
An ASP-Based Approach to Scheduling
Pre-operative Assessment Clinic

Simone Caruso1 , Giuseppe Galatà2 , Marco Maratea1(B) ,
Marco Mochi1,2 , and Ivan Porro2

1 University of Genoa, Genova, Italy
{simone.caruso,marco.maratea,marco.mochi}@unige.it

2 SurgiQ srl, Genova, Italy
{giuseppe.galata,marco.mochi,ivan.porro}@surgiq.com

Abstract. The problem of scheduling Pre-Operative Assessment Clinic
(PAC) consists of assigning patients to a day for the exams needed before
a surgical procedure, taking into account patients with different priority
levels, due dates, and operators availability. Realizing a satisfying schedule
is of upmost importance for a clinic, since delay in PAC can cause delay in
the subsequent phases, causing a decrease in patients’ satisfaction. In this
paper, we divide the problem in two sub-problems: In the first sub-problem
patients are assigned to a day taking into account a default list of exams;
then, in the second sub-problem, having the actual list of exams needed by
each patient, we use the results of the first sub-problem to assign a starting
time to each exam. We first present a mathematical formulation for both
problems. Then, we present solutions based on Answer Set Programming
(ASP): The first solution is a genuine ASP encoding of the sub-problems,
while the second introduces domain-specific optimizations. Experiments
show that both solutions provide satisfying results in short time, while the
second is able to prove optimality faster.

Keywords: Healthcare · Pre-Operative Assessment Clinic scheduling ·
Answer set programming

1 Introduction

The Pre-Operative Assessment Clinic (PAC) scheduling problem is the task of
assigning patients to a day, in which the patient will be examined and prepared to
a surgical operation, taking in account patients with different priority levels, due
dates, and operators availability. The PAC consists of several exams needed by
patients to ensure they are well prepared for their operation. This allows patients
to stay at home until the morning of the surgery, instead of being admitted to
the hospital one or two days before the scheduled operation; moreover, reducing
waiting time between the exams increase patient satisfaction [34] and avoid the
cancellation of the surgery [22].

The problem is divided into two sub-problems [19]: In the first sub-problem,
patients are assigned to a day taking into account a default list of exams, and the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Bandini et al. (Eds.): AIxIA 2021, LNAI 13196, pp. 671–688, 2022.
https://doi.org/10.1007/978-3-031-08421-8_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08421-8_46&domain=pdf
http://orcid.org/0000-0002-2724-4342
http://orcid.org/0000-0002-1948-4469
http://orcid.org/0000-0002-9034-2527
http://orcid.org/0000-0002-5849-3667
http://orcid.org/0000-0002-0601-8071
https://doi.org/10.1007/978-3-031-08421-8_46

672 S. Caruso et al.

solution has to schedule patients before their due date and prioritize the assign-
ments to patients with higher priority. In the second sub-problem, the scheduler
assigns a starting time to each exam needed by the patients, considering the
available operators and the duration of the exams. A proper solution to the
PAC scheduling problem is vital to improve the degree of patients’ satisfaction
and to reduce surgical complications. Complex combinatorial problems, possibly
involving optimizations, such as the PAC problem, are usually the target appli-
cations of AI languages such as Answer Set Programming (ASP). Indeed ASP,
thanks to its readability and the availability of efficient solvers [2,10,25,27], has
been successfully employed for solving hard combinatorial problems in several
research areas, and it has been also employed to solve many scheduling prob-
lems [1,4,5,15,16,18,35], also in industrial contexts (see, e.g., [3,20,21,37] for
detailed descriptions of ASP applications).

In this paper, we first present a mathematical formulation of both sub-
problems: In the solution of the first sub-problem, the scheduler minimizes the
number of unassigned patients. Then, we propose a solution to the second sub-
problem, using as input of the problem the result of the first one and minimizing
the time each patient stays at the hospital. We then apply ASP to solve the PAC
scheduling problem, by presenting two ASP encodings for the sub-problems, and
run an experimental analysis on PAC benchmarks with realistic sizes and param-
eters inspired from data seen in literature, varying the number of patients to
schedule and the available operators. Overall, results using the state-of-the-art
ASP solver clingo [24] show that ASP is a suitable solving methodology also
for the PAC scheduling problem, even if often it takes a considerable amount of
time to prove the optimality of the solution of the second sub-problem. Thus, we
finally apply domain-specific optimizations, still expressed as ASP rules, which
consider the time slots in which exams can be effectively performed by patients,
that help to reduce the overall running time significantly.

The paper is then structured as follows. Sections 2 and 3 present an informal
description of the problem and a precise, mathematical formulation, respectively.
Then, Sect. 4 shows our ASP encodings for both phases, whose experimental eval-
uation is presented in Sect. 5. Domain-specific optimizations are introduced and
evaluated in Sect. 6. The paper ends by discussing related work and conclusions
in Sect. 7 and 8, respectively.

2 Problem Description

Since the schedule of the PAC day must be scheduled as soon as possible, this
problem is typically divided in two phases: In the first phase, since we deal with
this sub-problem before the actual PAC day, the clinics do not know which exams
each patient will require, thus, as typically done in hospitals, we consider that
each patient requires a default list of exams according to his specialty, i.e. the
lists of exams are equal for patients requiring the same specialty but differ among
specialties, and the scheduler assigns the day of PAC without considering the
starting time of the exams. Thus, in the first sub-problem the solution assigns

An ASP-Based Approach to Scheduling Pre-operative Assessment Clinic 673

patients overestimating the duration and the number of exams needed. In partic-
ular, all the optional exams, such as exams required by smokers or patients with
diabetes, are assigned to all the patients in the first phase. The overestimation
is important in order to have a second sub-problem which is not unsatisfiable.
Then, when the operation day is closer, the hospital knows exactly the exams
needed by each patient and can assign the starting time of each exam. Going
in more details, the first sub-problem consists of scheduling appointments in a
range of days for patients requiring surgical operation. Each patient is linked
to a due date, a target day, and a priority level: The due date is the maximum
day in which (s)he can be assigned, the target day is the optimal day in which
schedule the appointment, while the solution prioritizes patients with higher pri-
ority level. There are several exam areas, corresponding to the locations in which
patients will be examined. Each exam area needs operators to be activated and
has a limited time of usage. Each operator can activate three different exam
areas, but they can be assigned to just one exam area for each day. The solution
must assign the operators to the exam areas, to activate them, and the day of
PAC to patients, ensuring that the total time of usage of each exam location is
lower than its limit. Since in this first sub-problem the list of exams needed by
patients is not the final list, i.e. just the first and the last exam are the same
for every patient, and in the second sub-problem some exams could be added,
the solution schedules patients leaving some unused time to each exam area. An
optimal solution minimizes the number of unassigned patients, giving priority
to patients with higher priority levels, and ties are broken by minimizing the
difference between the day assigned and the target day of each patient, giving
again precedence to patients with higher priority.

In the second sub-problem, patients are linked to their real exams, so the
solution has to assign the starting time of each exam, having the first sub-
problem already assigned the day. The input consists of registrations, exams
needed by patients and the exam areas activated. Exams are ordered, so the
solution must assign the starting time of each exam respecting their order and
their duration, by considering that each exam area can be used by one patient at
a time. Finally, the solution minimizes the difference between the starting time
of the first exam and the last exam of each patient.

3 Formalization of the PAC Scheduling Problem

In this section, we provide a mathematical formulation of the two sub-problems.

Definition 1 (first PAC sub-problem). Let

– R be a finite set of registrations;
– E = {e1, . . . , em} be a set of m exams;
– EL = {el1, . . . , eln} be a set of n exam locations;
– O be a finite set of operators;
– D = {t : t ∈ [1..14]} be the set of all days;
– δ : R �→ {1, 2, 3, 4} be a function associating a registration to a priority;

674 S. Caruso et al.

– ρ : R × E �→ N be a function associating a registration and an exam to a
duration such that for a registration r and an exam e if ρ(r, e) > 0 then the
registration r requires the exam e;

– ε : D �→ N be a function associating a day to the number of registration
assigned in the day d;

– ζ : N× oe2 �→ N be a function such that ζ(n) = (ts ∗ ε(n))− (oe2 ∗ ε ∗ (ε− 1));
– ω : R �→ D be a function associating a registration to a due date;
– λ : R �→ D be a function associating a registration to a target day;
– σ : E �→ EL be a function associating an exam to the exam location;
– Δ : EL×D �→ N be a function associating an exam location to the maximum

sum of exams lengths assignable to the exam location;
– τ : EL × D �→ N be a function associating an exam location and a day to

the required number of operators to be activated, such that τ(el, d) = n if the
exam location el in the day d requires n operators to be activated;

– θ : O ×EL×D �→ {0, 1} be a function such that θ(o, el, d) = 1 if the operator
o is assigned to the exam location el in the day d, and 0 otherwise;

– oe1 be a constant used to decrease the maximum sum of exam lengths
assignable to the exam locations;

– oe2 be a constant used to decrease the maximum sum of exams duration
assignable to a day;

– ts be a constant that is equal to the number of time slots.

Let x : R × D �→ {0, 1} be a function such that x(r, d) = 1 if the registration
r is assigned to the day d, and 0 otherwise. Moreover, for a given x, let Ax =
{(r, d) : r ∈ R, d ∈ D,x(r, d) = 1}.

Then, given sets R, E, EL, O,D, and functions δ, ρ, ε, ω, λ, σ, Δ, τ , θ,
the first PAC sub-problem is defined as the problem of finding a schedule x, such
that

(c1) |{d : x(r, d) = 1}| ≤ 1 ∀r ∈ R, d ≤ ω(r);
(c2) |{d : x(r, d) = 1}|= 0 ∀r ∈ R, d > ω(r);
(c3) |{o : θ(o, el, d) = 1}|= τ(el, d) ∀ (r, d) ∈ Ax, ρ(r, e) > 0, el = σ(e);
(c4) |{el : θ(o, el, d)}| ≤ 1 ∀ o ∈ O,∀ d ∈ D;
(c5)

∑

x(r,d)=1,σ(e)=el

ρ(r, e) ≤ Δ(el, d)/oe1 ∀ el ∈ EL, t ∈ T ;

(c6)
∑

x(r,d)=1,∀e∈E

ρ(r, e) ≤ ζ(ε(d), oe2) ∀ d ∈ D;

Condition (c1) ensures that each registration is assigned at most one time in
the days before the due date associated to the registration. Condition (c2) ensures
that each registration is not assigned in a day after the due date associated to the
registration. Condition (c3) ensures that for each exam location used by at least
one registration, the required number of operators are assigned Condition (c4)
ensures that each operator is assigned to at most one exam location in each day.
Condition (c5) ensures that the sum of all the durations of the exams associated
to an exam location in a day is less or equal to the maximum time assignable
to that exam location divided by the value oe1. Condition (c6) ensures that the
sum of all exam durations in a day is less than a value obtained with the number
of registrations assigned in the day and the value oe2.

An ASP-Based Approach to Scheduling Pre-operative Assessment Clinic 675

Definition 2 (Unassigned registrations). Given a solution x, let Upr
x = {r :

r ∈ R, δ(r) = pr, r �∈ Ax}. Intuitively, Upr
x represents the set of registrations of

priority pr that were not assigned to any day.

Definition 3 (Distance target day). Given a solution x, let tpr
x =∑

x(r,d)∈Ax,δ(r)=pr

| d − λ(r) | . Intuitively, tprx represents the sum of the dis-

tance between the day assigned to the registrations of priority pr and the target
day associated.

Definition 4. A solution x is said to dominate a solution x’ if |Upr
x | < |Upr

x′ |
for the biggest pr for which |Upr

x | �= |Upr
x′ | or if |Upr

x | = |Upr
x′ | for all the pr and

|tpr
x | < |tpr

x′ | for the biggest pr for which |tpr
x | �= |tpr

x′ |.
Definition 5 (second PAC sub-problem). Let

– T = {t : t ∈ [1..ts]} be the set of all time slots;
– β : R × E �→ N be a function associating a registration and an exam to a

value corresponding to the order in which the exam must be assigned.
– γ : EL �→ N be a function associating an exam location to the starting time

of the exam location;
– ξ : EL �→ N be a function associating an exam location to the ending time of

the exam location;
– μ : EL �→ N be a function associating an exam location and a day to the

maximum number of registration that can be assigned concurrently.

Let x : R × E × EL × T �→ {0, 1} be a function such that x(r, e, el, t) = 1
if the registration r and the exam e are assigned to the exam location el in the
time slot t, and 0 otherwise. Moreover, for a given x let Ax = {(r, e, el, t) : r ∈
R, e ∈ E, el ∈ EL, d ∈ D,x(r, e, el, t) = 1}.

Then, given sets R, E, EL, T , and functions ρ, β, γ, ξ, μ, the second PAC
sub-problem is defined as the problem of finding a schedule x, such that

(c7) |{t : x(r, e, el, t) = 1, t ∈ T}|= 1 ∀e ∈ E,∀r ∈ R, ρ(r, e) > 0, σ(e) = el;
(c8) γ(el) ≤ t ≤ ξ(el) − β(r, e) ∀ (r, e, el, t) ∈ Ax.
(c9) x(r, e, el, t) = 0 ∀ (r, e′, el, t′) ∈ Ax,∀e ∈ E, ρ(r, e′) = d,∀t ∈ T, t′ ≤ t <

t′ + d;
(c10) t > t′ ∀ (r, e, el, t) ∈ Ax, (r, e′, el, t′) ∈ Ax, β(r, e) > β(r, e′);
(c11) |{r : x(r, e, el, t) = 1, r ∈ R, e ∈ E}| = μ(el) ∀ el ∈ EL, t ∈ T ;

Condition (c7) ensures that each exam is assigned exactly once. Condition
(c8) ensures that each exam is assigned after the starting time of the required
exam location and before the closing time of the required exam location minus
the duration of the exam. Condition (c9) ensures that for each registration each
exam is assigned after that the exam before is ended. Condition (c10) ensures that
each exam is assigned after the exams with lower order. Condition (c11) ensures
that the number of exams assigned to a location is lower than the maximum
availability for each location in any time slot.

676 S. Caruso et al.

1 {x(RID,PR,TOTDUR,DAY) : day(DAY), DAY < DUEDATE} 1 :- reg(RID,PR,TARGET,TOTDUR,DUEDATE).
2 :- x(RID,_,_,DAY), exam(RID,FORNID,_), not examLoc(FORNID,_,_,DAY,_).
3 res(RID,FORNID,DAY,DUR) :- x(RID,PR,_,DAY), exam(RID,FORNID,DUR).
4 :- N1 = #count{FORNID: res(RID,FORNID,_,_)},N2 = #count{FORNID: exam(RID,FORNID,_,_)},

x(RID,_,_,_), N1 != N2.
5 :- #sum{DUR, RID: res(RID,FORNID,DAY,DUR)} > NHOURS/oe1, examLoc(FORNID,_,NHOURS,DAY,N).
6 :- #sum{TOTDUR, RID: x(RID,_,TOTDUR,DAY)} = M, #count{RID: x(RID,_,_,DAY)} = N, day(DAY), M

> ((ts*N)-(oe2*N*(N+1))), N>1.
7 {operator(ID, FORNID, DAY) : operators(ID, FORNID, DAY)} == NOP :- examLoc(FORNID, NOP, _,

DAY,_), res(REGID, FORNID, DAY, _).
8 :- operator(ID,FORNID1,DAY), operator(ID,FORNID2,DAY), FORNID1 < FORNID2.
9 unassignedP1(N) :- M = #count {RID: x(RID,1,_,_)}, N = totRegsP1 - M.

10 unassignedP2(N) :- M = #count {RID: x(RID,2,_,_)}, N = totRegsP2 - M.
11 unassignedP3(N) :- M = #count {RID: x(RID,3,_,_)}, N = totRegsP3 - M.
12 unassignedP4(N) :- M = #count {RID: x(RID,4,_,_)}, N = totRegsP4 - M.
13 :∼ unassignedP1(N). [N@8]
14 :∼ unassignedP2(N). [N@7]
15 :∼ unassignedP3(N). [N@6]
16 :∼ unassignedP4(N). [N@5]
17 :∼ x(RID,1,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@4,RID]
18 :∼ x(RID,2,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@3,RID]
19 :∼ x(RID,3,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@2,RID]
20 : x(RID,4,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@1,RID]

Fig. 1. ASP encoding of the first sub-problem

Definition 6 (Time in hospital). Given a solution x, let

mx =
∑

r∈R,x(r,0,el,t)∈Ax,x(r,23,el,t′)∈Ax

t′ + ρ(r, 23) − t.

Intuitively, mx represents the sum of the difference between the ending time of
the last exam and the starting time of the first exam of each registration.

Definition 7. A solution x is said to dominate a solution x’ if mx < mx′ .

4 ASP Encoding

In this section we present the ASP encoding for the two sub-problems, in two
separate sub-sections.

4.1 ASP Encoding for the First PAC Sub-problem

We assume the reader is familiar with syntax and semantics of ASP. Starting
from the specifications in the previous section, here we present the ASP encoding
for the first sub-problem, based on the input language of clingo [23]. For details
about syntax and semantics of ASP programs we refer the reader to [9].

Data Model. The input data is specified by means of the following atoms:

– Instances of reg(RID, PR, TARGET, TOTDUR, DUEDATE) represent the reg-
istrations, characterized by an id (RID), the priority level (PR), the ideal day
in which the patient should be assigned (TARGET), the sum of the durations
of the exams needed by the patient (TOTDUR), and the due date (DUEDATE).

An ASP-Based Approach to Scheduling Pre-operative Assessment Clinic 677

– Instances of exam(RID, FORNID, DUR) represent the exams needed by the
patients identified by an id (RID), the exam area (FORNID), and the duration
(DUR).

– Instances of examLoc(FORNID, NOP, NHOURS, DAY, N) represent the exam
areas, characterized by an id (FORNID), which requires NOP operators to be
activated, which is active for a certain time (NHOURS) in a day (DAY), and can
be concurrently assigned up to N patients.

– Instances of operators(ID, FORNID, DAY) represent the operators, charac-
terized by an id (ID), who can be assigned to the exam ares (FORNID) in a
day (DAY).

– Instances of day(DAY) represent the available days.

The output is an assignment represented by an atom of the form x(RID, PR,
TOTDUR, DAY), where the intuitive meaning is that the exams of registration with
id RID and priority level PR is assigned to the day DAY and has a total duration
of exams equal to TOTDUR.

Encoding. The related encoding is shown in Fig. 1, and is described in the fol-
lowing. To simplify the description, we denote as ri the rule appearing at line i
of Fig. 1.

Rule r1 assigns registrations to a day. The assignment is made assigning a day
that is before the due date. Rule r2 checks that every registration is assigned
to a day with all the exams area needed to be activated. Rule r3 derives an
auxiliary atom that is used later in other rules. In particular, the new atom is
used to get the duration of the visit for each patient and for each exam area.
Then, rule r4 checks that the number of needed exams and the number of res
atoms created are the same. Rule r5 is used to ensure that each exam area is
used for a total amount of time that is lower than its limit divided by the oe1
constant, in order to overestimate the required time for the visits. Rule r6 is
used to be sure to not assign too many patients in the first sub-problem to a
particular day. So, it overestimates the time needed by each patient, the degree
of the overestimation can be changed by using different oe2 values. Rule r7
assigns operators to the required exam areas. Rule r8 checks that each operator
is assigned to just one exam area in every day. Rules from r9 to r12 are needed to
derive auxiliary atoms that are used later on in optimization. In particular, they
are used to count how many patients with different priorities are not assigned
to a day. Weak constraints from r13 and r16 are used to minimize the number
of unassigned registrations according to their priority. Finally, weak constraints
from r17 and r20 minimize the difference between the assigned and target day of
each patient, giving precedence to higher priorities.

4.2 ASP Encoding for the Second PAC Sub-problem

Data Model. The input data is the same of the first sub-problem for the atoms
exam and time, while other atoms are changed:

678 S. Caruso et al.

1 {x(RID,FORNID,ST,ST+DUR,DAY) : examLoc(FORNID,DAY,FORNST,FORNET,_), time(ST), ST >= FORNST,
ST <= FORNET-DUR} = 1 :- reg(RID,DAY), esame(RID,FORNID,DUR).

2 :- x(RID,FORNID1,ST1,_,_), x(RID,FORNID2,ST2,_,_), phase(FORNID1,ORD1), phase(FORNID2,ORD2),
ORD2 < ORD1, ST1 < ST2.

3 :- #count{FORNID: x(RID,FORNID,ST,ET,DAY), T >= ST, T < ET} > 1, reg(RID,DAY), time(T).
4 :- #count{FORNID: x(RID,FORNID,ST,ET,DAY), T >= ST, T < ET} > N, examLoc(FORNID,DAY,_,_,N),

time(T).
5 : reg(RID,_), x(RID,0,ST,_,_), x(RID,23,_,ET,_). [ET-ST@1, RID]

Fig. 2. ASP encoding of the second sub-problem

– Instances of reg(RID, DAY) represent the registrations, characterized by an
id (RID) assigned to a day (DAY).

– Instances of examLoc(FORNID, DAY, FORNST, FORNET, N) represent the
exam areas, characterized by an id (FORNID), which in a day (DAY) has a
starting time and closing time respectively equals to FORNST and FORNET,
which is active for a certain value of time (NHOURS) in a day (DAY), and can
provide the exam to N patients.

– Instances of phase(FORNID, ORD) represent the order (ORD) of the exams
provided by the exam area characterized by an id (FORNID).

The output is represented by an atom of the form x(RID, FORNID, ST, ET,
DAY), where the intuitive meaning is that the exam of the registration with id
RID is in exam area FORNID, starts at time ST and ends at time ET, on the day
DAY.

Encoding. The encoding consists of the rules reported in Fig. 2. Rule r1 assigns
a starting and an ending time to each exam needed by every patient, checking
that the time in which is assigned is inside the opening time of the required
exam area. Rule r2 ensures that the order between the exams is respected. Rules
r3 checks that each patient is assigned to at most one exam for every time slot.
Then, rule r4 checks that each exam area provides the exam to at most N patients
for every time slot. Finally, rule r5 minimizes the difference between the ending
time of the last exam and the starting time of the first exam of each patient.

5 Experimental Results

In this section, we report the results of an empirical analysis of the PAC schedul-
ing problem via ASP. For the first sub-problem, data have been randomly gener-
ated using parameters inspired by literature and real world data, then the results
of the first sub-problem have been used as input for the second sub-problem. The
experiments were run on a AMD Ryzen 5 2600 CPU @ 3.40 GHz with 16 GB of
physical RAM. The ASP system used was clingo [23] 5.4.0, using parameters
--restart-on-model for faster optimization and --parallel-mode 8 for parallel exe-
cution. This setting is the result of a preliminary analysis done also with other
parameters, e.g., --opt-strategy=usc for optimization. The time limit was set
to 300 s for both sub-problems.

An ASP-Based Approach to Scheduling Pre-operative Assessment Clinic 679

PAC Benchmarks. Data are based on the sizes and parameters of a typical
middle sized hospital, with 24 different exam areas. For the benchmarks we
considered the constants oe1 and oe2 equal to 2 and 5, respectively. The values
of the constants oe1 and oe2 are used to overestimate the required resources,
by adding limits to the assignments to exam locations, for avoiding solutions
of the first sub-problem that could lead to unsatisfiable problems in the second
sub-problem. Thus, we set the two variables in a safe range, while a hospital
could decide to decrease the values of oe1 and oe2 to increase the number of
patients assignable in the first sub-problem. The solution schedules patients in
a range of 14 days, for each day there are 60 time slots, thus the constant ts is
set to 60, corresponding to 5 min per time slot. To test scalability we generated
3 different benchmarks of different dimensions. Each benchmark was tested 5
times with different randomly generated input.

In particular, each patient is linked to a surgical specialty, and needs a number
of exams between 5 and 13, according to the specialty, while the duration of each
exam varies between 3 and 6 time slots. The priorities of the registrations have
been generated from an even distribution of four possible values (with weights
of 0.25 for registrations having priority 1, 2, 3, and 4, respectively). For all the
benchmarks, there are 24 exam areas and the operators, that are 35, can be
assigned to 3 different exam areas. So, by increasing the number of patients
while maintaining fixed the number of operators, we tested different scenarios
with low, medium and high requests.

For the second sub-problem, we used the results of the first sub-problem as
input. Thus, the number of patients and the exam locations activated depend
on the assignment of the solution of the first sub-problem. Patients require all
the same first and last exam, while the other exams required by each patient
are linked to an order that is randomly assigned and that must be respected by
the scheduler. In the second sub-problem clinics know the actual list of exams
needed by patients: To simulate this scenario, we randomly added and discarded
the optional exams assigned to patients in the first sub-problem. For example,
optional exams are needed by patients that are over 65 years old or smokers. 5
instances for each benchmark have been generated, each corresponding to the
assignments of 14 days.

Results for the First Sub-problem. The first optimization criteria in the
PAC scheduling sub-problem is to assign as many patients as possible, starting
from patients with higher priority. Our solution is able to assign a day to 201
patients out of 217 patients with highest priority; moreover, the scheduler is
able to assign all or all but one patients with the highest priority in 12 out of
15 instances tested. Instances with 80 patients are more difficult, since in this
scenario the number of operators is not enough to deal with the high number of
patients.

In Table 1 are summarized the results obtained in this first sub-problem, in
particular, the table shows the average number of patients from the 5 instances
assigned with 40, 60, and 80 patients according to their priority level.

680 S. Caruso et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

2

4

6

Day

Pa
tie

nt
s

Fig. 3. Number of patients assigned to each day by the scheduler with 40 patients as
input

Table 1. Percentage of assigned patients according to their priority level

Total #Patients %P1 assigned %P2 assigned %P3 assigned %P4 assigned

40 94% 85% 77% 66%

60 90% 69% 20% 13%

80 67% 22% 14% 10%

The second optimization criteria is to have an assigned day that is as much
near as possible to the target day. This optimization criteria is able to assign
patients with higher priority near to their target day while; instead, for patients
with lower priorities, quality decreases. This is due to two reasons: The first
one is that there are more optimization criteria with higher priorities, then, the
scheduler already tries to assign as many patients as possible, without taking
into account the target days of the patients, and the second one is that some
patients have a target day in a day without their exam locations available, so,
even in an optimal solution the assigned day to some patients would not be in
the target day.

Figure 3 reports the result obtained by the scheduler with one of the instances
with 40 patients as input. What can be seen from the graph is that some patients
are assigned in days 11 and 12, while in days 9 and 10 there are no patients
assigned. This can be explained by the fact that the scheduler tries to assign
as many patients as possible and do not try to assign as soon as possible the
patients. Moreover, in some days patients can not be assigned due to the unavail-
ability of the exam locations required. In particular, in the assignments in Fig. 3,
patients that are assigned in day 11 could not be assigned to another day, because
that day is the only day with the exam locations they required.

An ASP-Based Approach to Scheduling Pre-operative Assessment Clinic 681

Fig. 4. Representations of the assignments of the starting time of the different exam
locations of each patient in a single day

Results for the Second Sub-problem. In the second sub-problem the solu-
tion assigns the starting time of each exam of the patients. The input is taken
from the results obtained in the first sub-problem. The solution minimizes the
difference between the ending time of the last exam and the starting time of the
first exam. While minimizing this value the solution tries to minimize the time
spent in the hospital by all patients. In this sub-problem the scheduler is able
to reach an optimal solution in 13 out of 15 instances tested. While the average
total duration of the exams for each patient is 37 time slots, the solution finds
a schedule that allows patients to have an average time in hospital that is just
38.5 time slots.

The results are obtained on average in 152, 186, 220 s in the instances with 40,
60 and, 80 patients, respectively. Figure 4 represents the starting times assigned
to each patient in a particular day. The patients that must be scheduled are the
same that are assigned by the first sub-problem in this day; the scheduler of the
second sub-problem minimizes the waiting times of each patient.

As can be seen in Fig. 4 the scheduler is able to assign all patients optimally;
indeed, all patients have no waiting time between each exam and thus the time
spent in the hospital is reduced to the minimum, while respecting the constraints
of the sub-problem, e.g., each exam location is assigned to at most one patient
for each time slot.

6 Domain Specific Optimizations

Results show that ASP is a suitable methodology for solving the PAC problem.
However, in the second sub-problem, we noted that our encoder is able to find
the optimal solution in every instance in a short time but then the solver needs a
large amount of time to prove optimality. For this reason, we decided to perform
some domain specific optimizations, presented in the following two paragraphs,

682 S. Caruso et al.

6 forbiddenAfter(RID,FORNID1,ST+DUR1) :- reg(RID,_,_), exam(RID,FORNID1,DUR1),
phase(FORNID1,ORD1), #sum{DUR2: exam(RID,FORNID2,DUR2), phase(FORNID2,ORD2), ORD2 >
ORD1 } = ST.

7 forbiddenBefore(RID,FORNID1,ST) :- reg(RID,_,_), exam(RID,FORNID1,DUR1),
phase(FORNID1,ORD1), #sum{DUR2: exam(RID,FORNID2,DUR2), phase(FORNID2,ORD2), ORD2 <
ORD1 } = ST.

8 {x(REGID,FORNID,ST,ST+DUR,DAY): examLoc(FORNID,DAY,FORNST,FORNET,_),
forbiddenAfter(RID,FORNID,FORB1), forbiddenBefore(RID,FORNID,FORB2), time(ST), ST >=
FORNST, ST <= FORNET-DUR, ST <= lastTimeSlot-FORB1, ST > FORB2 } = 1 :-
reg(RID,PRI,DAY), exam(RID,FORNID,DUR).

Fig. 5. Optimized encoding for pruning the sessions’ starts

in order to decrease the grounding and planning time with the aim of improving
performance. These optimizations rely on the knowledge of the PAC domain and
the possibility of pruning impossible solutions already in the grounding process,
as the results in the third paragraph show.

Pruning of Exams’ Starting Time Slots. As shown in Fig. 2, in r1 the starting
time of the exams is guessed between all the available daily time slots, expressed
by the atom time(ST). Given that the exams must be assigned following an
order, it is known the minimum number of time slots that each patient need to
stay before and after each exam. Thus, the guess rule can be improved by reduc-
ing the number of possible starting time slots of each exam with the following
constraints:

– an exam cannot start in a time slot if the remaining time slots are less than
the minimum amount of time slots required to complete all the following
exams;

– an exam cannot start in a time slot if the time slots before are less than the
minimum amount of time slots required to complete the previous exams.

The encoding for pruning the exams’ starting time slots is reported in Fig. 5.
In rules r6 and r7 two new atoms forbiddenAfter and forbiddenBefore are
defined as the minimum amount of time slots needed by each patient after
(before) each exam. The minimum amount of time slots required by the exams
after (before) each exam is obtained by computing the sum of the duration of
the exams with the greater (lower) phase value. In r8 the two new atoms are
used in the guess rule, so that the starting time is after the value computed by
the rule r6 and after the difference between lastTimeSlot, that corresponds to
the last time slot, and the value computed by r7.

Minimization with Lower Bound. As it can be seen in Fig. 2, rule r5 mini-
mizes the time spent in the hospital by each patient, computed as the difference
between the ending time of the last exam and the starting time of the first exam.
However, the time spent in the hospital by each patient cannot be lower than
the sum of the duration of all the required exams. Therefore, the minimization
rule can be improved by computing the minimum time required by each patient
and using it as a lower bound, so that solutions below this value are pruned.

An ASP-Based Approach to Scheduling Pre-operative Assessment Clinic 683

9 cost(RID, TOT) :- TOT = #sum{DUR,FORNID : exam(RID,FORNID,DUR)}, reg(RID,_,_).
10 : x(RID,0,ST,_,_),x(RID,23,_,ET,_), cost(RID,TOT), ET-ST-TOT >= 0. [ET-ST-TOT@1, RID]

Fig. 6. Optimized minimization rule

Table 2. Comparison of the mean time required to reach the optimal solution in the
three scenarios with the different versions of the encoding for the second sub-problem

#Patients ENC (s) ENC+OPT1 (s) ENC+OPT2 (s) ENC+OPT1+OPT2 (s)

40 152 54 5 1

60 186 54 5 1

80 220 77 7 2

Percentage optimal 86,7% 100% 100% 100%

The enconding with the optimized weak constraint is shown in Fig. 6. In rule
r9, the minimum length of time to fully complete all the exams for each patient
is computed as the sum of the duration of all the exams and the new auxiliary
atom cost(RID, TOT) is defined. The weak constraint, in rule r10, minimizes
the difference between the planned total time (i.e. the difference between ending
time and starting time of the last and first exam) and the lower bound previously
computed, activating the weak constraint only when the difference is greater or
equal than zero.

Results. In Table 2 the time to reach the optimal solution with the basic encod-
ing, defined as ENC, and with the different optimizations, defined as OPT1 and
OPT2, respectively, are reported. In particular, we define ENC+OPT1 as the
encoder obtained by adding the rules in Fig. 5 to the encoder defined in Fig. 2
and by dropping the rule r1 in Fig. 2, ENC+OPT2 as the encoder obtained by
adding the rules in Fig. 6 to the encoder defined in Fig. 2 and by dropping the rule
r5 in Fig. 2, and ENC+OPT1+OPT2 as the encoder obtained by adding both
optimizations. From Table 2, it can be noted that, while the original encoder is
able to reach the optimal solution with 87% of the instances, all the encoders
utilizing the different optimizations are able to reach the optimal solution on all
instances. Moreover, ENC+OPT1 gives better performance than ENC, in par-
ticular, is able to prune a lot of possible solutions thanks to the new rules but,
as we previously noted, some time is still spent computing solutions below the
known lower bound. With ENC+OPT2, the performance increases noticeably,
leading to the optimal solution in a few seconds. While adding either OPT1 and
OPT2 led to better results, being able to reach an optimal solution in all the
instances in up to 2 s, further increasing the performance.

7 Related Work

This paper is an extended and revised version of a paper appearing in the CEUR
proceedings [13], having the following main improvements: (i) a mathematical

684 S. Caruso et al.

formulation of the two phases of the problem (Sect. 3), which could be a starting
point for testing other languages and tools from experts, (ii) domain-specific
optimizations to the previous encoding, and a related experimental analysis,
focused on improving the grounding phase of the ASP solver (Sect. 6), and (iii)
a more complete related work section, that now includes also recent studies in
which ASP has been employed to closely related scheduling problems (reported
below).

The section is organized in two paragraphs: the first is focused on alternative
methods for solving the PAC problem, while the second mentions works in which
ASP has been employed to closely related scheduling problems.

Solving the PAC Problem. The work in [19] used two simulation models to
analyse the difficulties of planning in the context of PAC and to determine the
resources needed to reduce waiting times and long access times. The models were
tested in a large university hospital and the results were validated measuring
the level of patient satisfaction. [38] used a Lean quality improvement process
changing the process and the standard routine. For example, patients were not
asked to move from a room to another for the visits, but patients were placed in
a room, and remained there for the duration of their assessment. This and other
changes to the processes led to the decrease of the average lead time for patients
and to the number of patients required to return the next day to complete the
visits. [22,34,39], and, [40] studied the importance of implementing the PAC and
the positive results obtained by having less waiting time between the exams and
for the visit to the hospital. In particular, while different clinics follow different
guidelines, implementing PAC has proved to be an important tool to avoid the
cancellation of the surgeries and to significantly reduce the risk associated with
the surgery.

Solving Scheduling Problems with ASP. ASP has been successfully used
for solving hard combinatorial and application scheduling problems in several
research areas. In the Healthcare domain (see, e.g., [3] for a recent survey), the
first solved problem was the Nurse Scheduling Problem [4,5,18], where the goal
is to create a scheduling for nurses working in hospital units. Then, the problem
of assigning operating rooms to patients, denoted as Operating Room Scheduling
[16,17], has been treated, and further extended to include bed management [15].
More recent problems include the Chemotherepy Treatment Scheduling prob-
lem [14], in which patients are assigned a chair or a bed for their treatments,
and the Rehabilitation Scheduling Problem [12], which assigns patients to oper-
ators in rehabilitation sessions. The current paper is the only one which deals
with the pre-operative phase, and presents a two phases approach.

Concerning scheduling problems beyond the Healthcare domain, ASP encod-
ing were proposed for the following problems: Incremental Scheduling Prob-
lem [8,11,25,26], where the goal is to assign jobs to devices such that their
executions do not overlap one another; Team Building Problem [35], where the
goal is to allocate the available personnel of a seaport for serving the incoming
ships; and the Conference Paper Assignment Problem [6], which deals with the
problem of assigning reviewers in the Program Committee to submitted confer-

An ASP-Based Approach to Scheduling Pre-operative Assessment Clinic 685

ence papers. Other relevant papers are Gebser et al. [28], where, in the context
of routing driverless transport vehicles, the setup problem of routes such that a
collection of transport tasks is accomplished in case of multiple vehicles sharing
the same operation area is solved via ASP, in the context of car assembly at
Mercedes-Benz Ludwigsfelde GmbH, and the recent survey paper by Falkner et
al. [21], where industrial applications dealt with ASP are presented, including
those involving scheduling problems.

8 Conclusion

In this paper, we have presented an analysis of the PAC scheduling problem mod-
eled and solved with ASP. We started from a mathematical formulation of the
problem, which considers constraints and parameters that can be found in other
works, and then presented our ASP solution. The solution is further improved
with domain specific optimizations. Results on synthetic data shows that the
solution is able to assign a high number of patients with higher priority, and that
the domain-specific optimizations help to reduce the time to prove optimality.
We are currently working on extending our experiments, and comparing to other
languages and tools using the mathematical formulation in Sect. 3. Moreover, we
would like also to implement and test other solving procedures, e.g., [31–33,36],
considering the relation between ASP and SAT procedures [29,30], whose goal
would be to further improve scalability. Finally, we plan to add this solution into
a platform of solutions for scheduling problems in Healthcare, similarly to, e.g.,
[7] in the context of SMT solving.

References

1. Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., Wanko, P.: Train
scheduling with hybrid ASP. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.)
LPNMR 2019. LNCS, vol. 11481, pp. 3–17. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-20528-7 1

2. Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., Ricca, F.: Eval-
uation of disjunctive programs in WASP. In: Balduccini, M., Lierler, Y., Woltran,
S. (eds.) LPNMR 2019. LNCS, vol. 11481, pp. 241–255. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-20528-7 18

3. Alviano, M., et al.: Answer set programming in healthcare: extended overview.
In: IPS and RCRA 2020. CEUR Workshop Proceedings, vol. 2745. CEUR-WS.org
(2020). http://ceur-ws.org/Vol-2745/paper7.pdf

4. Alviano, M., Dodaro, C., Maratea, M.: An advanced answer set programming
encoding for nurse scheduling. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.)
AI*IA 2017. LNCS, vol. 10640, pp. 468–482. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70169-1 35

5. Alviano, M., Dodaro, C., Maratea, M.: Nurse (re)scheduling via answer set pro-
gramming. Intell. Artif. 12(2), 109–124 (2018)

https://doi.org/10.1007/978-3-030-20528-7_1
https://doi.org/10.1007/978-3-030-20528-7_1
https://doi.org/10.1007/978-3-030-20528-7_18
http://ceur-ws.org/Vol-2745/paper7.pdf
https://doi.org/10.1007/978-3-319-70169-1_35
https://doi.org/10.1007/978-3-319-70169-1_35

686 S. Caruso et al.

6. Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer
set programming to the conference paper assignment problem. In: Adorni, G.,
Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037,
pp. 164–178. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-
1 13

7. Armando, A., Castellini, C., Giunchiglia, E., Idini, M., Maratea, M.: TSAT++: an
open platform for satisfiability modulo theories. Electron. Notes Theor. Comput.
Sci. 125(3), 25–36 (2005)

8. Balduccini, M.: Industrial-size scheduling with ASP+CP. In: Delgrande, J.P.,
Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 284–296. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9 33

9. Calimeri, F., et al.: ASP-Core-2 input language format. Theory Pract. Logic Pro-
gram. 20(2), 294–309 (2020)

10. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: The design of the fifth answer
set programming competition. CoRR abs/1405.3710 (2014). http://arxiv.org/abs/
1405.3710

11. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth
answer set programming competition. Artif. Intell. 231, 151–181 (2016)

12. Cardellini, M., et al.: A two-phase ASP encoding for solving rehabilitation schedul-
ing. In: Moschoyiannis, S., Peñaloza, R., Vanthienen, J., Soylu, A., Roman, D.
(eds.) RuleML+RR 2021. LNCS, vol. 12851, pp. 111–125. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-91167-6 8

13. Caruso, S., Galatà, G., Maratea, M., Mochi, M., Porro, I.: Scheduling pre-operative
assessment clinic via answer set programming. In: Benedictis, R.D., et al. (eds.)
Proceedings of the 9th Italian workshop on Planning and Scheduling (IPS 2021)
and the 28th International Workshop on “Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion” (RCRA 2021). CEUR Work-
shop Proceedings, vol. 3065. CEUR-WS.org (2021)

14. Dodaro, C., Galatà, G., Grioni, A., Maratea, M., Mochi, M., Porro, I.: An ASP-
based solution to the chemotherapy treatment scheduling problem. Theory Pract.
Log. Program. 21(6), 835–851 (2021)

15. Dodaro, C., Galatà, G., Khan, M.K., Maratea, M., Porro, I.: An ASP-based solu-
tion for operating room scheduling with beds management. In: Fodor, P., Montali,
M., Calvanese, D., Roman, D. (eds.) RuleML+RR 2019. LNCS, vol. 11784, pp.
67–81. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31095-0 5

16. Dodaro, C., Galatà, G., Maratea, M., Porro, I.: Operating room scheduling via
answer set programming. In: Ghidini, C., Magnini, B., Passerini, A., Traverso, P.
(eds.) AI*IA 2018. LNCS (LNAI), vol. 11298, pp. 445–459. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03840-3 33

17. Dodaro, C., Galatà, G., Maratea, M., Porro, I.: An ASP-based framework for
operating room scheduling. Intell. Artif. 13(1), 63–77 (2019)

18. Dodaro, C., Maratea, M.: Nurse scheduling via answer set programming. In: Bal-
duccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp.
301–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5 27

19. Edward, G.M., et al.: Simulation to analyse planning difficulties at the preoperative
assessment clinic. BJA: Br. J. Anaesthesia 100(2), 195–202 (2008)

20. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Mag. 37(3), 53–68 (2016)

21. Falkner, A.A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.C.: Industrial
applications of answer set programming. Künstl. Intell. 32(2–3), 165–176 (2018)

https://doi.org/10.1007/978-3-319-49130-1_13
https://doi.org/10.1007/978-3-319-49130-1_13
https://doi.org/10.1007/978-3-642-20895-9_33
http://arxiv.org/abs/1405.3710
http://arxiv.org/abs/1405.3710
https://doi.org/10.1007/978-3-030-91167-6_8
https://doi.org/10.1007/978-3-030-31095-0_5
https://doi.org/10.1007/978-3-030-03840-3_33
https://doi.org/10.1007/978-3-319-61660-5_27

An ASP-Based Approach to Scheduling Pre-operative Assessment Clinic 687

22. Ferschl, M., Tung, A., Sweitzer, B., Huo, D., Glick, D.: Preoperative clinic visits
reduce operating room cancellations and delays. Anesthesiology 103(4), 855–859
(2005)

23. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with Clingo 5. In: ICLP (Technical Communications).
OASICS, vol. 52, pp. 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2016)

24. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012)

25. Gebser, M., Maratea, M., Ricca, F.: The design of the seventh answer set program-
ming competition. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS
(LNAI), vol. 10377, pp. 3–9. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-61660-5 1

26. Gebser, M., Maratea, M., Ricca, F.: The sixth answer set programming competi-
tion. J. Artif. Intell. Res. 60, 41–95 (2017)

27. Gebser, M., Maratea, M., Ricca, F.: The seventh answer set programming compe-
tition: design and results. Theory Pract. Log. Program. 20(2), 176–204 (2020)

28. Gebser, M., Obermeier, P., Schaub, T., Ratsch-Heitmann, M., Runge, M.: Rout-
ing driverless transport vehicles in car assembly with answer set programming.
Theory Pract. Log. Program. 18(3–4), 520–534 (2018). https://doi.org/10.1017/
S1471068418000182

29. Giunchiglia, E., Leone, N., Maratea, M.: On the relation among answer set solvers.
Ann. Math. Artif. Intell. 53(1–4), 169–204 (2008)

30. Giunchiglia, E., Maratea, M.: On the relation between answer set and sat proce-
dures (or, between cmodels and smodels). In: Gabbrielli, M., Gupta, G. (eds.)
ICLP 2005. LNCS, vol. 3668, pp. 37–51. Springer, Heidelberg (2005). https://doi.
org/10.1007/11562931 6

31. Giunchiglia, E., Maratea, M., Tacchella, A.: Dependent and independent variables
in propositional satisfiability. In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds.)
JELIA 2002. LNCS (LNAI), vol. 2424, pp. 296–307. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45757-7 25

32. Giunchiglia, E., Maratea, M., Tacchella, A.: (In)effectiveness of look-ahead tech-
niques in a modern SAT solver. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp.
842–846. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-
8 64

33. Giunchiglia, E., Maratea, M., Tacchella, A., Zambonin, D.: Evaluating search
heuristics and optimization techniques in propositional satisfiability. In: Goré, R.,
Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 347–363. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45744-5 26

34. Harnett, M.P., Correll, D., Hurwitz, S., Bader, A., Hepner, D.: Improving effi-
ciency and patient satisfaction in a tertiary teaching hospital preoperative clinic.
Anesthesiology 112(1), 66–72 (2010)

35. Ricca, F., et al.: Team-building with answer set programming in the Gioia-Tauro
seaport. Theory Pract. Log. Program. 12(3), 361–381 (2012)

36. Rosa, E.D., Giunchiglia, E., Maratea, M.: A new approach for solving satisfia-
bility problems with qualitative preferences. In: Ghallab, M., Spyropoulos, C.D.,
Fakotakis, N., Avouris, N.M. (eds.) ECAI. Frontiers in Artificial Intelligence and
Applications, vol. 178, pp. 510–514. IOS Press (2008)

37. Schüller, P.: Answer set programming in linguistics. Künstliche Intell. 32(2–3),
151–155 (2018). https://doi.org/10.1007/s13218-018-0542-z

https://doi.org/10.1007/978-3-319-61660-5_1
https://doi.org/10.1007/978-3-319-61660-5_1
https://doi.org/10.1017/S1471068418000182
https://doi.org/10.1017/S1471068418000182
https://doi.org/10.1007/11562931_6
https://doi.org/10.1007/11562931_6
https://doi.org/10.1007/3-540-45757-7_25
https://doi.org/10.1007/978-3-540-45193-8_64
https://doi.org/10.1007/978-3-540-45193-8_64
https://doi.org/10.1007/3-540-45744-5_26
https://doi.org/10.1007/s13218-018-0542-z

688 S. Caruso et al.

38. Stark, C., Gent, A., Kirkland, L.: Improving patient flow in pre-operative assess-
ment. BMJ Open Qual. 4(1) (2015). https://doi.org/10.1136/bmjquality.u201341.
w1226

39. Tariq, H., et al.: Development, functioning, and effectiveness of a preoperative risk
assessment clinic. Health Serv. Insights 2016, 1 (2016). https://doi.org/10.4137/
HSI.S40540

40. Woodrum, C.L., Wisniewski, M., Triulzi, D.J., Waters, J.H., Alarcon, L.H., Yazer,
M.H.: The effects of a data driven maximum surgical blood ordering schedule on
preoperative blood ordering practices. Hematology 22(9), 571–577 (2017)

https://doi.org/10.1136/bmjquality.u201341.w1226
https://doi.org/10.1136/bmjquality.u201341.w1226
https://doi.org/10.4137/HSI.S40540
https://doi.org/10.4137/HSI.S40540

	An ASP-Based Approach to Scheduling Pre-operative Assessment Clinic
	1 Introduction
	2 Problem Description
	3 Formalization of the PAC Scheduling Problem
	4 ASP Encoding
	4.1 ASP Encoding for the First PAC Sub-problem
	4.2 ASP Encoding for the Second PAC Sub-problem

	5 Experimental Results
	6 Domain Specific Optimizations
	7 Related Work
	8 Conclusion
	References

