‘Adam’ was the optimizer, used
with its default learning rate value, 0.001. Data augmentation was applied, namely rota-
tion range (80), horizontal flip, and width and height shift range (both at 0.1), with the
fill mode set to ‘nearest’. The UNet was trained for 220 epochs, with a batch size of 4,
an input size of 512 x 512 and an early-stopping callback of patience 30. We used a
computer with an NVIDIA RTX 2060 GPU (6 GB), an i7 Intel Core processor and a 16
GB RAM. The best model version was saved when the validation loss had the lowest
value.

= Convolution KS: 3x3, ReLu

Input II__IE 116 16 = Copy & Crop 32 16 16 2
Masks & Images '#:-‘ _.D - MaxPooling KS: 2x2, stride:2x2 :|-|]_.|:|-|
512x 512 S ¥ 3232 - 6432 4
|:| [ - Up-Convolution KS: 3x3, stride:2x2 l
364 64 128 64
H4 HH
¥ 128 128 256 128 ¢

H_{H

256

Fig. 2. The UNet architecture proposed in this work. The padding, in each convolutional layer,
was set to ‘same’. Kernel Size, KS.
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2.3 Evaluation Metrics

In order to evaluate how similar the automatically segmented plaque ROIs were to their
ground truth counterparts, we used the following evaluation metrics: 1. the Dice Simi-
larity Coefficient (DSC), 2. the Intersection of Union (IoU), 3. the Cohen’s Kappa Coef-
ficient (KI) [27]. We also calculated the area under the receiver operating characteristic
curve (AUC) and the directed Hausdorff distance (HD) [28] (see formula 4).

When evaluating model’s capacity to segment, in order to obtain the segmented areas,
the output of the model was thresholded (thresholding resulted probabilities), meaning
that not all predictions were kept, as not all of them truly belonged to the given ROIs.
To find the optimum probability threshold for the identification of the segmented ROIs,
we performed predictions using all the training data, with 100 different threshold values
(0.00 to 1.00) applied on the predictions and kept the threshold that yielded the highest
DSC and IoU, as a guide. The metrics used to evaluate the automatic segmentations are:

2% TP
DSC= ——— ——— (D
2 % TP + FN + FP
TP
IoU= ——— 2)
TP + FP + FN
K — (2 % (TP % TN - FN * FP)) 3)
" ((TP + FP) % (FP + TN)+(TP + FN) % (FN + TN))
HD = max [min{d (a, b)}:| 4)
acA | beB

where TP are the true positives, TN are the true negatives, FN are the false negatives and
FP are the false positives. In formula 4, a and b are points in the sets A and B, where A
is the set of points forming a ground truth plaque ROI and B is the set of points of its
predicted ROI counterpart, while d(a,b) is considered as the Euclidean distance between
a and b.

3 Results

After training the model, 0.34 was the threshold that yielded the highest mean DSC and
IoU values. In Fig. 3 the Interquartile Ranges (IQRs) for all our evaluation metrics for the
15 automatic plaque ROI segmentations are presented for the selected threshold. Also,
the resulted AUC for all the examined probability thresholds on the evaluation images
reached 0.80. Table 1 also shows the mean =+ std values for all evaluation metrics. We
reached a 0.736 £ 0.10 mean DSC, a 0.583 £ 0.12 mean IoU and a 0.728 4 0.10 mean
KI. Measurement of the Hausdorff distance showed an 8.18 &+ 2.36 mean (normalized as
0.65 £ 0.19), suggesting that our segmentation methodology needs further refinement.

In Fig. 4, we present four out of the 15 cases of the automatically segmented plaque
ROIs. We see that for the first two cases (see Fig. 4 A and B), there is an agreement
(overlapping), higher than 70%, when comparing to the GT with the automatically
segmented area, with the corresponding DSC values both being higher than 80%. In
Fig. 4 B, we notice that the model falsely detects a small area (not part of the plaque),
an overall segmentation that can be possibly refined with further optimization in the
model’s training process.
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Table 1. Evaluation metrics of the proposed segmentation system based on four model perfor-
mance metrics (N = 15).

Evaluation metrics Average (£std)
DSC 0.736 £ 0.10
ToU 0.583 £ 0.12
KI 0.728 £+ 0.10
HD 0.65 +0.19

DSC, Dice Similarity Coefficient; IoU, Intersection of Union; KI,
Cohen’s Kappa Coefficient; HD, Hausdorff Distance.

For 15 Different Segmentations (Images)
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Fig. 3. Distribution of the segmentation performance evaluation metrics for all images (N = 15)
investigated in this study. The &+ IQR, the median and the mean values, per metric, are given at
the top of each boxplot, while mean values are in red and median values are in dark blue. The
HD values were normalized for visualization purposes. DSC: Dice similarity coefficient; HD,
Hausdorff Distancce; IoU: Intersection of union; KI: Cohen’s Kappa Coefficient. (Color figure
online)
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ToU: 0.72, DSC: 0.84, KI: 0.78, HD:0.66 IoU: 0.73, DSC: 0.85, KI: 0.85, HD:0.69
Female, S.D.: 80%, AS Male, $.D.: 60%, SY

ToU: 0.63, DSC: 0.78, KI: 0.77, HD:0.69 IoU: 0.65, DSC: 0.79, KI: 0.78, HD:0.44
Female, S.D.: 75%, AS Female, S.D.: 50%, SY
C D

Fig. 4. Demonstration of the automatically segmented plaque versus the ground truth (GT) plaque
ROIs in two different cases, AS and SY. The light-blue line is the GT plaque ROI, while the orange
is the automatically segmented area, after thresholding. The DSC and the IoU values are given to
depict the agreement of the GT with the automatically segmented areas, along with other patient
information. For visualization purposes, the black borders were removed from each image. AS:
Asymptomatic; DSC: Dice similarity coefficient; HD, Hausdorff Distancce; loU: Intersection of
union; KI: Cohen’s Kappa Coefficient; S.D.: Stenosis Degree; SY: Symptomatic.

4 Discussion

Stroke risk stratification in individuals with atherosclerotic carotid plaques is of great
importance, especially in cases considered as high risk, whether stenosis exists or there
is alow risk. During the past ten years, there have been multiple attempts to identify valu-
able atherosclerotic plaque-derived features in carotid US images and videos in order
to characterize the plaques based on DL methods. The two main processes, in which
DL can facilitate stroke risk stratification in individuals with carotid atherosclerosis are:
carotid plaque automatic segmentation and plaque classification. Studies have demon-
strated the capacity of DL models to automatically segment plaque ROIs in US images
or to classify plaques, in US images, into AS or SY.

In this study, we present the first step towards the development of a new CAD system
for stroke risk stratification, using US carotid plaque images, along with the preliminary
results we have obtained from automatic segmentation of atherosclerotic plaques in
carotid US images, by training a UNet-based model. Our model is a UNet version
that hosts fewer neurons per CNVL, compared to the original architecture. Initially, we
applied image intensity normalization and prepared the image dataset such that no plaque
ROI was resized; no plaque ROI content loss existed. With 220 epochs of training and
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156 training samples, UNet segmented 15 previously unseen images, yielding DSC and
IoU mean values at 0.736 4+ 0.10 and 0.583 £ 0.12, respectively, with some of our DSC
values being above 0.80, not very different from other relevant published results [ 10, 30].
Our IoU and HD resulting values suggest that our current approach needs improvement,
although they might also be partially attributed to the level of image quality in our utilized
dataset. Our current approach, although still premature, indeed depicts the capacity of
the utilized model to segment plaques in carotid US images.

Related Work

In 2021, Jain et al. [12] presented a series of solo DL models, namely UNet, UNet +,
SegNet, and hybrid DL models, namely SegNet-UNet and SegNet-UNet+. All models
were trained with either DSC or binary cross-entropy loss to automatically segment
plaques in carotid US images. They further quantified the segmented plaque ROIs (mm?)
to compare them with the GT ROIs. All models had the exact number of filters per CNVL
as the standard UNet. The SegNet-UNet was their best-performing model, yielding a
mean =+ std IoU and DSC of 80.44 £ 1.59 88.98 £ 1.04, respectively, when trained for
100 epochs, under the K10 protocol (90% data for training and 10% data for testing),
with data augmentation and with an input size of 128x128 pixels (no reported image
cropping or up- or downsizing). To obtain their image dataset, they extracted 10 frames
from 97 different carotid US videos (overall 970 images, with an interval of 10 per
video). They have also stated that the 10 frames in each video were actually treated as
different plaque ROI examples, although no metric for comparison of all GT ROIs per
video was provided, in order to support their claim and despite their resulted IoU and
DSC values from all their models. Also, no image intensity normalization was applied
prior processing.

Zhou et al. [29], developed an automated plaque segmentation method, based on
DL, in order to obtain the total plaque area automatically in carotid US images. They
modified the original UNet architecture in terms of number of filters per CNVL, in a
way similar to our UNet version, although they set 32 neurons in their first and last
CNVL. They trained their model two times (two experiments, with GT masks from two
different observers), for 500 epochs, using a dataset of 510 total images (2/3 used for
training and 10% of the training data used for internal validation), with a batch size
of 64 and used different input sizes among batches, as UNet can accept different input
sizes, with the condition that the image size within each batch will be uniform. Where
needed, they padded training examples to reach the mean required batch image size.
They used data augmentations similar to those in our approach and they monitored the
training process using the DSC loss. They used 1/3 of the primary data for testing. Their
optimized model was finally trained on the whole first dataset and tested on another
image US dataset. They reported a 0.05 % 7.13 mm? and a 0.8 & 8.7 mm? mean =+ std
TPA difference, when comparing each UNet with the manual segmentations. No image
intensity normalization was reported.

In 2020, under a semantic segmentation approach, Xie et al. [30], introduced a
method for plaque and vessel automatic segmentation in carotid US images based on
UNet. They developed two types of UNet-based models, a two-stage model, where first
a UNet architecture segments the lumen in carotid US images and its output is the input
of a second UNet, which segments the plaque, and a dual-decoder, where instead of one
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main decoder unit in the UNet, they set a pair of decoders, one for the lumen ROIs and
one for the plaque ROIs. In the two above-mentioned models, both the plaque and lumen
areas were segmented on the same output image. They trained the models for 20 epochs,
with carotid US images, cropped to remove specifications surrounding the US area and
resized to 224 x 224 pixel size. They applied 10-fold cross validation and had a batch
size of 4. Their images were not intensity-normalized. Their highest reported DSC was
0.69 for the dual-decoder model.

Finally, Meshram et al. [10] developed a fully- and a semi-automatic approach for
plaque segmentation in carotid US images. They compared a standard UNet with a dilated
UNet, hosting dilated CN'VLs in its bottleneck. They overall performed 4 experiments.
In their UNet models, they also started and ended with 32 filters in the CNVLs. Their
semi-automatic approach allowed a sonographer to provide a bounding box as a guide to
focus on plaque ROI, followed by an exterior 12.5% buffer added around the given box,
on all sides, such that each input image had 75% plaque and 25% background included.
They used 862 carotid US images, separated into 90% for training (from which 5%
were used for internal validation) and 10% for testing and resampled to 512 x 512
pixels for the automatic approaches, while in the semi-automatic experiments, plaque
ROI bounding boxes were resampled to 256 x 256 pixels. They reached a DSC of 0.84,
when comparing semi-automatic plaque segmentations from the dilated UNet to their
ground truth counterparts.

Compared to all studies described above, it is clear that our model’s plaque seg-
mentation performance was highly dependent on the size of the utilized dataset and the
number of neurons trained per UNet CNVL, as well as on the batch size our hardware
can currently support. For these reasons, at the moment, our model’s full potential to
segment plaque ROIs in carotid US images is not fully examined. Also, there is a possi-
bility that in some images, the carotid anatomy is more complex than in others, which,
accompanied also by speckle noise, might hinder model’s ability to generate segmented
areas with clear and smooth borders.

As in all DL-based classification tasks, preparation of the image dataset is of great
importance, our primary focus in this study was to avoid content loss or resampling
in the carotid US images we used as input to our UNet model. In contrast, in [12, 30]
and [10], plaque ROIs were resized. More reliably, in [29], cropping and padding was
applied in the input images, only where needed. Secondary, the preparation of our image
dataset, where not all of the plaque ROI surrounding was included is similar to the data
preparation approach in [29], in order to acquire the desirable input size, and to that in
[10], regarding the area covered by the plaque in each image’s carotid content.

As shown from the above-explained studies, it is still not clear if plaque automatic
segmentation in carotid US images is improved when the input includes mainly the
plaque ROI (with some carotid surrounding included) and when no intervention in the
content occurs (resampling).

In our future steps, we will repeat the current segmentation experiment using carotid
US whole images, the portable graphics format (png) for lossless data compression
and a 5-fold cross validation workflow. We will have a larger dataset and a GPU of
higher capacity, in order to optimize more parameters simultaneously, with a larger
batch size. We will also extract segmentation metrics from a larger evaluation dataset,
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and we will investigate if speckle removal facilitates UNet-based automatic carotid
plaque segmentation in US images. Finally, different comparison metrics between the
automatically segmented and the GT total plaque areas will be included.

By following the above-described steps, we expect to have a robust UNet-based
segmentation model that will be the heart of our developing CAD program, which will
be used by experts for automated plaque characterization in carotid US images and
videos, in clinical routine.

5 Limitations

Our current preliminary results for the automated plaque segmentation in carotid US
images is accompanied by some limitations. Regarding the preparation of the dataset,
the image intensity normalization (normalization applied on the video level), required
a considerable amount of time and user interaction. Additionally, we had to prepare an
automated workflow to acquire an appropriate dataset of a uniform size from plaques with
quite different area sizes. For the training process of the segmentation model, we could
obtain improved segmentation results by following the exact UNet architecture. It should
be however noted that our current hardware is not designed for such an experiment, yet.
In the automatically segmented plaque ROIs, after the thresholding process, the borders
were noisy. This possibly implies that speckle noise or primary video quality play arole,
both of which should be further investigated.
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