Skip to main content

Optimal Numbers, Locations, and Configurations of Tower Cranes on Construction Sites

  • Conference paper
  • First Online:
  • 573 Accesses

Part of the book series: Lecture Notes in Operations Research ((LNOR))

Abstract

Choosing the right number, configurations, and locations of tower cranes can significantly impact building schedules and reduce construction cost. These decisions also depend on the choice of material supply points where the material is stored before being lifted to the given demand points. To ensure that the capacity of the cranes is not exceeded, load charts that specify the maximum weight that can be lifted at a certain boom radius need to be considered. We present a MILP model implemented in GAMS that solves this decision problem minimizing the crane operating, installation and rental costs. In addition to the optimization model, a heuristic in closed form is presented. For a realistic case of a construction site of mid-rise buildings, we compare solution quality, performance, and scalability of both approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the GAMS model, we implemented the bounds (2), (4), and (6) by directly restricting the domain of the affected variables to those combinations of \(ijkcl\) and its subsets that are allowed by the values of \(\varGamma _{ijkc}\), \(\varDelta _{jl}\), and \(\varXi _{kc}\), respectively. While the resulting model is equivalent to the one defined in Sects. 2 and 3, it is smaller and in many cases easier to solve.

  2. 2.

    Due to costs related to the number of cranes exceeding operating costs by >2 orders of magnitude, this decision may be singled out in practical applications e.g., by imposing a constraint on \(\sum _{kc}{\xi _{kc}}\) (cf. Sect. 3).

References

  1. Briskorn, D., Dienstknecht, M.: Comput. Oper. Res. 92, 194–207 (2018). https://doi.org/10.1016/j.cor.2017.11.012

    Article  Google Scholar 

  2. Briskorn, D., Dienstknecht, M.: Eur. J. Oper. Res. 273(1), 160–174 (2019). https://doi.org/10.1016/j.ejor.2018.07.033

    Article  Google Scholar 

  3. Briskorn, D., Dienstknecht, M.: Omega 97, 1–18 (2020). https://doi.org/10.1016/j.omega.2019.102114

    Article  Google Scholar 

  4. Editors: 2020 rental rate survey. Cranes & access, Vertikal Press Ltd. 22(9), 23–35 (2021). https://vertikal.net/en/cranes-and-access/issue/383

  5. Huang, C., Wong, C.K., Tam, C.M.: Autom. Constr. 20(5), 571–580 (2011). https://doi.org/10.1016/j.autcon.2010.11.023

    Article  Google Scholar 

  6. Irizarry, J., Karan, E.P.: Electron. J. Inf. Technol. Constr. 17, 351–366 (2012)

    Google Scholar 

  7. Ji, Y., Leite, F.: Autom. Constr. 93, 78–90 (2018). https://doi.org/10.1016/j.autcon.2018.05.003

    Article  Google Scholar 

  8. Ji, Y., Leite, F.: J. Constr. Eng. Manag. 146(3) (2020). https://doi.org/10.1061/(asce)co.1943-7862.0001781

  9. Lloyd, S.P.: IEEE Trans. Inf. Theory I(2), 129–137 (1982)

    Article  Google Scholar 

  10. Marzouk, M., Abubakr, A.: Autom. Constr. 61, 1–15 (2016). https://doi.org/10.1016/j.autcon.2015.09.008

    Article  Google Scholar 

  11. Nadoushani, Z.S.M., Hammad, A.W.A., Akbarnezhad, A.: J. Constr. Eng. Manag. 143(1), 04016,089 (2017). https://doi.org/10.1061/(asce)co.1943-7862.0001215

  12. Rasmussen, G.: How are tower cranes built? (2021). https://www.craneblogger.com/crane-resource-library/how-are-tower-cranes-built/

  13. Tam, C.M., Tong, T.K.: Constr. Manag. Econ. 21(3), 257–266 (2003). https://doi.org/10.1080/0144619032000049665

    Article  Google Scholar 

  14. Tam, C.M., Tong, T.K.L., Chan, W.K.W.: J. Constr. Eng. Manag. 127(4), 315–321 (2001). https://doi.org/10.1061/(asce)0733-9364(2001)127:4(315)

    Article  Google Scholar 

  15. Trevino, C., Abdel-Raheem, M.: J. Constr. Eng. Manag. 144, 07018,001 (2018). https://doi.org/10.1061/(ASCE)CO.1943-7862.0001557

  16. Wang, J., et al.: Autom. Constr. 59, 168–178 (2015). https://doi.org/10.1016/j.autcon.2015.05.006

    Article  Google Scholar 

  17. Wu, K., García de Soto, B., Zhang, F.: Autom. Constr. 111, 1–17 (2020). https://doi.org/10.1016/j.autcon.2019.103060

  18. Zhang, P., Harris, F.C., Olomolaiye, P.O., Holt, G.D.: J. Constr. Eng. Manag. 125(2), 115–122 (1999). https://doi.org/10.1061/(asce)0733-9364(1999)125:2(115)

    Article  Google Scholar 

Download references

Acknowledgment

We thank our reviewer for useful & constructive comments improving this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ihor Maindl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maindl, T.I., Vogel, J. (2022). Optimal Numbers, Locations, and Configurations of Tower Cranes on Construction Sites. In: Trautmann, N., Gnägi, M. (eds) Operations Research Proceedings 2021. OR 2021. Lecture Notes in Operations Research. Springer, Cham. https://doi.org/10.1007/978-3-031-08623-6_19

Download citation

Publish with us

Policies and ethics