
Scheduling and Packing Under Uncertainty

Vom Fachbereich 3 – Mathematik und Informatik
der Universität Bremen

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

vorgelegt von

Franziska Eberle, M.Sc.
geboren in Kempten (Allgäu)

Gutachter: Prof. Dr. Nicole Megow
Prof. Dr. Anupam Gupta

Tag der wissenschaftlichen Aussprache: 13. November 2020

Bremen 2020

Acknowledgements

I am grateful beyond words for the support of my family, friends, and colleagues which made
this thesis possible in the first place. First and foremost, I thank my advisor Nicole for
her constant encouragement, support, and the always open office door. Telling me about
optimization under uncertainty, inviting me to join her in Bremen, and introducing me to this
research community are only some parts that contributed to the very inspiring environment.

Many thanks also go to Cliff for welcoming me in New York for a research visit, which
led to co-authoring one paper. Further, I am very grateful to Anupam for taking the second
assessment of this thesis.

Moreover, I thank my colleagues, most of whom I now call friends, for the great collabora-
tion and for reading parts of this thesis. I especially appreciated being welcomed with open
arms at my very first MAPSP more than three years ago and the great atmosphere that our
early (sorry!) morning runs and late evening discussions created at every single conference
or workshop. I owe special thanks to Lukas, for completely reading this thesis and for the
conversations about all topics, including research and dinner plans.

I am also very grateful for my friends and the many hours spent laughing, cooking, hiking,
skiing, playing games, bouldering, going for a run, exploring new and old cities, and discussing
crazy ideas about life. Special thanks go to Lena and Isa for proofreading parts of this thesis
and for always believing in my abilities.

Moreover, I thank my family for their constant support and for never questioning my path,
even if it led me and will lead me far away from home. In particular, I thank my parents for
teaching me to never stop asking questions or seeking answers. Last but not least, I thank my
little brother for proofreading parts of this thesis and, in general, for always having my back
and being up for new adventures.

Flo, although the last months have been incredibly hard for you, you still pushed me to
finish my thesis. I would not be at this point without you. This is for you!

Bremen, November 2020 Franziska Eberle

Table of Contents

1 Introduction 1

2 Preliminaries 5
2.1 Basic Notation . 5
2.2 Algorithm Analysis and Complexity . 6
2.3 Scheduling and Packing . 8

2.3.1 Scheduling Problems . 8
2.3.2 Packing Problems . 9

2.4 Scheduling and Packing Under Uncertainty . 10
2.4.1 Stochastic Input . 11
2.4.2 Online Input . 15
2.4.3 Dynamically Changing Input . 18

3 Stochastic Minsum Scheduling 21
3.1 Introduction . 22
3.2 Lower Bound for Index Policies . 24
3.3 Upper Bound for Bernoulli-Type Instances . 27
3.4 Further Results on Bernoulli-Type Instances . 34

3.4.1 Less Stochastic Than Deterministic Jobs 34
3.4.2 Many Long Stochastic Jobs in Expectation 35
3.4.3 Bounded Processing Times of Stochastic Jobs 36
3.4.4 Bounded Makespan of Deterministic Jobs 36
3.4.5 At least m− 1 Expected Long Stochastic Jobs 37
3.4.6 Discussion . 38

3.5 Concluding remarks . 39

4 Online Load Balancing with Reassignment 41
4.1 Introduction . 42
4.2 Online Flows with Rerouting . 44
4.3 Online Load Balancing with Reassignment . 46

4.3.1 Unit-Size Jobs . 46
4.3.2 Small Jobs . 47
4.3.3 Arbitrary Jobs . 52

4.4 Concluding Remarks . 53

5 Online Throughput Maximization 55
5.1 Introduction . 56

v

5.2 The Threshold Algorithm . 58
5.2.1 The Threshold Algorithm . 58
5.2.2 Main Result and Road Map of the Analysis 59

5.3 Successfully Completing Sufficiently Many Admitted Jobs 60
5.4 Competitiveness: Admitting Sufficiently Many Jobs 68

5.4.1 A Class of Online Algorithms . 68
5.4.2 Admitting Sufficiently Many Jobs . 73

5.5 Lower Bound on the Competitive Ratio . 75
5.6 Concluding Remarks . 77

6 Online Throughput Maximization with Commitment 79
6.1 Introduction . 80
6.2 The Blocking Algorithm . 83
6.3 Completing All Admitted Jobs on Time . 87
6.4 Competitiveness: Admitting Sufficiently Many Jobs 89
6.5 Lower Bounds on the Competitive Ratio . 91
6.6 Concluding Remarks . 94

7 Dynamic Multiple Knapsacks 97
7.1 Introduction . 98
7.2 Data Structures and Preliminaries . 102
7.3 Dynamic Linear Grouping . 105

7.3.1 Algorithm . 106
7.3.2 Analysis . 107

7.4 Identical Knapsacks . 111
7.4.1 Algorithm . 111
7.4.2 Analysis . 114

7.5 Ordinary Knapsacks When Solving Multiple Knapsack 130
7.5.1 Algorithm . 130
7.5.2 Analysis . 134

7.6 Special Knapsacks When Solving Multiple Knapsack 145
7.6.1 Algorithm . 145

7.7 Solving Multiple Knapsack . 147
7.7.1 Algorithm . 148
7.7.2 Analysis . 151

7.8 Concluding Remarks . 154

References 155

vi

1
Introduction

Incomplete information is a major challenge when translating combinatorial optimization re-
sults to recommendations for real-world applications since problem relevant parameters change
frequently or are not known in advance. A particular solution may perform well on some spe-
cific input data or estimation thereof, but once the data is slightly perturbed or new tasks
need to be performed, the solution may become arbitrarily bad or even infeasible. Thus, either
solving the problem under uncertainty or efficiently updating the solution becomes a necessity.
This thesis explores several models for uncertainty in various problems from two fundamental
fields of combinatorial optimization: scheduling and packing.

Scheduling problems cover a variety of real-world applications. They arise whenever scarce
resources have to complete a set of tasks while optimizing some objective. Possible applications
range from the industrial sector with production planning via the service sector with delivery
tasks to the information sector with data processing and cloud computing. Given the undeni-
able effects of climate change we are facing today and the rising pressure to cut costs to keep
up with competitors, efficient solutions to any of these problems are paramount. Efficiency
might refer to the minimal necessary duration for which the system is running to process all
tasks or the maximal achievable throughput in a given time interval.

Packing problems typically appear whenever items have to be assigned to resources with
capacities. The most obvious applications are transportation processes, e.g., loading of trucks,
that take place at every stage of the manufacturing process until the delivery to the client.
Further, packing problems can also be found in computing clusters and financial applications:
Capacities have to be obeyed and costs have to be minimized, when assigning virtual machines
to real servers in computing clusters. Or, when making new investment decisions, certain
aspects, such as risk or overall volume, have to be bounded while maximizing profit. These
examples can all be considered as packing problems since they require compliance with certain
capacity constraints while maximizing the overall value of successfully packed items.

Incomplete information may be caused by various reasons, such as the unpredictable arrival
of new tasks or having only estimates of input parameters at hand. In any of these cases, we
are interested in finding provably good solutions in reasonable time. In other words, we would

1

1 Introduction

like to design algorithms that deal with incomplete information while performing sufficiently
well. This thesis focuses on three models of uncertainty in the input.

(i) If the precise input is unknown and only estimates of the relevant parameters are given,
the setting can be modeled via random variables, whose specific outcome is unknown but
which provide some knowledge about possible scenarios. While there are various branches of
stochastic optimization, we focus on stochastic scheduling.

(ii) Models where the data of an instance is only incrementally revealed and no full knowledge
about the instance is given in advance are called online. Since waiting for the last piece of
information to be revealed is often impossible or infeasible, immediate and possibly irrevocable
actions have to be taken as new information is revealed.

(iii) Lastly, problems where the input is subject to small perturbations such as the deletion
or addition of objects from or to an instance are called dynamic. Since only minor changes
happen, we are interested in quickly computing a new solution of good quality based on the
previously obtained results.

Outline of the Thesis

We investigate several combinatorial optimization problems and develop algorithms that per-
form provably well under incomplete information. Chapter 2 gives a brief overview over the
necessary concepts for analyzing algorithms. Moreover, we introduce the problem types con-
sidered and how to formally model uncertainty. We mostly measure the performance of an
algorithm in terms of the quality of the solution it finds. To this end, we also briefly explain
how to adapt the analysis of algorithms when facing uncertainty in the input. The remainder
of the thesis is organized as follows.

Stochastic Scheduling

In Chapter 3, we investigate a scheduling problem where the job set is given in advance but
(almost) no information about the duration, the processing time, of a job is available. More
precisely, the processing times are modeled as independent random variables and the scheduler
only has access to their distributional information but not to their exact realization. The
goal is to schedule the jobs on m parallel machines such that the expected value of the total
completion time is minimized. We rule out distribution-independent performance guarantees
for a highly useful and widely used class of algorithms, so-called index policies. We also show
that giving the algorithm slightly more freedom in choosing the scheduling order of the jobs
enables us to obtain a performance guarantee linear in m for the type of instances we used
in our negative result. We complement this with a closer look at these special instances and
providing a set of rules for which even constant performance guarantees are possible.

2

Online Scheduling with Reassignment

In Chapter 4, we consider an online scheduling problem where n jobs are incrementally revealed
and, on arrival, have to be assigned immediately to one of the machines to minimize the
latest completion time of a job. However, each job may only be processed by a subset of
the machines. There exist strong lower bounds on the performance of any online algorithm,
that has to irrevocably assign jobs on arrival, by Azar, Naor, and Rom [ANR92]. Therefore,
Gupta, Kumar, and Stein [GKS14] weaken the traditional irrevocability assumption for online
algorithms and allow their algorithm to moderately reassign jobs in order to maintain a good
solution. They bound the number of such changes which is usually referred to as online
optimization with recourse. We are able to generalize their result to the setting where each job
comes with its individual cost that has to be paid upon (re)assigning it. We obtain a matching
performance guarantee linear in log log(mn) with a bound on the incurred reassignment cost
linear in the total assignment cost. This model also generalizes online optimization with
migration that is concerned with bounding the volume of changes an online algorithm makes.

Online Deadline-Sensitive Scheduling

In Chapters 5 and 6, we investigate a scheduling problem where jobs arrive online over time at
their release date and have to be processed by identical parallel machines before their respective
deadlines. The goal is to maximize the throughput, i.e., the number of jobs that complete before
their deadlines. As shown by Baruah, Haritsa, and Sharma [BHS94], hard instances for online
algorithms involve “tight” jobs, i.e., jobs that need to be scheduled immediately and without
interruption in order to complete on time. To circumvent these difficulties, we require that the
instance does not contain tight jobs and thus enforce some relative slack for each job in the
interval defined by its release date and its deadline. We assume that each job’s interval has
length at least (1 + ε) times its processing time for a given slackness parameter ε > 0.

In Chapter 5, we develop an online algorithm for maximizing the throughput. In fact, this
algorithm is quite similar to the one designed by Lucier et al. [LMNY13] for maximizing the
total weight of jobs finished on time. With a completely different analysis, we show that its
worst-case performance depends linearly on 1

ε in the unweighted case. By giving a matching
lower bound for any online algorithm, we also prove that this algorithm is best possible.

In Chapter 6, we introduce the notion of commitment to the model. That is, any scheduler
either has to commit to the completion of a job at some point between its release date and
its deadline or discard the job completely. We investigate the impact various commitment re-
quirements have on the performance of online algorithms and we rule out any online algorithm
with reasonable performance if the commitment is required immediately upon arrival of a job.
For two less strict commitment requirements, we develop an algorithm with provably good
performance. Surprisingly, when the scheduler has to commit upon starting a job, we obtain
the same asymptotic performance guarantee as in the setting without commitment. Requir-

3

1 Introduction

ing δ-commitment means that the commitment decision has to be made when the slackness
assumption reduces from ε to δ, for δ ∈ (0, ε). Since this commitment requirement tightens to
commitment upon arrival when δ tends to ε, it is not surprising that the performance guarantee
diverges with increasing δ. However, if δ is bounded away from ε, then we recover the same
performance guarantee as in the model without commitment. We supplement this chapter
with further lower bounds for online scheduling with commitment.

Dynamic Packing

In Chapter 7, we design and analyze a dynamic algorithm for knapsack problems. Here we are
given a set of items with sizes and values as well as a set of knapsacks with capacities. Both sets
are subject to small changes, specifically, the deletion or addition of an item or a knapsack. The
goal is to maintain an assignment of items to knapsacks that does not exceed their capacities
and maximizes the total value of packed items. We give a dynamic algorithm that deals with a
change in the instance in poly-logarithmic time while maintaining an almost optimal solution.
At the heart of our result lies a novel and dynamic approach to linear grouping of items. For
the special case of many identical knapsacks, we can do even better and give a significantly
faster algorithm. We also show that it is impossible to obtain similarly fast algorithms for few
knapsacks, unless P = NP .

4

2
Preliminaries

We introduce notation and concepts used throughout this thesis. Further, we give a
short overview over scheduling and packing problems as well as a brief introduction to
the concepts of uncertainty considered.
We assume some knowledge of the basic concepts of combinatorial optimization and refer
to the books by Korte and Vygen [KV02] and by Schrijver [Sch03] for an overview. For an
in-depth introduction to network flows, we point to the book by Ahuja, Magnanti, and
Orlin [AMO93]. For a introduction to the theory of linear programming, we recommend
the textbook by Bertsimas and Tsitsiklis [BT97]. Further, we assume some familiarity
with probability theory and refer to the books by Biagini and Campanino [BC16] and
Gut [Gut13]. For an overview over discrete probability distributions, we recommend the
book by Johnson, Kemp, and Kotz [JKK05] and the references therein.

Table of Contents

2.1 Basic Notation . 5

2.2 Algorithm Analysis and Complexity . 6

2.3 Scheduling and Packing . 8

2.3.1 Scheduling Problems . 8

2.3.2 Packing Problems . 9

2.4 Scheduling and Packing Under Uncertainty . 10

2.4.1 Stochastic Input . 11

2.4.2 Online Input . 15

2.4.3 Dynamically Changing Input . 18

2.1 Basic Notation

We use N0 and N to refer to the set of natural numbers with and without 0, respectively.
Further, Z, Q, and R denote the sets of integral, rational, and real numbers, respectively.
By Z+, Q+ and R+ we refer to the sets of non-negative integral, rational, and real numbers,

5

2 Preliminaries

respectively. For a natural number n ∈ N, we define [n] to be the set of all natural numbers
up to n, that is, [n] = {1, . . . , n}. For two real numbers x and y ∈ R, let [x, y] be the closed
interval, (x, y) the open interval, and [x, y) as well as (x, y] the half-open intervals from x to y

in R; note that any of these intervals is empty if y < x and only [x, y] is non-empty if x = y.
We use log x to refer to log2 x for some x > 0.

Let f : R+ → R+ and g : R+ → R+. We use the Big-O Notation for classifying the
asymptotic growth of a function f in terms of a function g when x tends towards infinity.
Formally, if there is a x0 ≥ 0 and a constant c ≥ 0 such that f(x) ≤ cg(x) for all x ≥ x0,
then f ∈ O(g). Similarly, if there is a x0 ≥ 0 and a constant c with f(x) ≥ cg(x) for all x ≥ x0,
then f ∈ Ω(g). If f ∈ O(g)∩Ω(g), then f ∈ Θ(g). Intuitively, if f does not grow faster than g

does, then f ∈ O(g), while f not growing slower than g means f ∈ Ω(g). If these two functions
asymptotically grow with the same speed, then f ∈ Θ(g).

2.2 Algorithm Analysis and Complexity

In this thesis, we design and analyze algorithms for scheduling and packing problems, which we
informally introduced in the previous chapter and which will be formally defined in the next
section. In general, an algorithm is a finite sequence of instructions that solves a particular
problem. It takes an instance of a given problem as input and returns a solution for this
instance after finitely many computational steps. The performance of an algorithm can be
measured, e.g., in terms of its time complexity and the quality of its solution. For evaluating
the time complexity of an algorithm, we compare its running time, i.e., the number of basic
computational steps, with the size of the input data under a particular encoding scheme; we
usually assume binary encoding of the data. Ideally, we design an algorithm that obtains a
provably optimal solution with worst-case running time that is bounded by a polynomial in
the input size. If a problem admits such a polynomial-time algorithm that finds the optimum
for all instances, then its decision variant belongs to the class P of polynomial-time solvable
problems. The decision variant of an optimization problem poses the question of whether the
optimal solution value is at least or at most a certain value f∗ ∈ Z. Note that rational numbers
can be ignored due to scaling, and we omit irrational numbers since encoding them in bounded
time is impossible.

For most combinatorial problems investigated in this thesis, it is not known whether they
admit optimal polynomial-time algorithms. In fact, it is widely believed that these problems
are not polynomial-time solvable. For clarifying the notion of computational complexity, let
us focus on decision problems, that is, problems for which the answer is either yes or no. If
there is a certificate, e.g., a solution, such that one can verify that the correct answer is yes in
polynomial time based on this certificate if and only if the instance is a yes-instance, then this
problem belongs to the class NP of non-deterministically polynomial-time solvable problems.
Intuitively, non-deterministic implies that, if we are able to guess a correct solution and the

6

2.2 Algorithm Analysis and Complexity

instance is a yes-instance, then we can check this in polynomial time. Clearly, all problems
in P are also in NP since we can use the polynomial-time algorithm corresponding to the
problem to solve and thus decide the problem. Ever since Cook [Coo71] and Karp [Kar72] laid
the foundations of complexity theory, it is a major open question whether all problems in NP
admit polynomial-time algorithms or whether P is a proper subset of NP . A particularly
interesting subset of problems in NP is the set of NP-complete problems since they act as
representatives of the entire class NP . If one NP-complete problem admits a polynomial-time
algorithm, then all problems in NP are polynomial-time solvable and P = NP .

An optimization problem describes the task to optimize a certain objective function subject
to some constraints. We observe that the decision and the optimization variants are equivalent
in the following sense: If we have an algorithm for one of them, then we can translate it
to an algorithm for the other in polynomial time as follows. On the one hand, having an
algorithm finding an optimal solution, we simply compare the returned solution value to f∗,
the parameter of the decision problem. On the other hand, having an algorithm for the decision
variant, we can use binary search over f∗ to solve the optimization problem. This leads to
the notion of NP-hardness for all problems that are at least as hard to solve as any NP-
complete problem, i.e., a polynomial-time algorithm for a NP-hard problem implies P = NP .
In particular, the optimization variants of NP-complete problems are NP-hard.

A particular class of NP-hard problems are the so-called strongly NP-hard problems: They
remain NP-hard even if the appearing numbers are polynomially bounded in the input size.
(A number is bounded exponentially in the length of its binary encoding.) In particular, un-
less P = NP , such problems do not admit pseudopolynomial-time algorithms, i.e., algorithms
whose running time is polynomially bounded in the size of the input and the appearing num-
bers in the input. For a thorough introduction to complexity theory, please refer to the book
by Garey and Johnson [GJ79].

Approximation algorithms Since it is widely assumed that P ̸= NP , we cannot hope to find
an optimal polynomial-time algorithm for every instance of a NP-hard problem. In this thesis,
we relax the notion of optimality and develop polynomial-time algorithms that find provably
“good” solutions. More precisely, for a minimization (maximization) problem, we are interested
in a polynomial-time algorithm for which we can prove that, for every instance, the objective
value of the returned solution is at most α

(︂
at least 1

α

)︂
times the value of an optimal solution

for some α ≥ 1. In this case, we say that the algorithm is an α-approximation algorithm or
short α-approximation. The infimum α such that the algorithm is an α-approximation is called
the approximation ratio or approximation factor of the algorithm.

An approximation scheme is a family of polynomial-time algorithms (Aε)ε>0 such that, for
every ε > 0, Aε is a (1 + ε)-approximation algorithm. Based on how well the running time
scales with decreasing parameter ε, we distinguish Polynomial Time Approximation Schemes
(PTAS) with arbitrary dependency on ε, Efficient Polynomial Time Approximation Schemes

7

2 Preliminaries

(EPTAS) where arbitrary functions f(ε) may only appear as a multiplicative factor but not
as exponents of the input size, and Fully Polynomial Time Approximation Schemes (FPTAS)
with polynomial dependency on 1

ε . For a thorough introduction to approximation algorithms
and their analysis, we refer to the textbooks by Vazirani [Vaz01] and by Williamson and
Shmoys [WS11].

2.3 Scheduling and Packing

Scheduling and packing problems are two of the most fundamental problem classes in combi-
natorial optimization. In this section, we give a brief introduction into the particular problems
we consider in this thesis: machine scheduling and knapsack problems.

2.3.1 Scheduling Problems

Scheduling problems arise in every imaginable aspect of our daily lives whenever we need to
assign a set of tasks to scarce resources. Therefore, they have been studied extensively over
the last decades. With the rise of new technologies, also the applications and variations of
scheduling problems changed over time and have become more ubiquitous. The beginnings of
the theoretical analysis of scheduling problems were highly motivated by aspects of production
planning arising in economic and industrial applications [AF55, Bel56, Joh54, Wag59], while
research today is additionally driven by, e.g., questions appearing in large-scale computing
clusters [AKL+15,ALLM18,FBK+12,LMNY13].

In this thesis, we focus on one particular class of scheduling problems, the so-called machine
scheduling problems. Here, we are given a set J of n jobs, i.e., J = [n], which must be
processed by a set of m machines. We usually use the index i to refer to a particular machine
if m > 1. Each job j ∈ J specifies parameters such as its non-negative processing time pj ,
its weight wj , its release date rj , and its deadline dj . In order to complete, job j needs to
be assigned for pj units of time during the interval [rj , dj) to either one or a subset of the
machines. This job-to-machine assignment needs to guarantee that no job is processed on
several machines at the same time and that no machine is working on more than one job
at any given time. We usually refer to such an assignment as schedule. Depending on the
particular problem, there may be additional constraints that any schedule needs to satisfy in
order to be feasible. In general, one is interested in selecting a feasible schedule that optimizes
some objective function.

In 1979, Graham et al. [GLLRK79a] introduced the 3-field notation α |β | γ to classify the
plethora of different scheduling models. In the following, we use this classification scheme to
introduce the building blocks of the scheduling models considered in this thesis.

The first field, α, refers to the machine environment. Single-machine models are represented
by α = 1. When all jobs can be processed by m parallel, identical machines, we use α = P

8

2.3 Scheduling and Packing

to express this. The restriction to scheduling problems with exactly m machines is denoted
by α = Pm. When jobs can only be processed by some machines and their respective processing
times depend on the machine, we denote this by α = R and use pi,j to indicate for how many
time units job j has to be processed if assigned to machine i. We will only consider the
restricted assignment problem where pi,j ∈ {pj ,∞} for pj ≥ 0.

The second field, β, is used for giving job specific parameters. If jobs can be preempted, i.e.,
interrupted and resumed at a later point, we denote this by pmtn ∈ β. In some settings, we
distinguish between migratory and non-migratory preemption where the processing may be
resumed on any machine or only on the machine a job was initially started on. In the presence
of release dates and deadlines, we sometimes add rj and dj , respectively, to the field β as well.

The third field, γ, denotes the particular objective function of the problem. Let Cj refer
to the completion time of job j in a particular schedule. For minimizing the makespan, i.e.,
the maximal completion time of a job, we use γ = Cmax, where Cmax = maxj Cj . Since
this problem is equivalent to minimizing the maximal completion time of the machines, we
also refer to this problem by load balancing. Setting γ =

∑︁
j Cj or γ =

∑︁
j wjCj refers to

minimizing the sum of completion times or the total weighted completion time, respectively.
Let Uj indicate whether job j does not complete on time, i.e., Uj = 1 if Cj > dj and 0 otherwise.
Originally, γ =

∑︁
j wjUj denotes the objective of minimizing the total weight of jobs completing

after their deadline [GLLRK79a]. From an approximation point of view, approximating the
minimum of an objective function that can become zero is equivalent to finding the optimum.
Hence, we resort to the equivalent maximization problem and denote this by γ =

∑︁
j wj(1−Uj).

Since this objective function asks for maximizing the total weight of jobs completing by their
deadline, we also refer to it by weighted throughput maximization. The unweighted case is
denoted by γ =

∑︁
j(1− Uj). The last two objective functions differ from the previous ones in

the sense that we do not require that each job is scheduled at some point. Instead, we may
discard jobs completely at the cost of paying their weight.

The theoretical analysis of scheduling problems dates back several decades and is still grow-
ing. As a starting point for a more detailed investigation of scheduling models and algorithms,
we refer to the textbook by Pinedo [Pin16] and to the survey articles edited by Leung [Leu04].

2.3.2 Packing Problems

Packing problems describe the task of assigning a set of items to resources with bounded capac-
ities. They arise in a variety of applications in, e.g., logistics, such as in cutting stock, vehicle
loading, or pallet packing problems [CKPT17, GG61, Ram92], as well as in computer science,
such as placing virtual machines or processes in computing clusters or allocating resources in
cloud networks [Sto13, BKB07, BB10]. More applications can be found in the financial sec-
tor, e.g., on client level, such as investment selection, or on an institutional level, such as
asset-backed securitization and interbank clearing systems [Wei66,GJL98,MP04].

9

2 Preliminaries

In this thesis, we concentrate on one particular type of packing problems, the Knapsack
problem. Here, we are given a set J of n items, i.e., J = [n], with sizes sj ∈ N and value vj ∈ N
for j ∈ J . Further, we have one knapsack of capacity S and the task is to find a subset P ⊆ [n]
of maximal total value v(P), where v(P) =

∑︁
j∈P vj , such that its total size does not exceed S.

The decision variant of this problem is NP-complete and it belongs to the famous list of 21 NP-
hard problems by Karp [Kar72]. This problem has been studied extensively since the early
days of optimization, which is also reflected by the books on knapsack problems by Martello
and Toth [MT90] and by Kellerer, Pferschy, and Pisinger [KPP04]. As observed in the latter,
the relevance of this problem is also illustrated by the fact that many important concepts in
combinatorial optimization such as approximation schemes and dynamic programming were
introduced for or explained by the Knapsack problem.

A straightforward generalization is the Multiple Knapsack problem where there are
given m knapsacks with capacities Si for i ∈ [m]. The task is to select m pairwise disjoint
sets Pi ⊆ [n] such as to maximize the total value

∑︁m
i=1 v(Pi) while the total size of set Pi does

not exceed Si. In contrast to the Knapsack problem, Multiple Knapsack is strongly NP-
hard even for identical knapsack capacities because it generalizes the strongly NP-hard prob-
lem 3-Partition [KPP04,GJ79].

Since we also consider scheduling problems, we would like to point out that Multiple
Knapsack with m identical knapsacks is equivalent to maximizing the weighted throughput
of n jobs with release dates 0, processing times sj , weights vj , and identical deadlines S

for j ∈ [n] on m machines, denoted in the 3-field notation by P | dj = d |
∑︁

j wj(1− Uj).

2.4 Scheduling and Packing Under Uncertainty

This thesis focuses on solving combinatorial optimization problems while dealing with uncertain
information. Investigating classical problems under uncertainty is an important step towards
bridging the gap between theoretical aspects of optimization that often assumes a simplified
view and real-world applications where the future often is unknown. We consider stochastic
information where the instance is given up-front but certain characteristics, e.g., job processing
times or item sizes, are only given as random variables following known probability distribu-
tions. The major source of incomplete information in this thesis stems from online information
where the input is gradually revealed to the optimizer and decisions must be made without
complete knowledge about the instance. A closely related concept of uncertain information
is dynamic input where the input evolves constantly. Elements of the instance, e.g., jobs in
scheduling problems or items in packing problems, arrive and depart. In contrast to online
optimization, the solution of a dynamic algorithm is allowed to change alongside the instance.

10

2.4 Scheduling and Packing Under Uncertainty

2.4.1 Stochastic Input

In some real-world applications of combinatorial optimization problems, practitioners have
some historic information at their disposal which can be used to forecast the future. Based on
their expertise, they are able to compile some knowledge about the input such as the job set
(in scheduling problems) or the item set (in packing problems) while only the specifics such as
processing times or item sizes remain unknown. Using statistical and data-analytical methods,
experts can justify knowing the underlying probability distributions of the unknown input.

In the following, we give a brief summary of important notions, concepts, and techniques of
probability theory before we formally introduce stochastic scheduling.

Probability theory As we assume that the reader is familiar with basic concepts and tech-
niques of probability theory (and thus with measure theory), we only give a short introduction
to the notation used throughout this thesis without formally defining the underlying princi-
ples. To this end, let (Ω,F ,P) be a probability space. If E ∈ F , then P[E] denotes the
probability that E occurs. Usually, we refer to E ∈ F as an event. For two events E, F ∈ F
with P[F] > 0, the probability that E happens under the assumption that F is known to
occur is P[E |F] := P[E∩F]

P[F] is; in short, the probability of E given F . Two events E and F

are independent if P[E ∩ F] = P[E]P[F]. In this case, P[E |F] = P[E]. Intuitively, having
information about F does not increase the information about E.

Let X : Ω→ R be a real-valued random variable. If X follows the probability distribution D,
we say X ∼ D. Moreover, E[X] denotes the expected value and Var[X] = E[X2]−E[X]2 denotes
the variance of a random variable X. Sometimes we are also interested in SCV[X] = Var[X]

E[X]2 ,
the squared coefficient of variation.

Two random variables X, Y : Ω→ R are independent if, for all measurable sets I, I ′ ⊆ R, it
holds that

P[{X ∈ I} ∩ {Y ∈ I ′}] = P[X ∈ I]P[Y ∈ I ′].

Intuitively, independence of X and Y implies that having knowledge about the realization of X

does not increase the information about the realization of Y .
In the following, we give some important properties of random variables. Since these are

commonly known results from probability theory, we refer to book (chapters) for proofs.
The Law of Total Expectation gives us a way of calculating the expected value of X by

evaluating E[X] separately on a set of disjoint events. A proof can be found in the book by
Biagini and Campanino [BC16].

Theorem 2.1 (Law of Total Expectation). Let {Ei}i∈I be a countable partition of Ω. Then,

E[X] =
∑︂
i∈I

E[X |Ei]P[Ei].

11

2 Preliminaries

The following inequality is known as Markov’s Inequality. A proof for this famous inequality
can be found in Chapter 3.1 of the book by Gut [Gut13].

Theorem 2.2 (Markov’s Inequality). Suppose that E[|X|] <∞ for a random variable X. Then,

P[|X| > x] ≤ E[|X|]
x

.

The following concentration result for independent random variables distributed in [0, 1] is
a very useful variant of the Chernoff-Hoeffding bound. A proof can be found in the book by
Dubhashi and Panconesi [DP09].

Theorem 2.3 (Chernoff-Hoeffding Bound). For j ∈ [n], let Xj be independently distributed in [0, 1]
and let X :=

∑︁n
j=1 Xj. For 0 < ε < 1, it holds that

(i) P
[︁
X ≥ (1 + ε)E[X]

]︁
≤ exp

(︂
− ε2 E[X]

3

)︂
and

(ii) P
[︁
X ≤ (1− ε)E[X]

]︁
≤ exp

(︂
− ε2 E[X]

2

)︂
,

where exp(x) denotes the exponential function of x.

For a deeper introduction to probability theory, we refer the reader to some introductory
textbooks such as the one by Gut [Gut13] or the one by Biagini and Campanino [BC16]. Since
discrete probability distributions play a major role in those chapters of this thesis dealing with
stochastic information, we recommend the book by Johnson, Kemp, and Kotz [JKK05] and
the references therein.

The two main discrete distributions occurring in this thesis are Bernoulli and binomial
distributions. We say that a random variable X follows a Bernoulli distribution with success
probability q ∈ [0, 1] or, short, X ∼ Ber(q), if

P[X = 1]= q = 1− P[X = 0].

For a Bernoulli random variable it holds that E[X] = q and Var[X] = q(1− q).
A random variable X is binomially distributed with success probability q ∈ [0, 1] and size

parameter n ∈ N or, short, X ∼ Bin(n, q), if

P[X = k]=
(︄

n

k

)︄
qk(1− q)n−k,

for k ∈ {0, 1, . . . , n}. If X ∼ Ber(n, q), then E[X] = nq and Var[X] = nq(1 − q). If Xj ,
for j ∈ [n], are n independent Ber(q)-distributed random variables, then X :=

∑︁n
j=1 Xj follows

a Bin(n, q) distribution.

12

2.4 Scheduling and Packing Under Uncertainty

Stochastic scheduling In stochastic scheduling, the uncertainty in the input is modeled via
random processing times. More precisely, we are given a set J of n jobs whose processing
times Pj are random variables for j ∈ J . We assume complete knowledge about the distribution
of the random processing time Pj ≥ 0 and use pj to refer to a particular realization of Pj . For
two jobs, we impose independence on their processing times. This restriction is not inherent in
stochastic scheduling but extremely helpful due to certain methods borrowed from probability
theory. Other job characteristics such as release dates or deadlines are known in advance,
which is also the case for the machine environment.

As the processing times are not deterministic anymore, the solution to a problem is not a
schedule but a so-called scheduling policy. A scheduling policy decides in an “online” matter
which jobs to schedule next on which machine. Here, the “online” nature of the problem lies
in the fact that the scheduling policy obtains information about the instance by scheduling
jobs and by observing how the conditional distributions of the processing times of currently
processed jobs evolve. Then, these observations and the a priori knowledge about the instance
guide the decision process of the scheduler.

This intuition is made more precise by Möhring, Radermacher, and Weiss [MRW84,MRW85]:
a scheduling policy Π specifies a set of possible actions at decision times t. An action comprises
a set of jobs to start at time t and the next (tentative) decision time t′. If an action is taken
at time t, the next decision has to be made at time t′ or upon a job’s release or completion
at time t′′ < t′. The decision for a certain action at time t only depends on the t-past of the
realization, i.e., the information observed up to time t. This information consists of the realized
processing times of jobs already completed at time t and the conditional distributions of the
jobs started before time t but not yet completed. Such a policy is called non-anticipatory. A
particular class of non-anticipatory policies are the elementary policies where decisions only
happen upon release or completion of a job.

Then, CΠ
j , the completion time of job j under scheduling policy Π, is a random variable

depending on Π as well as the realization of the processing times. Since simple examples
already show that a point-wise optimal scheduling policy, i.e., optimal for each realization, does
in general not exist [MR85], we are interested in minimizing the cost function in expectation.
That is, for an instance I, we are interested in finding an optimal policy Π∗ with

E[f(Π∗, I)] = min
{︂
E[f(Π, I)] : Π non-anticipatory scheduling policy

}︂
,

where f(Π, I) denotes the (random) objective function value for instance I under policy Π.
We emphasize that the scheduling policies considered in this thesis can be adaptive in the sense
that the set of actions at time t is allowed to depend on the t-past. Further below we briefly
discuss the class of non-adaptive scheduling policies.

It has been shown that for some processing time distributions and some objective functions
such an optimal policy does exist and can easily be expressed [Gla79,BDF81,WVW86,Rot66].

13

2 Preliminaries

However, as Pinedo and Weiss [PW87] show, this optimal policy is hard to describe for gen-
eral processing time distributions. Therefore, we resort to approximate policies as introduced
by Möhring, Schulz, and Uetz [MSU99] that are closely related to approximation algorithms
previously discussed. Due to the stochastic nature of the underlying problem, we only require
that the decision of a policy can be computed in polynomial time while, there is no such bound
on the time horizon of the schedule itself.

Definition 2.4 (α-approximate policies). Let α ≥ 1. A scheduling policy Π that can be computed
in polynomial time is an α-approximate policy if

E[f(Π, I)] ≤ αE[f(Π∗, I)]

holds for all instances I, where Π∗ denotes an optimal policy for instance I. We also use α-
approximation to refer to such a policy Π. The infimum α such that Π is an α-approximation
is called approximation factor or approximation ratio.

Not requiring a bound on the time horizon is mostly due to the fact that we consider random
variables with (possibly) exponential or even unbounded support. In particular, already for
a single job on a single machine there might be a non-zero probability that the realization of
its processing time is exponentially larger than indicated by, e.g., its expected value. Hence,
for some realizations a polynomial encoding might not be possible. As discussed by Skutella,
Sviridenko, and Uetz [SSU16], it is not likely that such a situation occurs due to Markov’s
Inequality (Theorem 2.2), but one should be aware of this possibility.

Most results on approximation policies consider the problem of minimizing the total weighted
completion time and variations thereof while the approximation guarantee mostly depends
linearly on ∆ [MSU99,SU05,SSU16,MUV06,GMUX20,JS18]. Here, ∆ is an upper bound on
the squared coefficients of variation of the processing times. An exception worth mentioning is
the O(log2 n+m log n)-approximate policy by Im, Moseley, and Pruhs [IMP15] for minimizing
the expected weighted total completion time.

When minimizing the makespan on parallel machines, approximation becomes easier: It is
common knowledge that List Scheduling is already

(︂
2 − 1

m

)︂
-approximate. In fact, this

approximation guarantee even holds per realization.

Non-adaptive scheduling A line of work that is orthogonal to the adaptive setting is the non-
adaptive model. The assignment of jobs to machines happens upfront before the randomness
is revealed. Hence, the non-adaptive model is sometimes also called fixed assignment. Since
approximation algorithms are again evaluated relative to an optimal algorithm of the same
nature, the adaptive and the non-adaptive models are mutually incomparable.

When minimizing the total completion time objective, this model immediately reduces to
its deterministic counterpart by linearity of expectation. Any result obtained there transfers

14

2.4 Scheduling and Packing Under Uncertainty

to the stochastic setting by using E[Pj] as deterministic surrogate for the processing time of
job j. As shown by Skutella, Sviridenko, and Uetz [SSU16], the adaptivity gap for minimizing
the weighted completion time on identical machines is Ω(∆). That is, the ratio between
the best fixed-assignment policy and the optimal adaptive scheduling policy is at least Ω(∆).
Nevertheless, some of the results in the adaptive setting use fixed machine assignments [SSU16,
GMUX20,MUV06]. This indicates that fixed-assignment policies are seemingly more tractable
for this particular objective function.

Conversely, makespan minimization seems to be the more difficult objective function in
the non-adaptive setting. Kleinberg, Rabani, and Tardos [KRT00] were the first to obtain
constant approximation ratios for parallel machines. Recently, Gupta et al. [GKNS18] were
able to obtain the first constant approximation guarantee for load balancing on unrelated
machines. They also looked into the problem of minimizing the q-norm of the load vector
and obtained the first non-trivial approximation guarantee of O

(︂
q

log q

)︂
. This result was later

improved to a constant factor approximation by Molinaro [Mol19]. Gupta et al. [GKNS18]
showed an adaptivity gap of Ω

(︂
log m

log log m

)︂
for makespan minimization even for identical jobs on

parallel identical machines.

Stochastic packing problems Here, the item sizes follow independent random variables, and
a subset or the complete set of items has to be packed to optimize some objective function
subject to some constraints. Such a constraint could be the satisfaction of a bound on the
overflow probability, i.e., the probability to exceed the capacity of a bin or a knapsack. For
special probability distributions, Goel and Indyk [GI99] derive constant approximation guar-
antees for Stochastic Bin Packing and Stochastic Knapsack. Kleinberg, Rabani, and
Tardos [KRT00] consider special distributions and relax either the capacity constraint or the
bound on the overflow probability. Dean, Goemans, and Vondrak [DGV08] consider another
variant of Stochastic Knapsack: The items have to be packed into the knapsack following
an adaptive or a non-adaptive order, and upon placing an item, its size is realized. The goal
is to pack as much value as possible before the first item “overflows” the knapsack. They
derive O(1)-approximate policies in both models. Interestingly, the value attained by their
non-adaptive policy is within a constant factor of the optimal adaptive policy.

2.4.2 Online Input

In the online model, the instance is revealed only incrementally and the optimizer has to take
irreversible actions without complete knowledge about the future. From an algorithmic point of
view, this implies that, no matter the future input, the taken actions can either not be undone
anymore or only at an extremely high cost which then influences the overall performance of the
online algorithm. Conversely, an offline algorithm has access to the entire instance in advance
and bases its decisions on this complete knowledge.

15

2 Preliminaries

As observed by Borodin and El-Yaniv [BE98], some problems, such as scheduling and pack-
ing, are meaningful and natural in the offline and the online world: In one’s own computing
cluster, the workload usually is known and can be scheduled accordingly, while a cloud com-
puting provider does not know the computing requests before their submission to the system.
For a logistics company, the delivery of goods can be planned according to the trucks’ capac-
ities, while the pickup of goods possibly leads to decision making “on the fly” or, in other
words, online. Other problems, such as paging or routing packets in a computer network, are
intrinsically online, and asking for an offline algorithm neglects a major part of the problem.

For a thorough introduction to online algorithms, their applications, and analysis, we refer
to the book by Borodin and El-Yaniv [BE98], the collection of surveys by Fiat and Woegin-
ger [FW98], and the survey by Albers [Alb03]. The surveys by Sgall [Sga96] and by Pruhs,
Sgall, and Torng [PST04] put a special emphasis on online scheduling algorithms. Regarding
the way new information is released, Pruhs, Sgall, and Torng [PST04] coined two different
terms, which we now briefly summarize.

Online-list model Under this paradigm, the unknown elements are ordered in some list;
hence the term online-list model. Once the element is revealed, the algorithm knows all its
characteristics, such as size or processing time. Based on the information seen so far, the
algorithm has to deal with the element before the next element is observed. After the decision
how to deal with the newly revealed element is made, the algorithm is not allowed to change
or revoke it. In scheduling problems, this implies that a job has to be scheduled on a machine
(satisfying the specific problem requirements) without knowledge about the remaining job set.
This variant models, e.g., load balancing decisions in computing clusters. Since usually there
are no time horizons in packing problems, their online counterparts are mostly modeled in this
setting as well.

Online-time model In contrast to the online-list model, the online-time model also takes into
account the time between the assignment of jobs. That is, jobs arrive online over time at their
release dates which is when their characteristics become known to the online algorithm. Hence,
the time horizon itself plays a major role in this paradigm and has to be taken into account
when decisions are made. This implies that the scheduler can sometimes delay decisions at a
certain problem-specific cost. Depending on the particular problem, the algorithm can alter
the current schedule in favor of newly arrived jobs. This model covers admission decisions
for computing clusters since the requests are typically submitted over time at the point most
convenient for the client.

Competitive analysis Since an online algorithm cannot base its decision on complete knowl-
edge of the instance, it typically cannot find an optimal solution. To be able to evaluate a
particular algorithm or compare two with each other, we can use a similar approach as for

16

2.4 Scheduling and Packing Under Uncertainty

approximation algorithms: worst-case analysis where the performance of an algorithm is com-
pared to the optimal solution. In the context of online algorithms, the optimal solution has
complete knowledge about the instance, and hence is called offline optimum, while an online
algorithm gains access to this knowledge depending on the particular model. Sleator and
Tarjan [ST85] introduced the term competitive analysis for this method of worst-case analysis.

Let A denote a particular online algorithm for a given problem and let f(A, I) denote the
objective function value achieved by A for instance I. Similar to the notion of approximation
algorithms, the definition of a competitive algorithm depends on the optimization goal, i.e., it
depends on the problem being a minimization or a maximization problem.

Definition 2.5 (c-competitive algorithm). Let c ≥ 1. An online algorithm A is c-competitive for
a minimization problem if, for all instances I,

f(A, I) ≤ c · f∗(I),

where f∗(I) denotes the objective function value of an offline optimum for instance I. For a
maximization problem, a c-competitive algorithm must satisfy, for all instances I

f(A, I) ≥ 1
c

f∗(I).

If c is the infimum such that A is c-competitive, then c is called the competitive ratio of A.

We emphasize that competitiveness of an online algorithm does not imply any bounds on the
computational power since the key difficulty is decision making under uncertainty and strict
irrevocability constraints. Nevertheless, many known algorithms do run in polynomial time.

Migration and recourse For some problems, there exist strong lower bounds on the compet-
itive ratio of online algorithms that are not allowed to revoke decisions. That is, it can be
shown that the lack of information prevents every online algorithm for such a problem from
having a competitive ratio less than c. For many problems, the irrevocability assumption of
online algorithms is overly pessimistic, and in some applications changes are rather sensible as
long as these changes are bounded in some way. To address these issues, concepts to soften the
irrevocability requirement have been developed. There are two major streams towards more
adaptive models with a softened irrevocability requirement: online optimization with recourse
and with migration. Both models permit an online algorithm to change previously made deci-
sions upon gaining more knowledge about the instance. Of course, if these changes were not
bounded in some way, the online nature of the problem would be lost since an algorithm could
simulate the current offline optimum. One can enforce such a bound in average over the first k

arrivals or per round, leading to an amortized or non-amortized bound on the changes.
With recourse, we refer to the possibility to change decisions under the requirement that

the number of such changes remains bounded [MSVW16, IW91,GGK16,GKS14]. This model

17

2 Preliminaries

may be employed when the underlying change in a solution is negligible, e.g., when the cost of
reassigning an item does not depend on the size of the item that has to be moved.

The term migration is used to refer to a bound on the volume of changes [SSS09,SV16,JK19].
That is, the cost for repacking an item or rescheduling a job is proportional to their respective
size. This models the fact that a change in the solution might lead to the need for physically
adapting the assignment which in turn is cheaper if the element in question is small.

The model that we consider in this thesis is a generalization of the former two: bounding
the reassignment cost [AGZ99, Wes00]. Specifically, each element comes with an individual
(re)assignment cost that needs to be paid upon (re)assigning the element and the task is to
maintain a good solution with moderate reassignment cost. Since we only consider scheduling
and packing problems, we use the term “reassignment” to refer to scheduling a job on another
machine or packing an item in another knapsack. By choosing uniform reassignment costs or
setting them equal to the size of the respective element, we recover online optimization with
recourse or migration, respectively.

2.4.3 Dynamically Changing Input

A seemingly related concept that deals with uncertain input is that of dynamic algorithms. An
algorithm is said to be dynamic if it maintains a solution to a certain problem even if the in-
stance undergoes small modifications in each round. For packing problems, these modifications
may include the arrival or departure of an item or a knapsack/bin. Similarly, for scheduling
problems, the instance may be modified by removing or inserting a job or a machine as well as
by changing the weight of a job. The task is to maintain a good solution in each round while
spending only little computation time per round. Depending on the hardness of the underlying
static problem, “good” refers either to optimal or near-optimal solutions.

The dynamic algorithm can be seen as a data structure that efficiently supports updates,
i.e., modifications of the instance, and that is then, given these updates, used to construct a
solution if queried. That is, explicit solutions that allow for linear access time of a solution
are not required. Instead, only implicit solutions are maintained that answer certain queries
sufficiently fast. Usually, such a query asks for the output of the entire solution or for the status
of a certain element in the solution, e.g., for the knapsack in which the queried element is packed
or the machine on which the queried job is processed. This relaxation on the representation of a
solution allows for a trade-off between the update and the query time. Hence, when comparing
dynamic algorithms to traditional algorithms that compute an explicit solution, one should be
aware of this difference.

Since the motivation behind dynamic algorithms are applications with mostly local changes,
we would like to use the solution computed prior to the update in order to obtain a new solution
significantly faster than when starting from scratch. Further, the new solution should reflect the
changes made to the instance and is thus allowed to change as well. For example in scheduling

18

2.4 Scheduling and Packing Under Uncertainty

problems, a noticeable amount of jobs can be assigned to another machine in each round as
long as the reassignment can be computed, not executed, sufficiently fast. We emphasize this
difference to the previously introduced models of online optimization with reassignment.

Typically, dynamic algorithms are investigated in the context of graph problems, and we
refer to the surveys [DEGI10,Hen18,BP11] for an overview on dynamic graph algorithms. For
some connectivity problems [HK99, HdLT01], such as Minimum Spanning Tree or 2-Edge
Connectivity, and for Vertex Cover [BHN17,BK19], there are dynamic algorithms with
poly-logarithmic update time although the majority of graph problems did not seem to allow
for fast algorithms. Only recently, researchers started to investigate the reasons for this lack
of efficient algorithms and proved conditional lower bounds; see, e.g., [AW14]. Set Cover
admits near-optimal approximation algorithms with poly-logarithmic update times and has
been studied extensively [BHN19,BHI15,GKKP17,AAG+19].

There is little research on efficient near-optimal algorithms for scheduling or packing prob-
lems. A notable exception is a 5

4 -approximate algorithm with poly-logarithmic update time for
Bin Packing by Ivkovic and Lloyd [IL98]. For a detailed introduction to dynamic algorithms
in the context of combinatorial optimization problems, we refer to the survey by Boria and
Paschos [BP11].

19

3
Stochastic Minsum Scheduling

Minimizing the sum of completion times when scheduling jobs on m identical parallel
machines is a fundamental scheduling problem. Unlike the well-understood determin-
istic variant, it is a major open problem how to handle stochastic processing times.
We show for the prominent class of index policies that no such policy can achieve a
distribution-independent approximation factor. This strong lower bound holds even
for simple instances with only deterministic jobs of uniform size and identically two-
point distributed stochastic jobs. For such instances, we give an O(m)-approximate list
scheduling policy. Moreover, we derive further bounds on the instance parameters that
allow for O(1)-approximate list scheduling policies.
Bibliographic Remark: Parts of this chapter are joint work with F. Fischer, J. Ma-
tuschke, and N. Megow and correspond to or are identical with [EFMM19].

Table of Contents

3.1 Introduction . 22

3.2 Lower Bound for Index Policies . 24

3.3 Upper Bound for Bernoulli-Type Instances . 27

3.4 Further Results on Bernoulli-Type Instances . 34

3.4.1 Less Stochastic Than Deterministic Jobs . 34

3.4.2 Many Long Stochastic Jobs in Expectation . 35

3.4.3 Bounded Processing Times of Stochastic Jobs . 36

3.4.4 Bounded Makespan of Deterministic Jobs . 36

3.4.5 At least m− 1 Expected Long Stochastic Jobs . 37

3.4.6 Discussion . 38

3.5 Concluding remarks . 39

21

3 Stochastic Minsum Scheduling

3.1 Introduction

Scheduling jobs on identical parallel machines with the objective to minimize the sum of
completion times is a classical and well-understood problem. Here, we are given a set J of n

jobs, where each job j ∈ J has a processing time pj that indicates for how many time units it
has to be processed non-preemptively on one of the m given machines. At any point in time,
a machine can process at most one job. The objective is to find a schedule that minimizes the
total completion time,

∑︁
j∈J Cj , where Cj denotes the completion time of job j. This problem

is denoted by P| |
∑︁

Cj in the standard three-field notation [GLLRK79a]. It is well known that
scheduling the jobs as early as possible in Shortest Processing Time (SPT) order solves
the problem optimally on a single [Smi56] as well as on multiple machines [CMM67].

Stochastic scheduling Uncertainty in the processing times is ubiquitous in many applications.
Although the first results on scheduling with probabilistic information date back to the 1960s,
the question how to schedule jobs with stochastic processing times is hardly understood.

We investigate a stochastic variant of the minsum scheduling problem. The processing time
of a job j is modeled by a random variable Pj with known probability distribution. We assume
that the processing time distributions for individual jobs are independent. The objective is to
find a non-anticipatory scheduling policy Π that decides for any time t, with t ≥ 0, which jobs
to schedule. A non-anticipatory policy may base these scheduling decisions only on observed
information up to time t and a priori knowledge about the distributions. In particular, the
policy is not allowed to use information about the actual realizations of processing times of
jobs that have not yet started by time t. For a more in-depth introduction to non-anticipatory
scheduling policies we refer to Section 2.4.1.

For a non-anticipatory policy Π, the value of the objective function
∑︁

j CΠ
j is a random vari-

able. A natural generalization of the deterministic problem P| |
∑︁

Cj is to ask for minimizing
the expected value of this random variable, i.e., to minimize E

[︂∑︁
CΠ

j

]︂
, where the expecta-

tion is taken over the randomness in the processing time variables. We drop the superscript
whenever the policy is clear from the context. This stochastic scheduling problem is denoted
by P| |E[

∑︁
Cj].

List scheduling and index policies An important class of policies in (stochastic) scheduling
is List Scheduling as defined by Graham [Gra69]. A List Scheduling policy maintains
a (static or dynamic) priority list of jobs and schedules at any time as many available jobs
as possible in the order given by the list. The aforementioned SPT rule falls into this class.
List scheduling policies are the simplest type of elementary policies, that is, policies that
start jobs only at the completion times of other jobs (or at time 0). For further details on
the classification of (non-preemptive) stochastic scheduling policies, we refer to the work of

22

3.1 Introduction

Möhring, Radermacher, and Weiss [MRW84,MRW85].
A prominent subclass of list scheduling policies is called index policies [Git89, Wal88]. An

index policy assigns a priority index to each unfinished job, where the index for a job is
determined by the (distributional) parameters and the current state of execution of the job
itself but independent of other jobs. If job preemption is not allowed, then these priority
indices are static, that is, they do not change throughout the execution of the scheduling
policy. Moreover, index policies assign to jobs with the same probability distribution the same
priority index and do not take the number of jobs or the number of machines into account.

In the first paper on stochastic processing times [Rot66], Rothkopf showed that scheduling
the jobs in Weighted Shortest Expected Processing Time (WSEPT) order, i.e., in
non-increasing order of wj

E[Pj] , is optimal for minimizing the total expected weighted comple-
tion time on one machine. If the processing times follow a geometrical distribution, Glaze-
brook [Gla79] showed that List Scheduling in order of Shortest Expected Processing
Time (SEPT) is optimal for minimizing

∑︁
j E[Cj] on parallel identical machines. For expo-

nentially distributed processing times, SEPT is also optimal according to Bruno, Downey, and
Frederickson [BDF81]. Weber, Varaiya, and Walrand [WVW86] generalize these results to
instances where the processing times are totally ordered stochastically. That is, for every two
jobs j, k ∈ J , their processing times Pj and Pk are stochastically comparable, meaning that
either P

[︁
Pj > x

]︁
≤ P[Pk > x] or P[Pk > x]≤ P

[︁
Pj > x

]︁
for all x ∈ R.

Other index policies that perform provably well for certain stochastic scheduling settings are,
e.g., List Scheduling in Longest Expected Processing Time (LEPT) order as shown
by Weber [Web82], the Largest Variance First (LVF) rule as observed by Pinedo and
Weiss [PW87], and the Gittins Index [Git79]. For an overview on theory and applications of
index policies (with a focus on interruptible jobs) we refer to the works by Gittins, Glazebrook,
and Weber [GGW11] and by Glazebrook et al. [GHKM14].

Further related results For arbitrary instances of P| |E[
∑︁

Cj], no optimal policy is known.
Thus, research focuses on approximate policies. Starting with the seminal paper by Möhring,
Schulz, and Uetz [MSU99], several scheduling policies were analyzed for this problem (with
arbitrary job weights) and generalizations, such as precedence constraints [SU05], heteroge-
neous machines [GMUX17,SSU16], and online models [GMUX17,MUV06,Sch08]. In all cases,
the approximation guarantee depends on the probability distributions of the processing times.
More precisely, the guarantee is in the order O(∆), where ∆ is an upper bound on the squared
coefficients of variation of the processing time distributions Pj , that is, Var[Pj]

E[Pj]2 ≤ ∆ for all j.
Besides linear programming relaxations, the (W)SEPT policy plays a key role in the afore-

mentioned results. This index policy, being optimal on a single machine, has been studied
extensively as a promising candidate for solving P| |E[

∑︁
Cj] with bounded approximation ra-

tio. Recently, the upper bound for WSEPT has been decreased to 1+(
√

2−1)
2 (1 + ∆) by Jäger

and Skutella [JS18]. On the negative side, it has been shown independently that neither

23

3 Stochastic Minsum Scheduling

WSEPT [Lab13] nor SEPT [CFMM14,IMP15] can achieve approximation factors independent
of ∆ when there are non-constantly many machines.

A remarkable result is a List Scheduling policy for P| |E[
∑︁

Cj] with the first distribution-
independent approximation factor of O(m log n + log2 n) by Im, Moseley, and Pruhs [IMP15].
This policy is based on SEPT, but in addition, it carefully takes into account the probability
that a job turns out to be long.

Nevertheless, it remains a major open question whether there is a constant factor approx-
imation for this problem even if all weights are equal. Interestingly, there is an index policy
with an approximation factor 2 for the preemptive (weighted) variant of our stochastic schedul-
ing problem by Megow and Vredeveld [MV14]. It is natural to ask whether index policies can
achieve a constant approximation factor also in the non-preemptive setting.

Our contribution As our main result, we rule out any constant or even distribution-indepen-
dent approximation ratio for index policies. More precisely, we give a lower bound of Ω(∆1/4)
for the approximation ratio of any index policy for P| |E[

∑︁
Cj]. This strong lower bound

implies that prioritizing jobs only according to their individual processing time distributions
cannot lead to better approximation ratios. More sophisticated policies are needed that take
the entire job set and the machine setting into account. Somewhat surprisingly, our lower bound
holds for very simple instances with only two types of jobs, deterministic jobs of uniform size
and stochastic jobs that all follow the same two-point distribution. For this class of instances,
we provide an alternative list scheduling policy — carefully taking into account the number of
jobs and machines — and show that it is an O(m)-approximation. If the deterministic jobs are
identical, we obtain constant approximation ratios for certain combinations of parameters.

3.2 Lower Bound for Index Policies

In this section, we prove our main result, a distribution-dependent lower bound on the approx-
imation factor of any index policy.

Theorem 3.1. Any index policy has an approximation factor Ω(∆1/4) for P||E[
∑︁

j Cj].

To prove this lower bound, we consider a simple class of instances that we call Bernoulli-type
instances. This class consists of two types of jobs, deterministic jobs Jd and stochastic jobs Js.
A job j ∈ Jd has deterministic processing time pj while a job j ∈ Js has processing time 0 with
probability q ∈ (0, 1) and l with probability 1− q, where l > 0. Let nd = |Jd| and ns = |Js|.

For the stochastic jobs, i.e., j ∈ Js, let Xj = 1{Pj=l}. That is, Xj is a Bernoulli-distributed
random variable that indicates whether or not j ∈ Js is long, i.e., Pj = l. Let X =

∑︁
j∈Js

Xj .
Since the processing time variables Pj are independent, the same holds for Xj , j ∈ Js. Hence, X

follows a binomial distribution with success probability q, size parameter ns, and expected
value ns · q. In other words, X counts the number of jobs that turn out to be long.

24

3.2 Lower Bound for Index Policies

Proof of Theorem 3.1. Let ∆ > 0; it will act as an upper bound on the squared coefficients
of variation. We define two families of Bernoulli-type instances, I1(∆, m) and I2(∆, m). The
instances differ only in the number of deterministic and stochastic jobs but not in the processing
time distributions. We define the processing time for deterministic jobs in Jd to be equal to 1,
i.e., pj = 1 if j ∈ Jd, and for stochastic jobs j ∈ Js we define

Pj =

⎧⎪⎨⎪⎩0 with probability 1− 1
∆

∆3/2 with probability 1
∆ .

Note that E[Pj] = ∆1/2 and Var[Pj] = ∆2 − 1 for j ∈ Js. Hence, the squared coefficients
of variation are at most ∆.

For such Bernoulli-type instances, there are only two index policies, one where the deter-
ministic jobs have higher priority, denoted by Jd ≺ Js, and one where the stochastic jobs have
higher priority, denoted by Js ≺ Jd. We show that for any fixed ∆ > 1, there exists a value
of m such that the cost of the schedule produced by Jd ≺ Js on instance I1(∆, m) is greater
by a factor of Ω(∆1/4) than the cost of the schedule produced by Js ≺ Jd and vice versa
for instance I2(∆, m). Since the instances I1(∆, m) and I2(∆, m) are indistinguishable by an
index policy, this result implies the lower bound.

Instance I1(∆, m) Instance I1(∆, m) is defined by letting nd = ∆3/4m and ns = 1
2 ∆m;

without loss of generality we assume nd
m ∈ Z. We distinguish both priority orders.

Deterministic jobs before stochastic jobs When the deterministic jobs are scheduled first,
no job in Js starts before time nd

m . Thus,

E
[︄ ∑︂

j∈J
Cj

]︄
≥ nd

m
ns = 1

2∆7/4m.

Stochastic jobs before deterministic jobs Let X be the random variable counting the
number of jobs in Js that turn out to be long. That is, X ∼ Bin(ns, 1

∆) and E[X] = m
2 . We

distinguish two cases based on the value of X.
If X ≤ 3

4m, every stochastic job starts at time 0. Hence,

E
[︄ ∑︂

j∈Js

Cj

⃓⃓⃓⃓
⃓X ≤ 3

4m

]︄
≤ 3

4∆3/2m.

At least m
4 machines are free for scheduling deterministic jobs, Jd, at total cost bounded by

E
[︄ ∑︂

j∈Jd

Cj

⃓⃓⃓⃓
⃓X ≤ 3

4m

]︄
≤ nd(nd + 1)

1
4m

≤ 8∆3/2m.

25

3 Stochastic Minsum Scheduling

In the case X > 3
4m, we get a (very crude) upper bound on the expected cost by assuming

that all jobs have processing time ∆3/2 and then scheduling them on a single machine:

E
[︄ ∑︂

j∈J
Cj

⃓⃓⃓⃓
⃓X >

3
4m

]︄
<

1
2(nd + ns)(nd + ns + 1)∆3/2 ≤ 3∆7/2m2.

By the Chernoff-Hoeffding bound (Theorem 2.3), the probability of the second case is at
most exp

(︂
−m
24

)︂
. Using the Law of Total Expectation (Theorem 2.1),

E
[︄ ∑︂

j∈J
Cj

]︄
≤ P

[︃
X ≤ 3

4m

]︃
E
[︄ ∑︂

j∈J
Cj

⃓⃓⃓⃓
⃓X ≤ 3

4m

]︄
+ P

[︃
X >

3
4m

]︃
E
[︄ ∑︂

j∈J
Cj

⃓⃓⃓⃓
⃓X >

3
4m

]︄

≤ 3
4∆3/2m + 8∆3/2m + exp

(︃
−m

24

)︃
· 3∆7/2m2 ∈ O(∆3/2m)

for sufficiently large m. Thus, on sufficiently many machines, the index policy Jd ≺ Js has
total cost greater by a factor of Ω(∆1/4) than that of policy Js ≺ Jd.

Instance I2(∆, m) Instance I2(∆, m) is defined by nd = ∆5/4m and ns = 2∆m; we assume
without loss of generality nd

m ∈ Z. Let X denote again the number of jobs in Js that turn out
to be long, i.e., X ∼ Bin(2∆m, 1

∆) and hence, E[X]= 2m. We analyze both index policies.

Deterministic jobs before stochastic jobs We condition on two disjoint events regarding
the realized value of X. If X ≤ 3m, every (stochastic) job has completed by time ∆5/4 +3∆3/2.
Further, the cost of Jd ≺ Js is upper bounded by the that of the following policy: Assign to
every machine at most nd

m = ∆5/4 deterministic jobs and at most three long stochastic jobs.
Thus,

E
[︄ ∑︂

j∈J
Cj

⃓⃓⃓⃓
⃓X ≤ 3m

]︄
≤ n2

d

m
+
(︂
∆5/4 + 3∆3/2

)︂
ns ∈ O(∆5/2m)

The case X > 3m happens with probability at most exp
(︂

−m
6

)︂
by the Chernoff-Hoeffding

bound (Theorem 2.3). Using again the fact that scheduling all jobs on one machine and
assuming Pj = ∆3/2 for j ∈ J yields an upper bound,

E
[︄ ∑︂

j∈J
Cj

⃓⃓⃓⃓
⃓X > 3m

]︄
≤ 3∆7/2m2.

With the Law of Total Expectation (Theorem 2.1),

E
[︄ ∑︂

j∈J
Cj

]︄
∈ O(∆5/2m).

26

3.3 Upper Bound for Bernoulli-Type Instances

Stochastic jobs before deterministic jobs Here, we condition on the event X ≥ m. The
probability of the event X < m is bounded from above by exp

(︂
−m

4

)︂
by Theorem 2.3. There-

fore, P[X ≥ m]≥ 1
2 for m ≥ 4. If X ≥ m, then every machine receives at least one stochastic

job before it starts processing the first deterministic job. Thus,

E
[︄ ∑︂

j∈Jd

Cj

⃓⃓⃓⃓
⃓X ≥ m

]︄
≥ ∆3/2nd = ∆11/4.

With the law of total expectation we conclude that

E
[︄ ∑︂

j∈J
Cj

]︄
≥ 1

2E
[︄ ∑︂

j∈J
Cj

⃓⃓⃓⃓
⃓X ≥ m

]︄
∈ Ω(∆11/4).

Thus, on sufficiently many machines, the index policy Js ≺ Jd has total cost greater by a
factor Ω(∆1/4) than that of policy Jd ≺ Js.

In summary, we have provided two instances I1(∆, m) and I2(∆, m) which are indistin-
guishable by any index policy. On the one hand, the policy Jd ≺ Js has total expected cost
greater by a factor of O(∆1/4) than the policy Js ≺ Jd for the first instance I1(∆, m). On the
other hand, the total expected cost of the policy Js ≺ Jd is greater by a factor of Ω(∆1/4)
than Jd ≺ Js on the second instance I2(∆, m). Therefore, the approximation ratio of any
index policy is at least Ω(∆1/4).

3.3 Upper Bound for Bernoulli-Type Instances

In this section, we show that taking the number of machines and jobs into account allows for
a list scheduling policy that is O(m)-approximate even if the deterministic jobs have different
sizes. The stochastic jobs still follow the same distribution. The main result is the following
theorem. (In [EFMM19], we prove a similar result restricted to identical deterministic jobs.)

Theorem 3.2. There exists an O(m)-approximate List Scheduling policy for Bernoulli-type
instances of P| |E[

∑︁
Cj].

For proving this result, we scale the given instance such that E[Pj] = 1 for j ∈ Js. That is,
we assume without loss of generality that deterministic jobs j ∈ Jd have processing time pj and
stochastic jobs j ∈ Js have processing time 0 with probability 1− 1

l and l with probability 1
l ,

where l > 0.
Regarding the total scheduling cost of any policy, we observe the following.

Observation 3.3. Individually scheduling Jd (in SPT order) or Js on m machines starting at
time 0 gives a lower bound on the cost of an optimal policy. We denote these job-set individual
scheduling costs by

∑︁
j∈Jt

E[C0
j], where t ∈ {s, d}. The sum of both also is a lower bound on

27

3 Stochastic Minsum Scheduling

the optimum cost, ∑︂
j∈J

E[C∗
j] ≥

∑︂
j∈Jd

E[C0
j] +

∑︂
j∈Js

E[C0
j],

where C∗
j denotes the (random) completion time of j under a fixed optimal policy.

We prove the result of this section, the existence of an O(m)-approximation, through a careful
analysis of the relation between the parameters of a Bernoulli-type instance. In the following,
the two policies Js ≺ Jd and Jd ≺ Js refer to List Scheduling where the deterministic jobs
additionally are ordered in Shortest Processing Time order, i.e., in non-decreasing pj .
Clearly, the sorting of jobs as well as following the respective priority order when scheduling
the jobs has polynomial time complexity. Hence, we make the following observation.

Observation 3.4. The policies Js ≺ Jd and Jd ≺ Js are polynomial-time policies.

First, we consider instances with few deterministic or few stochastic jobs.

Lemma 3.5. Let t, t′ ∈ {s, d}, with t ̸= t′, refer to the two different job types. The policy Jt ≺ Jt′

is a 3-approximate policy for Bernoulli-type instances satisfying nt′ ≤ 2m with non-uniform
deterministic job sizes.

Proof. By Observation 3.4, the policies Js ≺ Jd and Jd ≺ Js run in polynomial time.
The cost of Jt ≺ Jt′ is at most the cost of scheduling Jt and the cost of scheduling the ith

and the (m + i)th job in Jt′ on machine i (if these jobs exist), starting after the jobs of Jt on
machine i have completed. Let Sj denote the (random) starting time of job j ∈ J under the
policy Jt ≺ Jt′ . By linearity of expectation,

∑︂
j∈J

E[Cj] =
∑︂
j∈Jt

E[C0
j] +

∑︂
j∈J ′

t

E[Sj + Pj]

≤ 3
∑︂
j∈Jt

E[C0
j] +

∑︂
j∈Jt′

E[C0
j]

≤ 3
∑︂
j∈J

E[C∗
j].

Based on this result, we assume ns > 2m and nd > 2m for the remainder of this section.
Next, we distinguish two cases depending on the number of stochastic jobs relative to the
number of deterministic jobs. Both cases rely on a careful analysis of the job-set individual
cost for the stochastic jobs. More precisely, we show for a set J ′

d ⊆ Jd with |J ′
d| ≤ ns that the

cost of Js ≺ J ′
d is bounded by O(m)

∑︁
j∈Js∪Jd

E[C∗
j].

Lemma 3.6. Let J ′
d ⊆ Jd with ns ≥ |J ′

d| > 2m. Then, Js ≺ J ′
d is an O(m)-approximation for

the job set J ′
d ∪ Js.

28

3.3 Upper Bound for Bernoulli-Type Instances

For the proof of this lemma, we use the following technical result that gives some properties
of the random variable X counting the number of long stochastic jobs. Recall that Xj is the
random variable indicating whether or not Pj is equal to l. That is, Xj ∼ Ber

(︂
1
l

)︂
, and X can

be written as
∑︁

j∈Js
Xj .

We consider arbitrary Bernoulli trials with success probability q ∈ (0, 1). Let Xj ∼ Ber(q)
for j ∈ [n] and let X =

∑︁n
j=1 Xj . Let Zi be the random variable denoting the position of

the ith success, i.e., the ith variable in {Xj : Xj = 1, j ∈ [n]}. The following lemma states
some elementary properties of Zi.

Lemma 3.7. Let m ∈ N with 2m < n. Let i ∈ [λm] with λ ∈
[︂⌊︂

n
m

⌋︂]︂
and let k ∈ [n]. Then,

(i) E[Zi | X = k] = i
k+1(n + 1),

(ii) E[Zi | λm ≤ X < (λ + 1)m] ≤ i
λm+1(n + 1), and

(iii) E[n− Zm | m ≤ X < 2m] ≥ n
4m .

Proof. For r ∈ [n], the random variable X(r) :=
∑︁r

j=1 Xj follows a binomial distribution with
size parameter r and success probability q as the Xj are independent Bernoulli-distributed
random variables with success probability q.

Let us recall that P
[︁
E | F

]︁
= P[E∩F]

P[F] for two events E and F with P[F]> 0.

Ad (i) For i, z ∈ [k] with i ≤ z,

{Zi = z} = {Xz = 1} ∩ {X(z−1) = i− 1},

i.e., the event that the ith success happens in trial z is equivalent to observing that the zth
trial is a success after having seen i− 1 successes among the first z − 1 trials.

Intersecting with the event {X = k}, we obtain

{Xz = 1} ∩ {X(z−1) = i− 1} ∩ {X = k} = {Xz = 1} ∩ {X(z−1) = i− 1} ∩ {X −X(z) = k − i}.

Since the underlying Bernoulli trials of the three events on the right side are independent,
these events are as well. We conclude

P
[︁
Zi = z | X = k

]︁
=

P[Xz = 1]· P
[︂
X(z−1) = i− 1

]︂
· P
[︂
X −X(z) = k − i

]︂
P[X = k] =

(︁z−1
i−1
)︁
·
(︁n−z

k−i

)︁(︁n
k

)︁ ,

where we used that X(z−1) and X −X(z) are binomially distributed with success probability q

and size parameter z − 1 and n− z, respectively.
With the convention

(︁r
q

)︁
= 0 for r, q ∈ N with q > r , it follows that

(︄
n

k

)︄
E
[︁
Zi | X = k

]︁
=

n∑︂
z=0

z P
[︁
Zi = z | X = k

]︁(︄n

k

)︄

29

3 Stochastic Minsum Scheduling

= i
n∑︂

z=0

(︄
z

i

)︄(︄
n− z

k − i

)︄

= i

(︄
n + 1
k + 1

)︄
.

The last equality follows from the index shift

n∑︂
z=0

(︄
z

i

)︄(︄
n− z

k − i

)︄
=

n+1∑︂
z=1

(︄
z − 1

i

)︄(︄
n + 1− z

k − i

)︄

and the following observation: The last line in the above calculation asks in how many ways
one can pick k + 1 successes among n + 1 trials. We can partition this based on the position of
the (i + 1)st success for a fixed i. The (i + 1)st success can be positioned between the (i + 1)st
and the (n− k + i)th trial. If the (i + 1)st success is at position z, there have to be i successes
among the first z− 1 trials and, since we want to pick k + 1 successes, the remaining n + 1− z

trials have to contain k − i successes. Summing over all positions l of the (i + 1)st success
yields the equality.

Ad (ii) With the Law of Total Expectation (Theorem 2.1), we can use (i) to prove the
statement as follows. Conditioning Zi on the event {X = k |λm ≤ k < (λ + 1)m} yields

E
[︁
Zi | λm ≤ X < (λ + 1)m

]︁
=

(λ+1)m−1∑︂
k=λm

E
[︁
Zi | X = k

]︁
P
[︁
X = k | λm ≤ X < (λ + 1)m

]︁
.

Applying (i), we get that this equals
(λ+1)m−1∑︂

k=λm

i

k + 1(n + 1)P
[︁
X = k | λm ≤ X < (λ + 1)m

]︁
.

Since λm + 1 clearly is a lower bound on the denominator of every summand, this is at most

i

λm + 1(n + 1)
(λ+1)m−1∑︂

k=λm

P
[︁
X = k | λm ≤ X < (λ + 1)m

]︁
The Law of Total Expectation, Theorem 2.1, concludes the calculation with

E
[︁
Zi | λm ≤ X < (λ + 1)m

]︁
≤ i

λm + 1(n + 1).

Ad (iii) With (i) it follows that

E
[︁
n− Zm | X = m

]︁
= n− m

m + 1(n + 1)

= nm + n− nm−m

m + 1
≥ n

4m
,

30

3.3 Upper Bound for Bernoulli-Type Instances

where we used n > 2m for the last inequality. Using again the Law of Total Expectation as
in (ii), the statement follows.

Proof of Lemma 3.6. By Observation 3.4, the policy Js ≺ J ′
d runs in polynomial time.

We analyze the performance of Js ≺ J ′
d by conditioning on the number X of long jobs. We

index the deterministic jobs in order of their processing times, i.e., p1 ≤ · · · ≤ p|J ′
d
|.

For the case 0 ≤ X < m, let k ∈ N with 0 ≤ k < m. If a realization satisfies X = k, then
there exists at least one machine that does not schedule stochastic jobs and starts processing
deterministic jobs at time 0 in SPT order. Thus,

E
[︄ ∑︂

j∈J
Cj

⃓⃓⃓⃓
⃓X = k

]︄
≤ k · l +

∑︂
j∈J ′

d

j · pj .

Using a bound by Eastman, Even, and Isaacs [EEI64] on the single-machine scheduling cost
in terms of the cost of a schdule on m machines, we have

E
[︄ ∑︂

j∈J
Cj

⃓⃓⃓⃓
⃓X = k

]︄
≤ k · l + m

∑︂
j∈J ′

d

C0
j .

Since the optimal policy also has to process the k long stochastic jobs,

E
[︄ ∑︂

j∈J
C∗

j

⃓⃓⃓⃓
⃓X = k

]︄
≥ k · l +

∑︂
j∈J ′

d

C0
j ,

where C∗
j denotes the completion time of j under an optimal policy. Thus,

E
[︄ ∑︂

j∈J
Cj

⃓⃓⃓⃓
⃓X = k

]︄
≤ mE

[︄ ∑︂
j∈J

C∗
j | X = k

]︄
.

Consider now the case λm ≤ X < (λ + 1)m for λ ∈
{︂

1, . . . ,
⌊︂

ns
m

⌋︂}︂
. All stochastic jobs are

finished at the latest by time (λ + 1) l. Hence, from time (λ + 1) l on, all machines process
deterministic jobs only. Thus,

∑︂
j∈J

E[Cj | λm ≤ X < (λ + 1)m] ≤
∑︂
j∈J

E[C0
j | λm ≤ X < (λ + 1)m] + (λ + 1)l|J ′

d|.

As noted in Observation 3.3, the first term is a lower bound on the optimal cost and it remains
to bound the second term, i.e., (λ + 1)l|J ′

d|.
Note that a non-anticipatory policy does not know the positions of the long jobs. Thus, such

a policy cannot start any of the stochastic jobs coming after the first (k ·m) long ones before
time k · l for 1 ≤ k ≤ λ. Recall that Zkm is the (random) position of the (k ·m)th long job.
Hence, ns − Zkm stochastic jobs are delayed by at least k · l.

For λ = 1, Lemma 3.7 (iii) implies that scheduling only Js costs at least l ns
4m , i.e.,

∑︂
j∈Js

E[C0
j | m ≤ X < 2m] ≥ l

ns

4m
≥ 1

8m
(λ + 1)l|J ′

d|.

31

3 Stochastic Minsum Scheduling

For 2 ≤ λ ≤ ⌊ns
m ⌋, with Lemma 3.7 (ii) it follows

∑︂
j∈Js

E[C0
j | λm ≤ X < (λ + 1)m] ≥

λ∑︂
k=1

lE[ns − Zkm | λm ≤ X < (λ + 1)m]

≥ lns

λ∑︂
k=1

λm− km

2λm

≥ lλ|J ′
d|

8
≥ 1

16(λ + 1)l|J ′
d|.

Using again the Law of Total Expectation (Theorem 2.1) and combining the above results,

∑︂
j∈J

E[Cj] ≤ max{16, 8m}
∑︂
j∈J

E[C∗
j].

This concludes the proof.

If the instance contains less deterministic jobs than stochastic jobs, then Lemma 3.6 imme-
diately implies that Js ≺ Jd is an O(m)-approximate policy.

Lemma 3.8. The policy Js ≺ Jd is O(m)-approximate if 2m < nd ≤ ns.

For the case with more deterministic jobs than stochastic jobs, we partition the deterministic
jobs into two parts Jd,1 and Jd,2 and use the List Scheduling order Jd,1 ≺ Js ≺ Jd,2 where
the deterministic jobs are again ordered by non-decreasing processing times. The first set Jd,1

contains the deterministic jobs {1, . . . , jd} and the second set Jd,2 the jobs {jd + 1, . . . , nd}.
Choosing job jd maximal such that nsC0

jd
≤
∑︁

j∈Jd
C0

j allows us to simultaneously bound the
cost incurred due to scheduling Js after Jd,1 and due to scheduling Jd,2 after Js. This job
exists since ns ≤ nd and

∑︁
j∈Jd

C0
j ≥ ndC0

1 . (Recall that the job-set individual cost for the
deterministic jobs corresponds to scheduling in SPT order.)

Lemma 3.9. List Scheduling in the order Jd,1 ≺ Js ≺ Jd,2 is an O(m)-approximate policy.

Proof. Since
∑︁

j∈Jd
C0

j can be computed in polynomial time, job jd can be determined in
polynomial time as well. Hence, the policy Jd,1 ≺ Js ≺ Jd,2 runs in polynomial time.

The scheduling cost of the policy Jd,1 ≺ Js ≺ Jd,2 can be naturally split into the three parts
corresponding to the respective job sets. Clearly,

∑︂
j∈Jd,1

E[Cj] ≤
∑︂

j∈Jd

C0
j .

Observe that the policy starts scheduling stochastic jobs no later than C0
jd

by construction.

32

3.3 Upper Bound for Bernoulli-Type Instances

Hence, the cost incurred by the stochastic jobs can be bounded by

∑︂
j∈Js

E[Cj] ≤ nsC0
jd

+
∑︂

j∈Js

E[C0
j] ≤

∑︂
j∈J

E[C0
j].

It remains to bound the cost of scheduling Jd,2 after the stochastic jobs in Js. These cost are
bounded by List Scheduling at time 0 in the order Js ≺ Jd,2 and adding |Jd,2|C0

jd
, i.e.,

∑︂
j∈Jd,2

E[Cj] ≤ |Jd,2|C0
jd

+
∑︂

j∈Jd,2∪Js

E[CLS
j].

The first term on the right side is upper bounded by the set-individual scheduling cost of the
deterministic jobs as SPT implies C0

j ≤ C0
k for j < k. The second term can be bounded with

Lemma 3.6 if |Jd,2| ≤ ns. As jd was chosen maximal, it holds that nsC0
jd+1 >

∑︁
j∈Jd

C0
j . This

implies ∑︂
j∈Jd,2

C0
j ≥ |Jd,2|C0

jd+1 >
|Jd,2|

ns

∑︂
j∈Jd

C0
j ,

where C0
j , for j ∈ Jd,2, refers to the set-individual cost when scheduling all deterministic jobs.

Rearranging yields

|Jd,2| ≤ ns

∑︁
j∈Jd,2

C0
j∑︁

j∈Jd
C0

j

≤ ns.

Lemma 3.6 and the above observation on completion times under SPT imply that

∑︂
j∈Jd,2

E[Cj] ≤
∑︂

j∈Jd

C0
j +O(m)

∑︂
j∈Js∪Jd,2

E[C∗
j].

Combining the cost individually incurred by the sets Jd,1,Js, and Jd,2, we obtain

∑︂
j∈J

E[Cj] ≤ O(m)
∑︂
j∈J

E[C∗
j].

We conclude with a policy for scheduling Bernoulli-type instance.

Algorithm 3.1: List scheduling policy for Bernoulli-type instances with non-uniform determin-
istic jobs

At any time when a machine is idle, select the next job to schedule according to the following
priority order:
if m = 1 do

use SEPT
else-if nd ≤ 2m do

use Js ≺ Jd

else-if ns ≤ 2m do

33

3 Stochastic Minsum Scheduling

use Jd ≺ Js

else-if ns ≥ nd do
use Js ≺ Jd

else
jd ← max{j ∈ Jd : nsC0

j ≤
∑︁

k∈Jd
C0

k}
Jd,1 ← {1, . . . , jd}
Jd,2 ← {jd + 1, . . . , nd}
use Jd,1 ≺ Js ≺ Jd,2

Proof of Theorem 3.2. Algorithm 3.1 is a list scheduling policy that selects one out of four
index policies, SEPT, Jd ≺ Js, Js ≺ Jd, and Jd,1 ≺ Js ≺ Jd,2, depending on the numbers of
jobs and machines. The approximation ratio follows from the fact that SEPT is optimal on
a single machine [Rot66] and from Lemmas 3.5, 3.8, and 3.9. Since we can select the correct
case in polynomial time and any of these policies runs in polynomial time, Algorithm 3.1 is
indeed an O(m)-approximate policy.

3.4 Further Results on Bernoulli-Type Instances

After having shown the O(m)-approximate policy for Bernoulli-type instances with arbitrary
deterministic jobs, we further analyze instances with identical deterministic jobs. We are
particularly interested in relationships between relevant parameters that allow us to obtain
constant approximate scheduling policies. This interest guides the structure of this section:
We dedicate a part to each combination of parameters for which we are able to obtain constant
approximation ratios. Interestingly, there remains a gap depending on the expected number
of long stochastic jobs. Hence, this section does not provide an O(1)-approximate policy for
every Bernoulli-type instance.

3.4.1 Less Stochastic Than Deterministic Jobs

We show that Jd ≺ Js is O(1)-approximate if there are less stochastic than deterministic jobs.

Lemma 3.10. Let c ∈ N. The policy Jd ≺ Js is a (2c+1)-approximate policy for Bernoulli-type
instances with uniform deterministic job sizes if nd > m and ns ≤ cnd.

Proof. When scheduling in order Jd ≺ Js, machines start processing jobs in Js no later than
time

⌈︂
nd
m

⌉︂
p ≤ 2nd

m p when all jobs in Jd have completed. Thus, the total cost of scheduling Js

after Jd is ∑︂
j∈Js

E[C0
j] + ns · 2

nd

m
p ≤

∑︂
j∈Js

E[C0
j] + 2c

∑︂
j∈Jd

E[C0
j] .

Adding the job-set individual cost of the deterministic jobs Jd implies the approximation
ratio (2c + 1) and Observation 3.4 bounds the running time.

34

3.4 Further Results on Bernoulli-Type Instances

3.4.2 Many Long Stochastic Jobs in Expectation

Recall that Xj denotes the random variable indicating whether or not Pj = l and X counts the
number of such stochastic jobs j. Motivated by Lemma 3.7, that analyzes the expected number
of stochastic jobs after having observed a certain number of long ones, we consider instances
where, in expectation, the number of stochastic long jobs is at least a constant fraction more
than the number of machines. We show that Js ≺ Jd achieves a constant approximation ratio
if additionally nd ≤ ns holds.

Lemma 3.11. For Bernoulli-type instances satisfying nd ≤ ns and E[X] ≥ (1 + ε)m, the
scheduling policy Js ≺ Jd is a 4+3ε

ε -approximate policy.

Proof. Again, Observation 3.4 bounds the running time of Js ≺ Jd.
The cost for stochastic jobs incurred by the policy Js ≺ Jd is bounded by the set-individual

scheduling cost, i.e., by
∑︁

j∈Js
E[C0

j]. Hence, it remains to bound the cost for scheduling
the deterministic jobs after all stochastic jobs finish. This cost can be bounded from above
by ndCmax(Js) +

∑︁
j∈Jd

C0
j , where Cmax(Js) is a random variable representing the makespan

of the stochastic jobs. Since we use List Scheduling, the makespan of Js is given by l
⌈︂

X
m

⌉︂
,

which is at most l
(︂

X
m +1

)︂
. Hence, in expectation, the scheduling cost of the deterministic jobs

is bounded by

nd E[Cmax(Js)] ≤ lnd

(︄
E[X]

m
+ 1

)︄
= lnd + ndns

m
≤
(︃

1 + 1
1 + ε

)︃
n2

s

m
,

where we used nd ≤ ns and ns
l = E[X] ≥ (1 + ε)m.

For bounding the term on the right side, we use a valid inequality for any scheduling policy Π
and any subset of jobs J ′ ⊆ J discovered by Möhring, Schulz, and Uetz [MSU99]:

∑︂
j∈J ′

E[Pj]E
[︂

CΠ
j

]︂
≥ 1

2m

⎛⎝∑︂
j∈J ′

E[Pj]

⎞⎠2

+ 1
2
∑︂

j∈J ′

E[Pj]2 − m− 1
2m

∑︂
j∈J ′

Var[Pj].

Note that the set-individual cost of the stochastic jobs is given by the cost of List Schedul-
ing in an arbitrary order. Applying this observation and the above bound to J ′ = Js and
using E[Pj] = 1 as well as Var[Pj] = l − 1, we obtain

∑︂
j∈Js

E[C0
j] ≥ 1

2m

⎛⎝∑︂
j∈Js

1

⎞⎠2

+ 1
2
∑︂

j∈Js

12 − m− 1
2m

∑︂
j∈Js

(l − 1)

≥ n2
s

2m
− nsl

2

≥ ε

2(1 + ε)
n2

s

m
,

35

3 Stochastic Minsum Scheduling

where we used again that ns
l ≥ (1 + ε)m by assumption. Combining these two bounds yields

∑︂
j∈J

E[Cj] ≤
(︃

1 + 1
1 + ε

)︃
n2

s

m
+
∑︂

j∈Jd

C0
j +

∑︂
j∈Js

E[C0
j] ≤ 4 + 3ε

ε

∑︂
j∈J

E[C∗
j].

3.4.3 Bounded Processing Times of Stochastic Jobs

In this section, we consider Bernoulli-type instances where the processing time of the stochastic
jobs is bounded from above by the average load per machine caused by deterministic jobs. We
show that, if Pj ≤ 2ndp

m for all jobs and all realizations, then Js ≺ Jd achieves a constant
approximation ratio.

Lemma 3.12. For Bernoulli-type instances satisfying nd ≤ ns, E[X] ≤ (1 + ε)m and l ≤ 2ndp
m ,

the policy Js ≺ Jd is a (9 + 4ε)-approximate policy.

Proof. As in the proof of Lemma 3.11, the cost for scheduling the deterministic jobs after
finishing all stochastic jobs is bounded from above by ndCmax(Js)+

∑︁
j∈Jd

C0
j . In expectation,

the first term can be bounded by

ndE[Cmax(Js)] ≤ lnd + ndns

m
.

Using first ns
l ≤ (1 + ε)m and then l ≤ 2ndp

m yields

ndE[Cmax(Js)] ≤ 2(2 + ε)n2
dp

m
.

By a result of Eastman, Even, and Isaacs [EEI64], this term can be bounded by

ndE[Cmax(Js)] ≤ 4(2 + ε)
∑︂

j∈Jd

C0
j .

Combining these results with Observation 3.3 on the job-set individual cost and Observation 3.4
on the running time of Js ≺ Jd concludes the proof.

3.4.4 Bounded Makespan of Deterministic Jobs

In this section, we analyze the policy Jd ≺ Js for Bernoulli-type instances where the makespan
of deterministic jobs is bounded by a constant. We show that this policy achieves a constant
approximation ratio.

Lemma 3.13. If a Bernoulli-type instance satisfies ndp
m ≤ c, then Jd ≺ Js is a (c + 2)-

approximate policy.

Proof. For the policy Jd ≺ Js, the scheduling cost caused by the deterministic jobs coincides
with the corresponding job-set individual cost, i.e., with

∑︁
j∈Jd

C0
j . The cost of scheduling

the stochastic jobs after the deterministic jobs, is at most nsCmax(Jd) +
∑︁

j∈Js
E[C0

j]. As

36

3.4 Further Results on Bernoulli-Type Instances

the deterministic jobs are processed without idle time by List Scheduling, the first term is
bounded by

nsCmax(Jd) = ns

⌈︃
ndp

m

⌉︃
≤ ns

(︃
1 + ndp

m

)︃
.

Since
∑︁

j∈Js
E[Pj] = ns is a valid lower bound on the job-set individual cost for the stochastic

jobs and since ndp
m ≤ c by assumption, we have

nsCmax(Jd) ≤ (c + 1)
∑︂

j∈Js

E[C0
j].

Combining these bounds and using Observations 3.3 and 3.4 shows the statement.

3.4.5 At least m − 1 Expected Long Stochastic Jobs

In this part, we consider Bernoulli-type instances where the number of expected long jobs is at
least m− 1, i.e., E[X] ≥ m− 1. Depending on the size of deterministic jobs relative to E[Pj],
we distinguish two cases. If p ≤ E[Pj], then we show that Jd ≺ Js is a constant approximate
policy while Js ≺ Jd achieves a constant approximation ratio if p ≥ E[Pj].

A key ingredient to both results of this section is again the following valid inequality by
Möhring, Schulz, and Uetz [MSU99] for any scheduling policy Π and any job subset J ′ ⊆ J :

∑︂
j∈J ′

E[Pj]E
[︂

CΠ
j

]︂
≥ 1

2m

⎛⎝∑︂
j∈J ′

E[Pj]

⎞⎠2

+ 1
2
∑︂

j∈J ′

E[Pj]2 − m− 1
2m

∑︂
j∈J ′

Var[Pj].

Applied to J ′ = Js ∪ Jd, we simplify this to

∑︂
j∈Js

E
[︂

CΠ
j

]︂
+ p

∑︂
j∈Jd

E
[︂

CΠ
j

]︂
≥ 1

2m

(︂
n2

s + 2ndnsp + n2
dp2
)︂

+ 1
2
(︂
ns + ndp2

)︂
− m− 1

2m
ns(l − 1)

(3.1)

≥ ndnsp

m
,

where we used that E[X] ≥ m− 1 implies that ns ≥ (m− 1)(l − 1).

Lemma 3.14. For any Bernoulli-type instance satisfying p ≤ 1, ndp
m ≥ 1, and E[X] ≥ m − 1,

the policy Jd ≺ Js is a 3-approximate policy.

Proof. We bound again the cost of scheduling the stochastic jobs after the deterministic jobs
by nsCmax(Jd) +

∑︁
j∈Js

E[C0
j], where the first term is bounded:

nsCmax(Jd) ≤ ns

(︃
ndp

m
+ 1

)︃
≤ 2nsndp

m
.

37

3 Stochastic Minsum Scheduling

Recall that E[Pj] = 1 for j ∈ Js. Using this and p ≤ 1, we apply Equation (3.1) to obtain

∑︂
j∈J

E[C∗
j] ≥

∑︂
j∈Js

E[C∗
j] + p

∑︂
j∈Jd

E[C∗
j] ≥ ndnsp

m
.

Therefore, the policy Jd ≺ Js achieves an approximation ratio of 3. Further, Observation 3.4
bounds the running time of Jd ≺ Js.

Lemma 3.15. For any Bernoulli-type instance satisfying p ≥ 1 and E[X] ≥ m − 1 ≥ 1, the
policy Js ≺ Jd is a 4-approximate policy.

Proof. Observation 3.4 gives the desired polynomial bound on the running time.
The cost for scheduling the deterministic jobs after the stochastic jobs can again be bounded

by ndl
⌈︂

X
m

⌉︂
+
∑︁

j∈Jd
C0

j per realization. In expectation, the first term is at most nd

(︂
ns
m + l

)︂
.

Using the assumption E[X] ≥ m−1 in the form l ≤ ns
m−1 ≤

2ns
m , this term is at most nd

(︂
3ns
m

)︂
.

In order to bound this term, we use again Equation (3.1) to obtain

p
∑︂
j∈J

E[C∗
j] ≥

∑︂
j∈J

E[Pj]E[C∗
j] ≥ ndnsp

m
.

Dividing by p bounds the cost of the scheduling policy Js ≺ Jd by 4
∑︁

j∈J E[C∗
j].

3.4.6 Discussion

By combining the previous results, we observe that the remaining cases for Bernoulli-type
instances satisfy ns > nd, npp

m ≥ c and E[X] < m − 1. The difficulty with such instances lies
in the fact that there is a positive probability that Js ≺ Jd blocks all machines and delays all
deterministic jobs past time l, the long processing time of the stochastic jobs.

As we have also seen in Section 3.3, if the realized number of long jobs exceeds the number
of machines by at least a constant fraction, then the set-individual cost for scheduling the
stochastic jobs is sufficient for bounding the cost of the deterministic ones. However, if we only
have constantly many more realized long jobs than machines, then the set-individual cost only
allows for an O(m)-approximate policy but does not yield a constant performance guarantee.

Interestingly, known results about stochastic scheduling policies can be used to obtain O(1)-
approximate policies if the expected number of long jobs is at least m−1 which in turn implies
a better lower bound on any scheduling policy. If an instance has at most m− 2 long jobs in
expectation, then the large processing time of stochastic jobs (and hence the additional cost for
delaying the deterministic jobs by l) is too large to be balanced by the probability that many
stochastic processing times turn out to be long. Hence, the cost of Js ≺ Jd cannot be bounded
with the lower bounds on an optimal policy that are currently in use. Similarly, with the lower
bounds currently known, the sheer number of stochastic jobs prevents Jd ≺ Js from beingO(1)-
approximate. We also tried to analyze “mixed” policies where we schedule stochastic jobs

38

3.5 Concluding remarks

until a constant fraction of machines is blocked with long jobs before completely switching to
deterministic jobs. The problem here is that we force ourselves to delay a considerable fraction
of stochastic jobs to be scheduled after all deterministic jobs while an optimal policy might be
lucky in the same realization and schedule all of these jobs at time zero.

It remains an interesting open question whether Bernoulli-type instances allow for O(1)-
approximate policies. We believe that better lower bounds on the cost of the optimal scheduling
policy are necessary to improve upon our O(m)-approximate policy. Except for the bound
by Möhring, Schulz, and Uetz [MSU99], we are not capable of exploiting the fact that any
policy has to schedule both types of jobs and hence incurs some “mixed” cost, i.e., the cost
for scheduling a subset of the jobs of one type before the other type (and thus delaying the
second) or assigning a particular type of jobs only to a subset of machines.

3.5 Concluding remarks

In this chapter, we rule out distribution-independent approximation factors for minsum schedul-
ing for simple index policies, including List Scheduling in SEPT, LEPT, and LVF order.
This strong lower bound holds even for Bernoulli-type instances. It may surprise that such
simple, yet stochastic, instances already seem to capture the inherent difficulties of adaptive
stochastic scheduling. We believe that understanding the seemingly most simple Bernoulli-
type instances is a key for making progress on approximate policies for stochastic scheduling
problems. The general importance of high-variance jobs has also been observed in earlier
work [MSU99,MUV06,Sch08, IMP15,GMUX17].

For Bernoulli-type instances with arbitrary deterministic jobs, we also give an O(m)-approx-
imate list scheduling policy. The key ingredient to this analysis is the improved lower bound on
the optimal cost due to exploiting the properties of the underlying probability distributions.
It would be a major improvement to generalize this lower bound to arbitrary probability
distributions. Generally, it is a common understanding that improving upon lower bounds is
fundamental for designing O(1)-approximate scheduling policies.

The setting with a fixed number m of machines is of particular interest. While the special
case m = 1 is solved optimally by SEPT [Rot66], even the problem on m = 2 machines is open.
For Bernoulli-type instances, the index policy we give in this note is, in fact, a constant-factor
approximation. Any generalization would be of interest. Notice that our lower bound for
arbitrary index policies as well as earlier lower bounds on SEPT [CFMM14, IMP15] rely on a
large number of machines. Thus, even SEPT or some other simple index policy might give a
constant factor approximation for constant or bounded m.

For general instances, our lower bound for index policies suggests that future research on
more sophisticated scheduling policies is necessary for O(1)-approximate policies.

39

4
Online Load Balancing with

Reassignment

We investigate an online variant of load balancing with restricted assignment. In the
offline setting, there are n jobs given which need to be processed by m machines with
the goal to minimize the maximum machine load. Each job j has a processing time pj

and can only be processed by a subset of the machines. In the online variant of this
model, the jobs are only revealed incrementally and have to be immediately assigned to
a machine before the next job is revealed.
Since there exist strong lower bounds even for the special case of pj = 1 for all j, we
allow our online algorithm to reassign a job j at a cost of cj ≥ 0. This model contains
two online models as special cases: The model with unit reassignment cost is referred
to as recourse model while migration refers to cj = pj . In this chapter, we generalize
a result by Gupta, Kumar, and Stein [GKS14] on online load balancing with recourse
to the setting with arbitrary cost. That is, for unit processing times, we maintain a
constant competitive assignment with reassignment cost linear in

∑︁
j cj . For arbitrary

processing times, we give an O(log log mn)-competitive algorithm with reassignment
cost O(1)

∑︁
j cj .

Bibliographic Remark: This chapter is based on unpublished, joint work with
S. Berndt and N. Megow.

Table of Contents

4.1 Introduction . 42

4.2 Online Flows with Rerouting . 44

4.3 Online Load Balancing with Reassignment . 46

4.3.1 Unit-Size Jobs . 46

4.3.2 Small Jobs . 47

4.3.3 Arbitrary Jobs . 52

4.4 Concluding Remarks . 53

41

4 Online Load Balancing with Reassignment

4.1 Introduction

We analyze an algorithm for an online scheduling problem. A set J of n jobs has to be assigned
to m machines to minimize the maximum load Cmax. We focus on the case of restricted
assignment where each job is characterized by a processing time pj ∈ N and a set of machines
it is allowed to be processed by. The online model we consider is based on the online-list
model, where jobs are revealed one by one and any online algorithm has to irrevocably assign
the job to one of its machines before the next job is revealed. That is, the jobs are revealed in
the order 1, . . . , n, and upon arrival of job j, the scheduler learns the processing time pj and
the set of machines that can process j. The algorithm has to assign j to one of its machines
before job j + 1 is revealed.

Restricted assignment is a special case of scheduling on unrelated machines where each job j

has a processing time pi,j that depends on the machine i the job is assigned to. Restricted
assignment can be modeled by requiring pi,j ∈ {pj ,∞} for each job j and each machine i.
We note that all known lower bounds on the competitive ratio of online algorithms for load
balancing on unrelated machines already hold for restricted assignment.

Azar, Naor, and Rom [ANR92] give a lower bound of Ω(log n) for any online algorithm,
even if pi,j ∈ {1,∞}. In recent years, several models have been developed to circumvent such
lower bounds by either giving the online algorithm more power or decreasing the knowledge
or power of the adversary. In this chapter, we choose the former model where the online
algorithm is allowed to revoke assignment decisions at a certain cost. That is, upon arrival of a
new job, previously revealed and assigned jobs might be reassigned at a job-dependent cost. Of
course, if one did not impose any bound on these reassignment cost, then the algorithm could
simulate the current offline optimum. Therefore, we assume that each job j has a non-negative
assignment cost cj that any scheduler has to pay when it (re)assigns j to a particular machine.
In particular, the assignment cost of an offline optimum is given by the sum of the assignment
costs of the current set of jobs.

As described in Chapter 2, we use competitive analysis to evaluate the performance of an
online algorithm. That is, an online algorithm is c-competitive if, for each instance and after
each arrival of a new job, its makespan is bounded by c C∗

max, where C∗
max is the minimal

makespan of any feasible schedule for the current job set. Further, we say that an online
algorithm has a reassignment factor of β if its amortized reassignment cost over the first k

rounds is bounded by β
∑︁k

j=1 cj for each k ∈ [n]. The aim is to design a c-competitive online
algorithm with bounded reassignment factor.

Migration and recourse The model with reassignment cost generalizes both the recourse
model — by setting cj = 1 — and the migration model with cj = pj . We refer to these special
reassignment factors by recourse and migration factor, respectively. We note that in these
two special cases the first assignment usually does not incur any cost. Both models have been

42

4.1 Introduction

analyzed from an amortized as well as from a worst-case point of view. In the latter, the
reassignment cost in round k is required to be bounded by βck. Clearly, any worst-case bound
translates to a bound in the amortized setting while the reverse is not necessarily true.

Westbrook [Wes00] is the first to consider online scheduling with reassignments. He con-
siders the case where jobs may arrive and depart. Here, the optimal makespan may decrease
over time. Therefore, he designs algorithms that are c-competitive against the current optimal
load. He gives constant competitive algorithms with constant migration factor and constant
recourse factor, respectively, for identical as well as related machines. For arbitrary reassign-
ment costs, the algorithm is O

(︂
logδ

maxj{cj/pj}
minj{cj/pj}

)︂
-competitive with reassignment factor O(δ) for

some parameter δ with 1 ≤ δ ≤ maxj{cj/pj}
minj{cj/pj} . Andrews, Goemans, and Zhang [AGZ99] improve

upon these results giving algorithms that are constant competitive against the current optimal
load with constant reassignment factor for identical and related machines.

Even for load balancing on identical machines, there is a lower bound of
√

3 ≈ 1.88 on the
competitive ratio of online algorithms by Rudin and Chandrasekaran [IC03] while the best
known algorithm achieves a competitive ratio of 1.92 and is due to Albers [Alb99]. Sanders,
Sivadasan, and Skutella [SSS09] improve upon this lower bound when using migration. More
precisely, they obtain a 3

2 -competitive algorithm with worst-case migration factor 4
3 . Moreover,

they design a family of (1 + ε)-competitive algorithms with worst-case migration factor β(ε)
allowing for trade-off between the quality of a solution and its migration cost. In the online
setting, they call such a family of algorithms robust PTAS. Also for identical parallel machines,
Skutella and Verschae [SV16] develop a robust PTAS for two problems, minimizing the maxi-
mum load and maximizing the minimum load on any machine, with an amortized bound on the
migration factor. When jobs can be preempted, Epstein and Levin [EL14] give a 1-competitive,
i.e., optimal, algorithm with worst-case migration factor 1 − 1

m .

Awerbuch et al. [AAPW01] investigate (among other problems) load balancing on unrelated
machines and give an O(log m)-competitive algorithm reassigning each job at most O(log m)
times. For the special case where pi,j ∈ {1,∞} for each job j and each machine i, their algo-
rithm is 16-competitive using O(log m) recourse if the optimal makespan is at least Ω(log m).

Gupta, Kumar, and Stein [GKS14] give an online algorithm for the general restricted assign-
ment problem that is O(log log mn)-competitive with constant recourse. For the special case of
restricted assignment with unit-size jobs, they give a O(1)-competitive algorithm with constant
recourse. Further, they consider an online flow problem with a single source where sinks arrive
online that want to receive one unit of flow from the source. If there is a feasible offline solu-
tion with cost C∗, then the algorithm violates the capacities by a factor at most (2 + ε) with
rerouting cost at most

(︂
1 + 2

ε

)︂
C∗ for ε > 0. The rerouting cost are defined as follows: If the

flow on an arc is increased or decreased, then an arc-dependent cost has to be paid per unit.

For restricted assignment with unit-size jobs, Bernstein et al. [BKP+17] give an 8-competitive
online algorithm with constant recourse that simultaneously achieves the competitive ratio for

43

4 Online Load Balancing with Reassignment

every ℓp-norm for p ∈ [1,∞]. That is, if l = (l1, . . . , lm) is the load vector of a given job-
to-machine assignment, then the ℓp-norm of l is defined by p

√︂∑︁m
i=1 lpi for p < ∞ and ℓ∞

is maxi li. They achieve this by carefully following a particular optimal assignment with ma-
chine loads (l∗1, . . . , l∗m) such that li ≤ 8l∗i after each arrival.

Further related work Azar, Naor, and Rom [ANR92] give a strong lower bound of Ω(log m)
on the competitive ratio of any online algorithm for the restricted assignment problem, even
if pi,j ∈ {1,∞}. Since in their example n = m, this additionally gives a lower bound of Ω(log n).
They also give an online algorithm matching this lower bound for the general load balancing
problem with restricted assignment. For randomized algorithms, they show that the exact
competitive ratio is in [ln m, ln m+1], where ln m denotes the natural logarithm of m for m > 0.

If jobs may arrive and depart, Azar, Broder, and Karlin [ABK94] give a lower bound
of Ω(

√
m) and, since n = Θ(m) in their lower bound example, simultaneously of Ω(

√
n).

Azar et al. [AKP+97] give an algorithm with matching competitive ratio O(
√

m).
Recourse and migration in online optimization has been studied for a variety of additional

problems; among them matching problems [GKS14,BKP+17,BHR19], connectivity problems,
such as Minimum Spanning Tree and Traveling Salesperson [MSVW16] as well as
Steiner Tree [GGK16, IW91], and packing problems [EL09, EL13, BJK20, JK19]. Online
optimization with reassignment cost has been considered for load balancing problems [Wes00,
AGZ99] and for Bin Packing [FFG+18].

Our contribution We generalize the result by Gupta, Kumar, and Stein [GKS14] on on-
line load balancing with recourse to the setting where job reassignments incur job-dependent
costs. We are able to match their competitive ratio of O(log log mn) (up to constants) with
reassignment cost O(1)

∑︁n
j=1 cj . We note that our result also implies a competitive ratio

of O(log log mn) with constant migration factor for online load balancing with migration.

4.2 Online Flows with Rerouting

Our results rely on and are inspired by the online flow algorithm with rerouting designed by
Gupta, Kumar, and Stein [GKS14]. Hence, we describe their algorithm in this section.

We consider the following online flow problem. We are given a directed graph G = (V, A)
with vertices V and arcs A. Each arc a ∈ A has a capacity ua ∈ Z+ and a cost ca ≥ 0.
Moreover, there is a source vertex s ∈ V . In round t, vertex vt ∈ V is specified as sink and
the task is to (unsplittably) send one unit of flow from s to vt, in addition to the unit flows
already being routed from the source to the vertices v1, . . . , vt−1, without violating the arc
capacities ua. Throughout this chapter we assume that the underlying offline problem admits
a feasible solution while an online algorithm may violate some capacity constraints.

44

4.2 Online Flows with Rerouting

Easy examples show that, in order to satisfy all the demands specified by the various sinks,
any deterministic online algorithm has to violate the arc capacities to some extent. Then, for
determining the quality of an algorithm, we are interested in two properties: (i) the minimal
factor by which any arc capacity is violated and (ii) the total cost of the flow. In round t,
that is after satisfying the demand of vertices v1, . . . , vt, let (fa(t))a∈A ∈ NA denote the flow
found by the online algorithm. We say that the algorithm is c-competitive if fa(t) ≤ cua holds
for each arc a and each round t. Although this notion of competitiveness is orthogonal to
the classical use of describing the ratio between the cost of the optimum and the cost of the
algorithm, it allows for an easier description when we ultimately talk about load balancing
with restricted assignment.

We observe that this problem generalizes load balancing with restricted assignment and
unit-size jobs in the following way. In the offline problem, we create for each machine and for
each job one vertex and add one vertex s as source. Given the optimal makespan C∗

max, the
source connects to each machine-vertex i by an arc with capacity us,i = C∗

max and cost cs,i = 0.
Further, between each machine-vertex i and each job-vertex j, we draw an arc (i, j) with
capacity 1 and cost cj if and only if j can be scheduled by machine i, i.e., if pi,j = 1. By
specifying each job-vertex as sink with unit demand, we obtain an instance of the offline
version of the above introduced flow problem. The online flow problem assumes that the
graph is known upfront while online load balancing is characterized by having the jobs, i.e., in
the reduction the job-vertices, revealed one by one. We emphasize that the graph we created
has a very special structure. Before a job-vertex is specified as a sink, sending flow along its
incident arcs violates the flow conservation at this vertex since all incident arcs are entering
this node. Thus, any algorithm that always maintains a feasible solution to the flow problem
will not use any of these arcs. The shortest-augmenting-path algorithm designed in [GKS14]
satisfies this condition.

The just developed reduction implies that the lower bound of Ω(log m) on the competitive
ratio for any online algorithm without reassignment for load balancing with restricted assign-
ment also holds for the online flow problem using the above definition of competitiveness for
this problem. To beat this strict lower bound, we allow the online algorithm to reroute flow at
a certain cost. More precisely, every time the flow sent along an arc a is decreased or increased
by one unit, the cost ca has to be paid. Let C∗ be the cost of an optimal solution after the
first t rounds. We aim at developing algorithms that violate the arc capacities by at most a
constant factor and simultaneously reroute flow at a cost bounded by O(C∗).

To this end, we have a closer look at the shortest path algorithm developed by Gupta,
Kumar, and Stein [GKS14]. Let f be the flow in graph G after round t. We define the residual
network Gt on the vertex set V as follows: For every arc a ∈ A let ā be its backward arc,
i.e., a = (v, w) and ā = (w, v). Set ut

a = cua − fa and ut
ā = fa, where c is the competitive

ratio we are aiming for. Moreover, let ct
a = ct

ā = ca. That is, in contrast to the classical
shortest-augmenting-path algorithm, the backward arc of every arc with positive flow has cost

45

4 Online Load Balancing with Reassignment

identical to its forward arc. If vertex vt is specified as sink in round t, then use a shortest path
algorithm to find P , a shortest path from s to vt in the residual network Gt. We augment
the flow f along P by one unit, i.e., if a ∈ P , then the flow along a is increased by one unit,
while ā ∈ P implies that fa is decreased by one unit.

Gupta, Kumar, and Stein show that this algorithm maintains a (2 + ε)-competitive flow
while the cost of rerouting the flow is at most

(︂
1 + 2

ε

)︂
times the cost of an offline optimum.

We restate their main result on maintaining flows online. For the proof we refer to [GKS14].

Theorem 4.1 (Theorem 6.1 in [GKS14]). If there is a feasible solution f∗ to the flow instance G

with source s and sinks v1, . . . , vt of cost C∗, the total cost of augmentations performed by
the adapted shortest-augmenting-path algorithm on instance G is at most

(︂
1 + 2

ε

)︂
C∗. The

capacities on the arcs are violated by at most a factor of (2 + ε).

4.3 Online Load Balancing with Reassignment

In this section, we prove the main result of this chapter, namely, the existence of a ran-
domized O(log log mn)-competitive online algorithm for load balancing with restricted assign-
ment, whose reassignment cost is bounded by O(1)

∑︁n
j=1 cj . We start by explaining a result

by [GKS14] for the special case of unit-size jobs as an immediate corollary of Theorem 4.1.
Then, we proceed similarly to the proof of Theorem 8.1 in [GKS14]: We partition the set of
jobs according to their processing times into big and small jobs with the classification being
relative to the current guess of the makespan. For small jobs, we use the algorithm developed
for unit-size jobs to obtain a fractional assignment that will then guide the assignment prob-
abilities of our randomized algorithm. Big jobs are further classified into groups of roughly
equal processing time such that the algorithm for unit-size jobs can explicitly handle their
assignment. Since we treat each of the O(log log mn) classes of big jobs separately, the loss in
the competitive ratio compared to the online flow problem is immediate.

4.3.1 Unit-Size Jobs

We start by giving an intuition on how we will use the result on online flows for online load
balancing with restricted assignment. Consider again the special case with pi,j ∈ {1,∞} for
each job j and each machine i. As explained above, this problem can directly be translated
to the online flow problem assuming that C∗

max, the optimal makespan, is known in advance.
This assumption is not a restriction as we can employ a standard guess-and-double framework
at the cost of losing an additional factor of 2 in the competitive ratio. Specifically, we start by
guessing C∗

max = 1, i.e., we assign the arcs (s, i) for i ∈ [m] a capacity of (2 + ε), where ε > 0
is the parameter that describes the trade off between competitive ratio and reassignment cost
in Theorem 4.1. That is, our algorithm will be 2(2 + ε)-competitive with reassignment cost
at most

(︂
1 + 2

ε

)︂
. In general, let round t refer to the point in time when job jt is revealed.

46

4.3 Online Load Balancing with Reassignment

In general, if C∗
max is the guess of the optimal makespan in round t, then the arcs (s, i)

for i ∈ [m] have capacity (2 + ε)C∗
max. If the shortest augmenting path algorithm does not

find a feasible flow in this network, then Theorem 4.1 implies that the true optimum is strictly
greater than C∗

max. Hence, we double C∗
max and rerun the shortest augmenting path algorithm

on the residual network Gt with the updated capacities us,i = (2 + ε)C∗
max.

As the failure of the shortest augmenting path algorithm before doubling gives a lower bound
on the optimal makespan, we obtain the following corollary; see also Section 7 in [GKS14].

Corollary 4.2. Let 0 < ε ≤ 1. If there is a feasible solution with makespan C∗
max and assign-

ment cost C∗ to the (offline) load balancing problem with restricted assignment and unit-size
jobs, then the shortest augmenting path algorithm combined with a guess-and-double frame-
work maintains a schedule with makespan at most 2(2 + ε)C∗

max and reassignment cost at
most

(︂
1 + 2

ε

)︂
C∗.

We note that this result may overestimate the actual reassignment cost due to the following
observation: In the online flow problem, increasing or decreasing the flow along an arc a by
one unit costs ca. When balancing load online with reassignment, the reassignment of job j

costs cj . However, the reduction we use implies that reassigning one unit-size job j from
machine i to machine i′ is equivalent to decreasing the flow along the arc (i, j) by one unit
while simultaneously increasing the flow along the arc (i′, j) by one unit. This implies that the
cost for rerouting the unit-flow associated with job j is 2cj .

4.3.2 Small Jobs

Our algorithm classifies jobs as big and small depending on the current guess of the optimal
makespan and the total number of jobs. Let us assume that we know n, the number of jobs,
and C∗

max, the optimal makespan. We justify this assumption when designing the algorithm
for the complete instance. Let γ = log mn. We say a job j is big if pj ≥ C∗

max
γ , and otherwise,

the job is small. Our algorithm treats these jobs differently, and we start by only considering
the small jobs, JS , of the instance. We prove the following result.

Theorem 4.3. There is a randomized online algorithm maintaining an assignment of the small
jobs JS with expected makespan at most O(1)C∗

max while incurring an expected reassignment
cost at most O(1)

∑︁
j∈JS

cj.

For simplicity, we assume that the set JS of small jobs is indexed in the order of the arrival
of jobs, i.e., JS = {1, . . . , nS}, where nS = |JS |. For scheduling the small jobs, we first
consider a fractional assignment of the jobs to machines in each time step. We interpret this
fractional assignment as a probability distribution of the jobs over the machines and would
like to obtain an integral assignment by applying classical rounding schemes. However, as we
aim at designing an online algorithm with bounded reassignment cost, we cannot round the

47

4 Online Load Balancing with Reassignment

solution in round t independently of the solution after round t− 1 while hoping to control the
total reassignment cost. Thus, we follow the careful rounding scheme developed by [GKS14].

Formally, for job j with processing time pj and assignment cost cj , we generate pj unit-size
jobs with reassignment cost cj

pj
and consider them as an input to online load balancing with

unit-size jobs as solved in Section 4.3.1. The set of machines that are able to process a unit-size
job associated with j is identical to the set of feasible machines for job j. We interpret the
assignment of the associated unit-size jobs as fractional assignment of the original job.

Consider round t, i.e., the assignment after job t has arrived and was fractionally assigned
by the algorithm in pt steps, one part per step. We are only interested in the final assignment
(of all unit-size jobs) and discard the intermediate assignments while job t was only partially
assigned. Let xi,j(t) be the number of unit-size jobs of job j that are assigned to machine i

at time t. Then, the total load on machine i at time t is given by li(t) =
∑︁t

j=1 xi,j(t).
Consider a machine i with xi,j(t) = xi,j(t − 1). Then, no unit-size job is moved from or to
machine i. Hence, the reassignment cost for such a machine is equal to zero. For machine i

with xi,j(t−1) > xi,j(t), exactly xi,j(t−1)−xi,j(t) unit-size jobs are moved from machine i to
machines i′ with xi′,j(t − 1) < xi′,j(t). By definition, reassigning one unit-size job associated
with j has actual cost cj

pj
. However, as observed in Section 4.3.1, the transformation to the

online flow problem implies that reassigning one unit-size job from i to i′ costs us 2 cj

pj
as it

involves decreasing the flow on the edge between j and i and increasing the flow on the edge
between j and i′. Hence, the assignment cost incurred due to the arrival of job t is given by

c(t) :=
m∑︂

i=1

t∑︂
j=1

cj

pj

⃓⃓⃓
xi,j(t− 1)− xi,j(t)

⃓⃓⃓
. (4.1)

If there is a schedule with makespan C∗
max, the algorithm maintains a fractional schedule with

makespan at most 6C∗
max and reassignment cost at most

∑︁t
s=1 c(s) ≤ 3

∑︁t
j=1 cj by setting ε = 1

in Corollary 4.2.

Since we are interested in an assignment of the original jobs j, we need to translate the frac-
tional assignment (xi,j(t))i,j at time t to an integral assignment without significantly increasing
the reassignment cost. A standard approach is to interpret the variables

(︂
xi,j(t)

pj

)︂m

i=1
as a prob-

ability distribution over the possible assignments of job j to the machines. In other words,
if Xj(t) ∈ [m] is the random variable dictating the assignment of j, then P

[︁
Xj(t) = i

]︁
= xi,j(t)

pj
.

Since the unit-size jobs associated with j have the same set of feasible machines, xi,j(t) = 0
if pi,j =∞. Hence, the assignment given by Xj(t) for 1 ≤ j ≤ t is feasible.

However, simply drawing the random variables Xj(t) according to the distribution given
by
(︂

xi,j(t)
pj

)︂m

i=1
does not allow us to bound the reassignment cost of the actual jobs in terms of

the bound c(t) defined in Equation (4.1). Therefore, we use the rounding approach developed
by [GKS14] that takes the realization of Xj(t− 1), i.e., the assignment of j in round t− 1, into
account when drawing the new assignment Xj(t). In round t, the newly arrived job t is always

48

4.3 Online Load Balancing with Reassignment

assigned according to the probabilities
(︂

xi,t(t)
pt

)︂m

i=1
since there is no previous assignment that

needs to be taken into account.
Fix a small job j ∈ JS with j < t. We construct the following complete bipartite directed

graph G(t) with vertex set V (t−1)∪V (t) and arc set V (t−1)×V (t), denoted by A(t). The two
vertex sets V (t− 1) and V (t) contain one vertex for each machine, i.e., V (s) = {i(s) : i ∈ [m]}
for s ∈ {t − 1, t}. An arc a = (i(t − 1), i′(t)) has cost ca = 0 if i = i′. Otherwise, the cost
for arc a ∈ A equals the reassignment cost of one of j’s unit sized jobs, i.e., ca := cj

pj
. Each

vertex i(t − 1) is a source with demand di(t−1) = −xi,j(t − 1), while each vertex i(t) is a sink
with demand di(t) = xi,j(t). Since

∑︁
i xi,j(t − 1) = pj =

∑︁
i xi,j(t), we can solve the min-cost

transportation problem for the pj units of flow from V (t−1) to V (t); for details please refer to
the book on network flows [AMO93]. Consider now the integral assignment Xj(t−1) = i of j at
time t. Then, pick one of the xi,j(t−1) units placed at i uniformly at random independently of
other jobs j′ ̸= j. Suppose this unit is sent to node i′(t) by the solution to the transportation
problem. Set Xj(t) = i′. The following lemma gives some useful properties of the random
variables that enable us to bound the reassignment cost of the integral assignment. As these
properties are only mentioned but not proven in [GKS14], we provide a full proof here.

Lemma 4.4. The random variables Xj(t) for 1 ≤ j ≤ t ≤ nS satisfy the following properties:

(i) Xj(t) and Xj′(t) are independent for j ̸= j′,

(ii) P[Xj(t) = i] = xi,j(t)
pj

, and

(iii) P[Xj(t− 1) ̸= Xj(t)] =
∑︁

i∈[m]:
P[Xj(t−1)=i]>0

1
pj

(xi,j(t− 1)− xi,j(t))+, where x+ = max{x, 0}.

Proof. We fix a time t.

Ad (i) Solving the transportation problem independently for each job implies Property (i).

Ad (ii) We prove this by induction on round t. Consider j = 1, the first small job that arrived.
Clearly, P[X1(1) = i] = xi1(1)

p1
by definition. Suppose now that (ii) holds for all jobs 1 ≤ j ≤ t−1

in round t−1. Consider the fractional assignment (xi,j(t))i,j after job t arrived. Let fi,i′ denote
the flow from machine vertex i(t−1) to vertex i′(t) as given by the optimal solution to the min-
cost transportation problem. If Xj(t− 1) = i, then the probability that Xj(t) = i′ is fi,i′

xi,j(t−1) .
By the Law of Total Expectation (Theorem 2.1) and by the induction hypothesis,

P
[︂
Xj(t) = i′

]︂
=

∑︂
i∈[m]:

P[Xj(t−1)=i]>0

P
[︂
Xj(t) = i′ |Xj(t− 1) = i

]︂
P
[︂
Xj(t− 1) = i

]︂

=
∑︂

i∈[m]:
P[Xj(t−1)=i]>0

fi,i′

xi,j(t− 1)
xi,j(t− 1)

pj

= xi′,j(t)
pj

,

49

4 Online Load Balancing with Reassignment

where the last equality follows from fii′ being a feasible solution to the transportation problem.

Ad (iii) Recall that ci(t−1),i(t) = 0. For a machine i with xi,j(t − 1) > xi,j(t), the optimal
solution to the transportation problem sends xi,j(t − 1) − xi,j(t) unit jobs to other machines.
Thus, P

[︁
Xj(t) ̸= Xj(t− 1) |Xj(t− 1) = i

]︁
= xi,j(t−1)−xi,j(t)

xi,j(t−1) . For i with xi,j(t−1) ≤ xi,j(t) the
optimal solution to the transportation problem sends xi,j(t− 1) unit jobs from i(t− 1) to i(t).
Thus, P

[︂
Xj(t) ̸= Xj(t− 1) |Xj(t− 1) = i

]︂
= 0. Therefore,

P
[︂
Xj(t) ̸= Xj(t− 1)

]︂
=

∑︂
i∈[m]:

P[Xj(t−1)=i]>0

P
[︂
Xj(t) ̸= Xj(t− 1) |Xj(t− 1) = i

]︂
P
[︂
Xj(t− 1) = i

]︂

=
∑︂

i∈[m]:
P[Xj(t−1)=i]>0

(︂
xi,j(t− 1)− xi,j(t)

)︂+

xi,j(t− 1)
xi,j(t− 1)

pj

=
∑︂

i∈[m]:
P[Xj(t−1)=i]>0

(︂
xi,j(t− 1)− xi,j(t)

)︂+

pj
,

where the first equality holds because of the Law of Total Expectation (Theorem 2.1) and the
second equality follows from Property (ii) and the observation discussed above.

Proof of Theorem 4.3. We first show that the above described algorithm incurs a total cost
of at most 3

∑︁nS
j=1 cj while maintaining a solution that has a small load on each machine in

expectation. To this end, let Li(t) :=
∑︁

j:Xj(t)=i pj denote the random load on machine i at
time t. We start with showing that E[Li(t)] ≤ 6C∗

max for all 1 ≤ i ≤ m. Since a bound on the
expected load per machine is not sufficient to bound the expectation of the maximum load,
i.e., E

[︁
maxi Li(t)

]︁
, afterwards, we show how to guarantee a makespan less than 18C∗

max with
probability one at the loss of another constant factor in the reassignment cost.

With Lemma 4.4, it follows

E
[︁
Li(t)

]︁
=

t∑︂
j=1

P[Xj(t) = i]pj =
t∑︂

j=1

xi,j(t)
pj

pj = li(t),

where li(t) is the fractional load on machine i after having assigned job t. By Corollary 4.2,
we know that max1≤i≤m li(t) ≤ 6C∗

max if there exists a feasible solution with makespan C∗
max.

Now consider the reassignment cost c̃(t) our algorithm incurs over the course of the arrival of t

small jobs. For 1 ≤ j ≤ t, the algorithm pays cj whenever Xj(t − 1) ̸= Xj(t). Thus, with
Property (iii) of Lemma 4.4, we have

E
[︁
c̃(t)

]︁
=

t∑︂
j=1

P[Xj(t− 1) ̸= Xj(t)]cj

50

4.3 Online Load Balancing with Reassignment

=
t∑︂

j=1

∑︂
i∈[m]:

P[Xj(t−1)=i]>0

cj

pj
(xi,j(t)− xi,j(t− 1))+

≤
t∑︂

j=1

m∑︂
i=1

cj

pj
|xi,j(t)− xi,j(t− 1)|

= c(t).

Again, with Corollary 4.2, the expected total cost of the randomized algorithm is bounded
by
∑︁n

t=1 c(t) ≤ 3
∑︁n

j=1 cj .

Unfortunately, bounding E
[︁
Li(t)

]︁
does not imply a bound on E

[︁
max1≤i≤m Li(t)

]︁
as noted

by [GKS14]. Indeed, a simple balls into bins argument shows that even though the expected
load of each machine is at most a constant, the expected maximum of the loads is Ω

(︂
log m

log log m

)︂
.

We use the fact that we are only considering small jobs in order to get a better bound.
Consider a time t as well as a machine i. Define the random variable Yi,j(t) to indicate
whether or not j is assigned to i at time t. So, Yi,j = 1{Xj(t)=i} and Li(t) =

∑︁
j∈JS

pjYi,j .
We have E

[︂∑︁
j∈JS

pjYi,j(t)
]︂

= li(t) ≤ 6C∗
max(t) as discussed above. Here, C∗

max(t) denotes
the optimal makespan in round t. Now, we bound the probability that the makespan of our
schedule exceeds 18C∗

max(t) in round t. We start by giving a union bound on this probability

P
[︂

max
i

li(t) ≥ 18C∗
max(t)

]︂
= P

[︄
∃i :

∑︂
j∈JS :Xj(t)=i

pj ≥ 18C∗
max(t)

]︄

≤
m∑︂

i=1
P
[︄ ∑︂

j∈JS :Xj(t)=i

pj ≥ 18C∗
max(t)

]︄

=
m∑︂

i=1
P
[︄ ∑︂

j∈JS :
γ

Yi,j(t)pj

C∗
max(t) ≥ 18γ

]︄
.

Fix a machine i and a round t and observe that the random variables γ
Yi,j(t)pj

C∗
max(t) are indepen-

dently distributed in [0, 1] with E
[︂∑︁

j∈JS
γ

Yi,j(t)pj

C∗
max(t)

]︂
= γ li(t)

C∗
max(t) ≤ 6γ. Applying the Chernoff-

Hoeffding bound (Theorem 2.3) with ε = 18C∗
max(t)
li(t) − 1 and thus ε2 ≥ 18C∗

max(t)
li(t) yields

P
[︄ ∑︂

j∈JS :
γ

Yi,j(t)pj

C∗
max(t) ≥ 18γ

]︄
≤ exp

(︃
− ε2 li(t)γ

3C∗
max(t)

)︃
≤ exp(−6γ) ≤ 1

(mt)6 .

Inserting this in the bound calculated above gives

P
[︂

max
i

li(t) ≥ 18C∗
max(t)

]︂
≤ 1

m5t6 .

Hence, for one instance with n jobs, the probability that the makespan of our algorithm

51

4 Online Load Balancing with Reassignment

exceeds 18C∗
max(t) in some round t is bounded by

P
[︂
∃t : max

i
li(t) ≥ 18C∗

max(t)
]︂
≤ 1

m5

nS∑︂
t=1

1
t6 ≤

1
m5

π6

945 ≤
1.02
m5 .

Hence, whenever the randomized rounding algorithm incurs a makespan more than 18C∗
max, we

just restart the algorithm from scratch and fast-forward to time t. Then, we reassign all small
jobs accordingly incurring a reassignment cost of at most C :=

∑︁
j∈JS

cj . If we observe such a
failure mode, we run the algorithm independently of all previous runs. Hence, the probability
that we observe such a failure mode k times for one instance is bounded by

(︂
1.02
m5

)︂k
≤ 1

2k

for m ≥ 2. Thus, the expected cost of possible failure modes is bounded by

∞∑︂
k=1

C k

(︃1
2

)︃k

= 2C

if m ≥ 2. We conclude that the algorithm is O(1)-competitive in expectation with expected
reassignment cost at most O(1)

∑︁
j∈JS

cj when combined with the failure mode.

4.3.3 Arbitrary Jobs

The main result of this section is the following theorem.

Theorem 4.5. There is a randomized online algorithm maintaining an assignment with ex-
pected makespan at most O(log log mn)C∗

max while incurring an expected reassignment cost of
at most O(1)

∑︁n
j=1 cj, where C∗

max is the optimal makespan.

The proof of the theorem follows the idea in [GKS14] for the proof of their Theorem 8.1.
Consider an arbitrary job set J and let p′

j := 2⌊log pj⌋. Define p′
i,j = p′

j if pi,j = pj and p′
i,j =∞

otherwise. By a fairly standard argument, this implies that the optimal makespan of the
original instance is at most twice the optimal makespan of the modified instance. Hence, at
the loss of an additional factor 2 in the competitive ratio, we assume from now on that the
processing times are powers of two and say job j belongs to class Ck if pj ∈ [2k−1, 2k) for k ∈ N.

For simplicity, let us start with supposing that we know n, the number of jobs we will
encounter, and C∗

max, the optimal makespan. Based on these two values, we classify each
arriving job as big or as small. We use JB and JS to refer to these two types of jobs.
Let γ = log mn. We say a job j is big if pj ≥ C∗

max
γ , and otherwise, the job is small. As jobs

may only arrive, each job makes the transition from big to small at most once. Hence, using
again a guess-and-double framework for C∗

max and the current value of n enables us to justify
this assumption.

Our algorithm treats these jobs differently: A small job j is assigned by the randomized
algorithm described in Section 4.3.2

52

4.4 Concluding Remarks

For big jobs, we use the partitioning into classes Ck and consider each class separately. The
rounding of the processing times upon arrival implies that jobs in the same class have the same
processing time, and, thus, we obtain an instance of online load balancing with unit-size jobs
by scaling the instance by 2k−1.

Formally, after the arrival of the first job 1, we round down p1 to the next power of 2 before
setting C∗

max = 2p1. Given m, we additionally set γ = log m as n = 1 currently holds. With
each new job, we update γ = log mn.

Then, we classify each job as big job if its processing time is at least C∗
max
γ , otherwise the

job is small. Based on the type of job j, we run the algorithm for small jobs (Section 4.3.2),
or we invoke the algorithm for unit-size jobs (Section 4.3.1) for class Ck, where k = ⌊log pj⌋.
Whenever the shortest-augmenting-path algorithm used a class of big jobs reports that it
cannot find a solution with makespan at most 3C∗

max or the randomized algorithm for small
jobs cannot find a solution with makespan at most 18C∗

max, we double C∗
max. If a previously

big job becomes small due to such an update of C∗
max
γ , we treat this transition as a new arrival

of a small job and invoke the algorithm for small jobs before assigning the new job j.
Before proving the main result of this chapter, we need to analyze the algorithm’s perfor-

mance when assigning big jobs. The rounding of the processing times upon arrival implies that
jobs in the same class have the same processing time, and, thus, we obtain an instance of online
load balancing with unit-size jobs by scaling the instance by 2k−1. Since there are O(log log mn)
classes of big jobs, Corollary 4.2 immediately yields the following result on big jobs.

Corollary 4.6. There is an online algorithm maintaining an assignment of the big jobs JB with
expected makespan at most O(log log mn)C∗

max and reassignment cost at most O(1)
∑︁

j∈JB
cj.

Proof of Theorem 4.5. Theorem 4.3 guarantees that the algorithm maintains a schedule for
the small jobs of makespan at most O(1)C∗

max while incurring a reassignment cost of at
most O(1)

∑︁
j∈JS

cj . Corollary 4.6 implies that the schedule for the big jobs has makespan
at most O(log log mn)C∗

max with total cost bounded by O(1)
∑︁

j∈JB
cj . Hence, the algo-

rithm achieves a makespan of at most O(log log mn)C∗
max with total reassignment cost at

most O(1)
∑︁

j∈J cj .

4.4 Concluding Remarks

In this chapter, we design an online algorithm for load balancing with reassignment cost.
Somewhat surprisingly, the competitive ratios achieved in all three reassignment models is
equal (up to constants). It remains an interesting open question whether the problem admits a
constant competitive algorithm in any reassignment model with constant reassignment factor
or if there even exists an online algorithm allowing for tradeoff between the competitive ratio
and reassignment factor. We would like to point out that the analysis of the algorithm is tight,
and thus for affirmatively answering these questions one needs to design a new algorithm.

53

4 Online Load Balancing with Reassignment

Further interesting research directions include maximizing the minimal load and considering
the fully dynamic setting where items might leave as well. The difficulty in both settings is
that there might be time points where the optimum is equal to 0 which makes these types of
problems notoriously difficult for approximation. One way to overcome these difficulties would
be to aim for competitive ratios with an additive constant; such an approach is developed, e.g.,
in [BRVW20], for online load balancing on identical machines.

54

5
Online Throughput Maximization

We study an online scheduling problem where jobs with deadlines arrive online over
time at their release dates, and the task is to determine a preemptive schedule on m

machines which maximizes the number of jobs that complete before their deadline. To
circumvent known impossibility results, we make a standard slackness assumption by
which the feasible time window for scheduling a job is at least 1 + ε times its processing
time, for some ε > 0. We design a simple admission scheme that achieves a competitive
ratio of O

(︁ 1
ε

)︁
. This is best possible as our matching lower bound shows.

On the technical side, we develop a combinatorial tool for analyzing the competitive
ratio of a certain class of non-migratory online algorithms. As the next chapter shows,
this tool is also of interest in a closely related problem.
Bibliographic Remark: The lower bound and an early version of the algorithm for
one machine as well as parts of its analysis are based on joint work with L. Chen,
N. Megow, K. Schewior, and C. Stein [CEM+20]. The generalization to multiple
machines and the remaining parts of the analysis are based on joint work with N.
Megow and K. Schewior [EMS20]. Therefore, some parts correspond to or are identical
with [CEM+20] and [EMS20].

Table of Contents

5.1 Introduction . 56

5.2 The Threshold Algorithm . 58

5.2.1 The Threshold Algorithm . 58

5.2.2 Main Result and Road Map of the Analysis . 59

5.3 Successfully Completing Sufficiently Many Admitted Jobs 60

5.4 Competitiveness: Admitting Sufficiently Many Jobs . 68

5.4.1 A Class of Online Algorithms . 68

5.4.2 Admitting Sufficiently Many Jobs . 73

5.5 Lower Bound on the Competitive Ratio . 75

5.6 Concluding Remarks . 77

55

5 Online Throughput Maximization

5.1 Introduction

We consider a model in which jobs arrive online over time at their release date rj ≥ 0. Each job
has a processing time pj ≥ 0, and a deadline dj ≥ 0. In order to complete, a job must receive
a total of pj units of processing time in the interval [rj , dj). There are m identical machines
to schedule jobs. We allow preemption, that is, the processing of a job can be interrupted and
resumed at some later point in time. Further, we distinguish migratory and non-migratory
algorithms. If an algorithm is migratory or it is allowed to use migration, then any preempted
job may resume processing on any machine while it may only be completed by the machine it
first started on otherwise. In a feasible schedule, no job is run in parallel with itself and no
machine processes more than one job at any time. If a schedule completes a set S of jobs, then
the cardinality |S| of the set S is its throughput, which has to be maximized.

We analyze the performance of algorithms using standard competitive analysis [ST85] in
which the performance of an algorithm is compared to that of an optimal offline algorithm
with full knowledge of the future. More precisely, an online algorithm A is called c-competitive
if it achieves for any input instance I a total value of |A(I)| ≥ 1

c |Opt(I)|, where Opt(I) is
the set of jobs scheduled by an optimal (offline) algorithm and A(I) the one scheduled by A.

The problem becomes hopeless when preemption is not allowed: whenever an algorithm
starts a job j without being able to preempt it, it may miss the deadlines of an arbitrary
number of jobs that would have been schedulable if j had not been started. Therefore, we
focus on preemptive online throughput maximization.

Hard examples for online algorithms tend to involve jobs that arrive and then must im-
mediately be processed since dj − rj ≈ pj . It is entirely reasonable to bar such jobs from a
system, requiring that any submitted job contains some slack. That is, we must have some
separation between pj and dj − rj . To this end, we say that an instance has ε-slack if every
job satisfies dj − rj ≥ (1 + ε)pj . We develop an algorithm whose competitive ratio depends
on ε; the greater the slack, the better we expect the performance of our algorithm to be.
This slackness parameter captures certain aspects of Quality-of-Service provisioning and ad-
mission control, see, e.g., [GGP97,LWF96], and it has been considered in previous work, e.g.,
in [AKL+15, BH97, GNYZ02, Gol03, LMNY13, SS16]. Other results for scheduling with dead-
lines use speed scaling, which can be viewed as another way to add slack to the schedule; see,
e.g., [ALLM18,BCP11, IM18,PS10].

Related work Preemptive online scheduling and admission control have been studied rigor-
ously. There are several results regarding the impact of deadlines on online scheduling; see,
e.g., [BHS94,GNYZ02,Gol03] and references therein.

For maximizing the throughput on a single machine, Baruah, Haritsa, and Sharma [BHS94]
show that, in general, no online algorithm achieves a bounded competitive ratio. Thus, their
result justifies our assumption on ε-slackness of each job. Moreover, they consider special

56

5.1 Introduction

cases such as unit-size jobs or agreeable deadlines where they provide constant-competitive al-
gorithms even without further assumptions on the slack of the jobs. Here, deadlines are agree-
able if rj ≤ rj′ for two jobs j and j′ implies dj ≤ dj′ . Despite the strong impossibility results
for general instances, Kalyanasundaram and Pruhs [KP03] give a randomized O(1)-competitive
algorithm. No deterministic algorithm has been known prior to our Θ

(︂
1
ε

)︂
-competitive algo-

rithm [CEM+20].
When the scheduler is concerned with machine utilization, i.e., she wants to maximize the

total processing time of completed jobs, the problem becomes more tractable. On a single ma-
chine, Baruah et al. [BKM+91,BKM+92] provide a best-possible online algorithm achieving a
competitive ratio of 4, even without any slackness assumptions. Baruah and Haritsa [BH97] are
the first to investigate the problem under the assumption of ε-slack and give a 1+ε

ε -competitive
algorithm which is asymptotically best possible. For parallel machines (though without mi-
gration), DasGupta and Palis [DP00] show that a simple greedy algorithm achieves the same
performance guarantee of 1+ε

ε and give an asymptotic matching lower bound. Schwiegelshohn
and Schwiegelshohn [SS16] show that migration helps the online algorithm and improve the
competitive ratio to m

√︂
1
ε for m machines. We emphasize that this result is in contrast to our

results as our non-migratory algorithm is also O
(︂

1
ε

)︂
-competitive in the migratory setting.

For maximizing the weight of the completed jobs, Lucier et al. [LMNY13] give an O
(︂

1
ε2

)︂
-

competitive algorithm in the most general weighted setting. Prior to considering slackness,
Baruah et al. [BKM+91] showed a lower bound of 1

(1+
√

k)2 for any deterministic single-machine

online algorithm, where k = maxj wj/pj

minj wj/pj
is the importance ratio of a given instance. Koren and

Shasha give a matching upper bound [KS95] and generalize it to Θ(ln k) for parallel machines
if k > 1 [KS94].

Our contribution We give an O
(︂

1
ε

)︂
-competitive online algorithm, the threshold algorithm,

for maximizing throughput on parallel identical machines. As we originally developed this
algorithm for a more general setting, we considerably simplify the exposition when compared
to the algorithm in [CEM+20]. We observe that, due to this simplification, the single-machine
variant of our algorithm is now identical (up to constants) to the algorithm developed by
Lucier et al. [LMNY13] for maximizing the weighted throughput. On parallel machines, the
algorithms are closely related although we do not need to select the machine a job is assigned
to as carefully as they do. Our tight analysis shows that this algorithm is O

(︂
1
ε

)︂
-competitive

for maximizing the throughput. In contrast to the analysis in [LMNY13] based on dual fitting,
we give a purely combinatorial analysis. We also prove that our algorithm is optimal by giving
a matching lower bound (ignoring constants) for any deterministic online algorithm.

As a key contribution on the technical side, we give a strong bound on the processing volume
of any feasible non-migratory schedule in terms of the accepted volume of a certain class of
online algorithms. It is crucial for our analysis and might be of independent interest.

57

5 Online Throughput Maximization

5.2 The Threshold Algorithm

In this section, we present our algorithm for online throughput maximization. Further, we state
the main result and provide a road map for its proof. We assume that an online algorithm is
given the slackness constant ε > 0.

5.2.1 The Threshold Algorithm

To gain some intuition for our algorithm, we first describe informally the underlying design
principles. The threshold algorithm never migrates jobs between machines. In other words,
a job is only processed by the machine it initially was started on. We say the job has been
admitted to this machine. Moreover, a running job can only be preempted by significantly
smaller-size jobs, i.e., smaller by a factor of at least ε

4 with respect to the processing time, and
a job j cannot start for the first time when its remaining slack is too small, i.e., less than ε

2pj .
We note that the algorithm developed in [LMNY13] also follows these design principles: It

only admits jobs that are smaller by a factor of γ, the threshold parameter, with respect to the
processing time of the currently running job. Second, it only starts jobs for the first time if the
remaining slack is at least µ−1, where µ is the gap parameter. By setting γ = ε

4 and µ = 1+ ε
2 ,

we essentially recover the algorithm developed in [LMNY13]. For the sake of self-containment,
we give a formal description of the threshold algorithm adapted to our setting.

At any time τ , the threshold algorithm maintains two sets of jobs: admitted jobs, which
have been started before or at time τ , and available jobs. A job j is available if it is released
before or at time τ , is not yet admitted, and τ is not too close to its deadline, i.e., rj ≤ τ and
dj − τ ≥

(︂
1 + ε

2

)︂
pj . The intelligence of the threshold algorithm lies in how it admits jobs.

The actual scheduling decision then is simple and independent of the admission of jobs: at
any point in time and on each machine, schedule the shortest job that has been admitted to
this machine and has not completed its processing time. In other words, we schedule admitted
jobs on each machine in Shortest Processing Time (SPT) order. The threshold algorithm
never explicitly considers deadlines except when deciding whether to admit jobs. In particular,
jobs can even be processed after their deadline.

At any time τ , when there is a job j available and a machine i idle, i.e., i is not processing any
previously admitted job j′, the shortest available job j⋆ is immediately admitted to machine i

at time aj⋆ := τ . There are two events that trigger a decision of the threshold algorithm:
the release of a job and the completion of a job. If one of these events occurs at time τ , the
threshold algorithm invokes the preemption subroutine. This routine iterates over all machines
and compares the processing time of the smallest available job j⋆ with the processing time of
job j that is currently scheduled on machine i. If pj⋆ < ε

4pj , job j⋆ is admitted to machine i

at time aj⋆ := τ and, by the above scheduling routine, immediately starts processing. We
summarize the threshold algorithm in Algorithm 5.1.

58

5.2 The Threshold Algorithm

Algorithm 5.1: Threshold algorithm
Scheduling routine: At any time τ and on any machine i, run the job with shortest processing time

that has been admitted to i and has not yet completed.
Event: Upon release of a new job at time τ :

Call threshold preemption routine.
Event: Upon completion of a job j at time τ :

Call threshold preemption routine.
Threshold preemption routine:
j⋆ ← a shortest available job at τ , i.e., j⋆ ∈ arg min{pj | j ∈ J , rj ≤ τ and dj − τ ≥ (1 + ε

2)pj}
i← 1
while j⋆ is not admitted and i ≤ m do

j ← job processed on machine i at time τ
if j = ∅ do

admit job j⋆ to machine i
call threshold preemption routine

else-if pj⋆ < ε
4 pj do

admit job j⋆ to machine i
call threshold preemption routine

else
i← i + 1

5.2.2 Main Result and Road Map of the Analysis

In the analysis we focus on instances with small slack as they constitute the hard case. Note
that instances with large slack clearly satisfy a small-slack assumption. In such a case, we
simply run our algorithm by setting ε = 1 and obtain constant-competitive ratios. Therefore,
we assume for the remainder that 0 < ε ≤ 1.

Theorem 5.1. Let 0 < ε ≤ 1. The threshold algorithm is Θ
(︂

1
ε

)︂
-competitive for online throughput

maximization.

This is an improvement by a factor 1
ε upon the best previously known upper bound [LMNY13]

(given for weighted throughput).

Road map During the analysis, we use the fact that our algorithm never migrates jobs. In the
analysis, we first compare the throughput of our algorithm to the solution of an optimal non-
migratory schedule. We then use a well-known result by Kalyanasundaram and Pruhs [KP01]
to compare this to an optimal solution that may exploit migration. Here, ωm is the maximal
ratio of the throughput of an optimal migratory schedule to the throughput of an optimal
non-migratory schedule.

Theorem 5.2 (Theorem 1.1 in [KP01]). ωm ≤ 6m−5
m .

For relating the throughput of the threshold algorithm to the throughput of an optimal
(non-migratory) schedule, we rely on a key design principle of the threshold algorithm, which

59

5 Online Throughput Maximization

is that, whenever the job set admitted to a machine is fixed, the scheduling of the jobs follows
the simple SPT order. This enables us to split the analysis into two parts.

In the first part, we argue that the scheduling routine can handle the admitted jobs suf-
ficiently well. That is, an adequate number of the admitted jobs is completed on time; see
Section 5.3. Here, we use again that the threshold algorithm is non-migratory and consider
each machine individually.

For the second part, we observe that the potential admission of a new job j⋆ to machine i

is solely based on its availability and on its size relative to ji, the job currently processed by
machine i. More precisely, given the availability of j⋆, if pj⋆ < ε

4pji and i is the first machine
with this property, then j⋆ is admitted to machine i. This implies that ε

4 times the maximum of
the processing times of the jobs ji acts as a threshold, and only available jobs with processing
time less than this threshold qualify for admission by the threshold algorithm. Hence, any
available job that the threshold algorithm does not admit has to violate the threshold.

Based on this observation, we develop a general charging scheme for any non-migratory
online algorithm satisfying the property that, at any time τ , the algorithm maintains a time-
dependent threshold and the shortest available job smaller than this threshold is admitted
by the algorithm. We formalize this description and analyze the competitive ratio of such
algorithms in Section 5.4 before applying this general result to our particular algorithm.

5.3 Successfully Completing Sufficiently Many Admitted Jobs

In this section, we show that the threshold algorithm completes half of all admitted jobs on
time. Since the threshold algorithm is non-migratory, it suffices to consider each machine
separately. We start by defining interruption trees to capture the intricate structure of the
processing intervals. This enables us to construct a worst-case instance for the threshold algo-
rithm where “worst” is with respect to the ratio between admitted and successfully completed
jobs. The main result of this section is the following theorem.

Theorem 5.3. Let 0 < ε ≤ 1. Then the threshold algorithm completes at least half of all admitted
jobs before their deadline.

Interruption trees To analyze the performance of the threshold algorithm on a given instance,
we consider the final schedule per machine and investigate it retrospectively. Our analysis
crucially relies on understanding the interleaving structure of the processing intervals that the
algorithm constructs. This structure is due to the interruption by smaller jobs and can be
captured well by a tree or forest in which each job is represented by one vertex. A job vertex
is the child of another vertex if and only if the processing of the latter is interrupted by the
first one. The leaves correspond to jobs with contiguous processing. We also add a machine
job Mi for i ∈ [m] with processing time ∞ and admission date −∞. The children of machine

60

5.3 Successfully Completing Sufficiently Many Admitted Jobs

job Mi are all jobs admitted to machine i that did not interrupt the processing of another job.
Thus, we can assume that the instance is represented by m trees which we call interruption
trees. An example of an interruption tree is given in Figure 5.1.

Let π(j) denote the parent of j. Further, let Tj be the subtree of the interruption tree rooted
in job j and let the forest T−j be Tj without its root j. By slightly abusing notation, we denote
the tree/forest as well as the set of its job vertices by T∗.

M

t

Figure 5.1: Gantt chart of a single-machine schedule generated by the threshold algorithm and
the resulting interruption tree

Instance modifications The proof of Theorem 5.3 relies on two technical results that enable
us to restrict to instances with one machine and further only consider jobs that are contained in
the interruption tree created on this instance. We start with the following observation. Let I
be an instance of online throughput maximization with the job set J and let J ⊆ J be the set
of jobs admitted by the threshold algorithm at some point. It is easy to see that a job j /∈ J

does not influence the scheduling or admission decisions of the threshold algorithm. The next
lemma formalizes this statement and follows immediately from the just made observations.

Lemma 5.4. For any instance I for which the threshold algorithm admits the job set J ⊆ J , the
reduced instance I ′ containing only the jobs J forces the threshold algorithm with consistent tie
breaking to admit all jobs in J and to create the same schedule as produced for the instance I.

The proof of the main result compares the number of jobs finished on time, F ⊆ J , to the
number of jobs unfinished by their respective deadlines, U = J \ F . To further simplify the
instance, we use that the threshold algorithm is non-migratory and restrict to single-machine
instances. To this end, let F (i) and U (i) denote the finished and unfinished, respectively, jobs
on machine i.

Lemma 5.5. Let i ∈ [m]. There is an instance I ′ on one machine with job set J ′ = F (i) ∪U (i).
Moreover, the schedule of the threshold algorithm for instance I ′ with consistent tie breaking is
identical to the schedule of the jobs J ′ on machine i. In particular, F ′ = F (i) and U ′ = U (i).

61

5 Online Throughput Maximization

Proof. By Lemma 5.4, we can restrict to the jobs admitted by the threshold algorithm. Hence,
let I be such an instance with F (i) ∪ U (i) being admitted to machine i. As the threshold
algorithm is non-migratory, the sets of jobs scheduled on two different machines are disjoint.
Let I ′ consist of the jobs in J ′ := F (i) ∪ U (i) and one machine. The threshold algorithm on
instance I admits all jobs in J . In particular, it admits all jobs in J ′ to machine i.

We inductively show that the schedule for the instance I ′ is identical to the schedule on
machine i in instance I. To this end, we index the jobs in J ′ in increasing admission time
points in instance I.

It is obvious that job 1 ∈ J ′ is admitted to the single machine at its release date r1 as
happens in instance I since the threshold algorithm uses consistent tie breaking. Suppose
that the schedule is identical until the admission of job j⋆ at time aj⋆ = τ . If j⋆ does not
interrupt the processing of another job, then j⋆ will be admitted at time τ in I ′ as well.
Otherwise, let j ∈ J ′ be the job that the threshold algorithm planned to process at time τ

before the admission of job j⋆. Since j⋆ is admitted at time τ in I, j⋆ is available at time τ ,
satisfies pj⋆ < ε

4pj , and did not satisfy both conditions at some earlier time τ ′ with some
earlier admitted job j′. Since the job set in I ′ is a subset of the jobs in I and we use consistent
tie breaking, no other job j∗ ∈ J ′ that satisfies both conditions is favored by the threshold
algorithm over j⋆. Therefore, job j⋆ is also admitted at time τ by the threshold algorithm in
instance I ′. Thus, the schedule created by the threshold algorithm for J ′ is identical to the
schedule of J on machine i in the original instance.

We want to show that the existence of a job j that finishes after its deadline implies that
the subtree Tj rooted in j contains more finished than unfinished jobs. To this end, we prove a
stronger statement about the number of finished and unfinished jobs in any subtree Tj based
on the length of the interval [aj , Cj) where aj is again the admission date of job j and Cj is
its completion time. We want to analyze the schedule generated by the threshold algorithm in
the interval [aj , Cj), i.e., the schedule of the jobs in Tj . Let Fj denote the set of jobs in Tj that
finish on time. Similarly, we denote the set of jobs in Tj that complete after their deadlines,
i.e., that are unfinished at their deadline, by Uj ; we call these jobs unfinished for simplification
throughout the proof.

Lemma 5.6. If Cj − aj ≥ (β + 1)pj for β > 0, then |Fj | − |Uj | ≥
⌊︂

4β
ε

⌋︂
.

To prove this lemma, we further restrict the instances we need to consider. Lemma 5.4,
Lemma 5.5, and the next lemma justify this restriction. After restricting to single-machine
instances and excluding all jobs not contained in the interruption tree for this machine, we
exploit the special structure of the schedule generated by the threshold algorithm when proving
the next lemma. To this end, we introduce some notation to talk about the position of a
particular job in the tree relative to the root of the tree. More precisely, we define the height
of an interruption tree to be the edge-length of a longest path from root to leaf and the height
of the node j in the tree to be the height of Tj .

62

5.3 Successfully Completing Sufficiently Many Admitted Jobs

Lemma 5.7. Let j be a job in the interruption tree with Cj−aj ≥ (β+1)pj and |Fj |−|Uj | <
⌊︂

4β
ε

⌋︂
.

There exists an instance I ′ with |F ′
j |− |U ′

j | = |Fj |− |Uj | and an unfinished height-1 job j⋆ in I ′

satisfying the following properties.

(P1) No job is admitted in [dj⋆ , Cj⋆).

(P2) The union of the processing intervals of the children of j⋆ is an interval.

Before proving this lemma, we use it to show Lemma 5.6.

Proof of Lemma 5.6. Toward a contradiction, suppose that there is an instance such that there
is a job j admitted by the threshold algorithm with Cj−aj ≥ (β +1)pj and |Fj |− |Uj | <

⌊︂
4β
ε

⌋︂
.

Among all such instances let I be an instance with the minimal number of jobs.
The goal is to construct an instance I ′ that satisfies Cj−aj ≥ (β+1)pj and |Fj |−|Uj | <

⌊︂
4β
ε

⌋︂
although it uses fewer jobs than I. By Lemma 5.7, we can assume without loss of generality that
the instance I satisfies the Properties (P1) and (P2). These assumptions enable us to create a
new instance I ′ that merges three jobs to one larger job without violating Cj − aj ≥ (β + 1)pj

or increasing |Fj | − |Uj |. The three jobs will be leaves with the same (unfinished) parent j⋆

in Tj . In fact, if j⋆ is an unfinished job, then Cj⋆ − aj⋆ ≥ (1 + ε
2)pj⋆ . Any job k that may

postpone j⋆ satisfies pk < ε
4pj⋆ . Hence, if the children of j⋆ are all leaves, there exist at least

three jobs that interrupt j⋆.
To this end, consider an unfinished job j⋆ as in Lemma 5.7. The modification has three

steps. In the first step, we merge three jobs in T−j⋆ . In the second step, we replace j⋆ by a
similar job j∗ to ensure that the instance still satisfies the ε-slack assumption. In the third
step, we adapt jobs k /∈ T−j⋆ to guarantee that j∗ is admitted at the right point in time. Then,
we show that the resulting instance still satisfies |Fj | − |Uj | <

⌊︂
4β
ε

⌋︂
and Cj − aj ≥ (β + 1)pj .

Parts of the instance I and I ′ are shown in Figure 5.2.

aj⋆ dj⋆ Cj⋆

c1 c2 c3

j⋆

π(j⋆)

Cc′ = aj∗rc′ Cj∗

j∗

π(j⋆)

c′

τ τ

Figure 5.2: Modifications to obtain instance I ′ in the proof of Lemma 5.6. The deadline of
job j∗ satisfies dj∗ > Cj8 and is not shown anymore.

Since j⋆ is admitted at aj⋆ ≤ dj⋆ + (1 + ε
2)pj⋆ and not finished by the threshold algorithm

on time, Cj⋆ − aj⋆ ≥ (1 + ε
2)pj⋆ . Any job that may postpone j⋆ satisfies pk < ε

4pj⋆ . Hence,
there have to be at least three jobs that interrupt j⋆. Among these, consider the first three

63

5 Online Throughput Maximization

jobs c1, c2, and c3 (when indexed in increasing order of release dates). We create a new instance
by deleting c1, c2, and c3 and adding a new job c′ such that c′ is released at the admission date
of j⋆ in I and it merges c1, c2, and c3, i.e.,

rc′ := aj⋆ , pc′ := pc1 + pc2 + pc3 , and dc′ := rc′ + (1 + ε)pc′ .

Second, we replace j⋆ by a new job j∗ that is released at rj∗ := aj⋆ + pc′ , has the same
processing time, i.e., pj∗ = pj⋆ , and has a deadline dj∗ := max{dj⋆ , rj∗ + (1 + ε)pj∗}.

In the third step of our modification, we replace every job k with rk ∈ [rj⋆ , aj⋆] and pk ≤ pj⋆

by a new job k′ that is released slightly after j∗, i.e., rk′ := rj∗ + ϱ for ϱ > 0. More precisely,
we choose ϱ such that ϱ <

(︂
1 − ε

2

)︂
pk for each job k that is subjected to this modification.

It is important to note that we do not change the processing time or the deadline of k′,
i.e., pk′ = pk and dk′ = dk. This ensures that k′ finishes on time if and only if k finishes on
time. This modification is feasible, i.e., dk′ − rk′ ≥ (1 + ε)pk′ , because of two reasons. First,

Cj⋆ − rj∗ = Cj⋆ − (aj⋆ + pc′) = Cj⋆ − aj⋆ − (pc1 + pc2 + pc3) ≥ pj⋆

as c1, c2, and c3 postponed j⋆ by their processing times in I. Second, dk − Cj⋆ ≥
(︂
1 + ε

2

)︂
pk

because we only consider jobs that are admitted at some point later than Cj⋆ by the threshold
algorithm. Then,

dk′ − rk′ = dk − Cj⋆ + Cj⋆ − rj∗ − ϱ ≥
(︃

1 + ε

2

)︃
pk + pj⋆ − ϱ ≥

(︃
2 + ε

2

)︃
pk − ϱ ≥ (1 + ε)pk′ ,

where the last but one inequality follows from the fact that only jobs with pk ≤ pj⋆ are affected
by the modification and the last inequality is due to the sufficiently small choice of ϱ.

So far, we have already seen that the resulting instance is still feasible. It is left to show
that c′ completes at rc′ + pc′ as well as that j∗ is admitted at rj∗ and it completes at Cj⋆ .

Since it holds that pc′ < 3ε
4 pj⋆ < pj⋆ , the new job c′ is the smallest available job at aj⋆ = rc′

and any job that was interrupted by j⋆ is interrupted by c′ as well. The jobs in T−j⋆ are released
one after the other by Property (P2) and rc1 > aj⋆ . Thus, if j∗ has at least one child c4 left after
the modification, it holds that rc4 = rc1 +pc1 +pc2 +pc3 = aj⋆ +pc′ +(rc1−aj⋆) > rj∗ . Hence, no
remaining child is released in [rc′ , rj∗] in the modified instance. Any other job k ∈ Tj released
in [rc′ , rj∗] satisfies pk ≥ ε

4pj⋆ as k /∈ T−j⋆ . Because pc′ < pj⋆ , this implies that pk ≥ ε
4pc′ holds

as well, i.e., no such job k interrupts c′. Therefore, c′ completes at rj∗ .
Job j∗ is admitted at rj∗ if it is the smallest available job at that time. We have already

seen that none of the remaining children of j⋆ is released in [aj⋆ , rj∗] that might prevent the
threshold algorithm from admitting j∗ at rj∗ . Furthermore, the third step of our modification
guarantees that any job k ∈ Tj \ Tj⋆ that has processing time at most pj∗ is released after rj∗ .
Therefore, j∗ is the smallest available job at time rj∗ by construction, and it is admitted. As
argued above, the modified instance is still feasible and the interval [aπ(j⋆), Cπ(j⋆)) is still the

64

5.3 Successfully Completing Sufficiently Many Admitted Jobs

interval of the schedule of jobs in Tπ(j⋆).
However, the second step of our modification might lead to Cj∗ ≤ dj∗ which implies that j∗

finishes on time while j⋆ does not finish on time. This changes the values of |Fj | and |Uj |.
Clearly, in the case that j∗ completes before dj∗ , |U ′

j | = |Uj | − 1. By a careful analysis, we see
that in this case the number of finished jobs decreases by one as well because the three finished
jobs c1, c2 and c3 are replaced by only one job that finishes before its deadline. Formally, we
charge the completion of c′ to c1, and the completion of j∗ to c2 which leaves c3 to account
for the decreasing number of finished jobs. Hence, |F ′

j | − |U ′
j | = |Fj | − |Uj |. If j∗ does not

finish by dj∗ , then |F ′
j | − |U ′

j | = (|Fj | − 2) − |Uj |. Therefore, the modified instance I ′ also
satisfies |F ′

j | − |U ′
j | <

⌊︂
4β
ε

⌋︂
but contains fewer jobs than I does. This is a contradiction.

Now we proceed with proving Lemma 5.7.

Proof of Lemma 5.7. Let I be an instance and let job j be a job in its interruption tree
satisfying |Fj | − |Uj | <

⌊︂
4β
ε

⌋︂
and Cj − aj > (β + 1)pj . The construction of the instance I ′

consists of several modifications that maintain |F ′
j | − |U ′

j | <
⌊︂

4β
ε

⌋︂
and Cj − aj > (β + 1)pj

without increasing the number of jobs compared to I. We use ∗′ to refer to the object in
the modified instance I ′ corresponding to ∗ in I. The modifications are shown in Fig. 5.3.
By Lemmas 5.4 and 5.5, we can assume that there is only one machine in this instance and
that the instance I contains only the jobs admitted by the threshold algorithm. We start by
showing the following three claims.

(C1) The instance contains at most |Tj |+ 1 jobs.

(C2) The height of the interruption tree T ′
j is at least two.

(C3) Each job of height one is unfinished.

Ad (C1) We observe that pk < pj for any job k ∈ T−j . Hence, aj < rk for any such job by
definition of the threshold algorithm. We distinguish two cases to prove the claim.

If dj − aj ≥ (1 + ε)pj , we set r′
j = aj , p′

j = pj , and d′
j = dj and do not modify the remaining

jobs in T−j to define the set T ′
j . Then, we set J ′ = T ′

j to create a new feasible instance I ′ with
slack ε. Clearly, the schedule produced by the threshold algorithm on instance I ′ is identical
to the schedule of the threshold algorithm for instance I in the interval [aj , Cj) when using
consistent tie breaking.

If dj − aj < (1 + ε)pj , then rj < aj . Therefore, we set r′
j = dj − (1 + ε)pj and do not

change any other parameter of the jobs in Tj to obtain the set T ′
j . The modified instance I ′

consists of the jobs in T ′
j plus one additional job 0 to ensure that the threshold algorithm

indeed produces the same schedule in the interval [aj , Cj) in both instances. More precisely,
let r′

0 = dj − (1 + ε)pj , p′
0 = (1 + ε)pj − (dj − aj) , and d′

0 = r′
0 + (1 + ε)p′

0. As p′
0 < pj = p′

j ,
the threshold algorithm admits job 0 at r′

j and finishes this job at time r′
j + p′

0 = aj . Thus, the

65

5 Online Throughput Maximization

threshold algorithm admits job j also in instance I ′ at time aj as it is the smallest available job.
Since the remaining jobs have the same parameters in both instances, the schedules produced
by the threshold algorithm for the interval [aj , Cj) are identical.

Ad (C2) We show that the height of Tj is at least two. Toward a contradiction, suppose
that Tj is a star centered at j. Since any leaf finishes by definition of the threshold algorithm,
the root j is the only job that could possibly be unfinished. As |Fj | − |Uj | ≤

⌊︂
4β
ε

⌋︂
− 1, this

implies that there are at most
⌊︂

4β
ε

⌋︂
leaves in Tj . Then,

Cj − aj =
∑︂

k∈Tj

pk < pj +
⌊︄

4β

ε

⌋︄
· ε

4pj ≤ pj + βpj ,

where we used pk < ε
4pj for each leaf k ∈ Tj . This contradicts Cj − aj ≥ (β + 1)pj .

Ad (C3) Let k be a finished job of height one and let ℓ be the last completing child of k.
The parent π(k) of k exists because the height of Tj is at least two by (C2) and k is of height
one. We create a new instance by replacing ℓ by a job ℓ′ with release date rℓ′ := Ck − pℓ and
identical processing time, i.e., pℓ′ := pℓ. The deadline of ℓ′ is dℓ′ := rℓ′ + (1 + ε)pℓ′ .

We argue that k finishes at rℓ′ in the new instance and that ℓ′ finishes at Ck. Since ℓ is not
interrupted, rℓ′ − aℓ = Ck − pℓ − aℓ = Ck − Cℓ, which is the remaining processing time of k

at aℓ. If we can show that k is not preempted in [aℓ, rℓ′) in the new instance, k completes
at aℓ + Ck − Cℓ = rℓ′ . Since ℓ is the last child of k, any job k′ released within [aℓ, Ck) is
scheduled later than Ck. (Recall that, after aj , we restrict to jobs in the interruption tree Tj .)
Thus, pk′ ≥ ε

4pk > pℓ. Hence, k is not interrupted in [aℓ, rℓ′) and completes at rℓ′ < Ck ≤ dk.
At time rℓ′ , job ℓ′ is the smallest available job and satisfies pℓ′ <

(︂
ε
4

)︂
pk < (ε

4)2pπ(k). Thus, ℓ′ is
admitted at rℓ′ and is not interrupted until rℓ′ +pℓ = Ck by a similar argumentation about the
jobs k′ that are released in [aℓ, Ck). Hence, ℓ′ completes at rℓ′ + pℓ′ < dℓ′ . Moreover, outside
the interval [aℓ, Ck) neither the instance nor the schedule changed. Since ℓ′ is released after k

completes, ℓ′ becomes a child of π(k). This modification does not alter the length of [aj , Cj)
or the number of finished and unfinished jobs. However, k now has one less child. Iteratively
applying this modification to any child of k yields that k is now a finished job of height zero.
Modifying each finished job of height one proves the claim.
Ad (P1) We prove that no child of j⋆ is completely scheduled in [dj⋆ , Cj⋆). If there is a
child c with dj⋆ ≤ ac, it does not prevent the algorithm from finishing j⋆ on time. Hence, it
could become a child of π(j⋆) in the same way we handled the last child of an finished job in
the previous claim. That is, we can create a new instance in which c is a child of π(j⋆) and j⋆

is still unfinished. (See red job in Fig. 5.3.)

Ad (P2) We show that the processing intervals of the children of j⋆ form an interval with
endpoint max{dj⋆ , Cmax} where Cmax := maxc∈T−j⋆ Cc. We further prove that they are released
and admitted in increasing order of their processing times. More formally, we index the children

66

5.3 Successfully Completing Sufficiently Many Admitted Jobs

in increasing order of their processing times, i.e, pc1 ≤ pc2 ≤ . . . ≤ pct . Then, we create a new
instance with modified release dates such that each child is released upon completion of the
previous child. That is, r′

ct
:= max{dj⋆ , Cmax} − pct and r′

ch−1
:= r′

ch
− pch−1 for h ∈ {2, . . . , t}

where the processing times are not changed, i.e., p′
ch

= pch
. In order to ensure that the modified

instance is still feasible, we adapt the deadlines d′
ch

:= r′
ch

+ (1 + ε)p′
ch

.
It is left to show that the modifications did not affect the number of finished or unfinished

jobs. Obviously, the threshold algorithm still admits every job in T ′
j⋆ . A job k /∈ T ′

−j⋆ released
in [aj⋆ , Cj⋆) satisfies pk ≥ ε

4pj⋆ > ε
4pc for all c ∈ T−j⋆ . Hence, these jobs do not interrupt

either j⋆ or any of its children. They are still scheduled after Cj⋆ , and every child c ∈ T ′
−j⋆

completes before its deadline. We also need to prove that j⋆ still cannot finish on time.
If Cmax ≤ dj⋆ , every child is completely processed in [aj⋆ , dj⋆). Hence, job j⋆ is still inter-

rupted for the same amount of time before dj⋆ in I ′ as it is in I. Thus,

C ′
j⋆ = aj⋆ + pj⋆ +

∑︂
t∈T ′

−j⋆

pc = aj⋆ + pj⋆ +
∑︂

c∈T−j⋆

pc = Cj⋆ > dj⋆ .

If Cmax > dj⋆ , let ℓ be the child in I with Cℓ = Cmax. Then, rc′
t

= Cmax−p′
ct
≤ Cℓ−pℓ < dj⋆ ,

where we used that no child is completely processed in [dj⋆ , Cj⋆) by (P1) and that ct is the
child of j⋆ with the largest processing time. Thus, the delay of j⋆ in [aj⋆ , dj⋆) is identical
to
∑︁

c∈T−j⋆ pc − (Cℓ − dj⋆). Hence, j⋆ still cannot finish on time. In this case, C ′
j⋆ = Cj⋆ holds

as well. Hence, the modified jobs in I ′ still cover the same interval [aj⋆ , Cj⋆).

aj⋆ dj⋆ Cj⋆

j⋆

π(j⋆)

aj⋆ dj⋆ Cj⋆

c1 c2 c3

j⋆

π(j⋆)

τ τ

Figure 5.3: Modifications to obtain instance I ′ in the proof of Lemma 5.7

Proof of Theorem 5.3

Proof of Theorem 5.3. Let U be the set of jobs that are unfinished by their deadline but whose
ancestors (except the machine jobs Mi) have all completed on time. Every job j ∈ U was
admitted by the algorithm at some time aj with dj − aj ≥

(︂
1 + ε

2

)︂
pj . Since j is unfinished,

we have Cj − aj > dj − aj ≥
(︂
1 + ε

2

)︂
pj . By Lemma 5.6, |Fj | − |Uj | ≥

⌊︂
4·ε/2

ε

⌋︂
= 2. Thus,

|Tj | = |Fj |+ |Uj | ≤ 2|Fj | − 2 < 2|Fj |.

67

5 Online Throughput Maximization

Since every ancestor of such a job j finishes on time, this completes the proof.

5.4 Competitiveness: Admitting Sufficiently Many Jobs

This section shows that the threshold algorithm admits sufficiently many jobs to be O
(︂

1
ε

)︂
-

competitive. As mentioned before, this proof is based on the observation that, at time τ ,
the threshold algorithm admits any available job if its processing time is less than ε

4 maxi pji

where pji is the job processed by machine i at time τ . We start by formalizing this observation
for a class of non-migratory online algorithms before proving that this enables us to bound the
number of jobs any feasible schedule successfully schedules during a particular period. Then,
we use it to show that the threshold algorithm is indeed O

(︂
1
ε

)︂
-competitive.

5.4.1 A Class of Online Algorithms

In this section, we investigate a class of non-migratory online algorithms. To this end, we
generalize the notion of an available job as follows: Let δ ∈ (0, ε). We say a job j is available
at time τ if it is released before or at time τ , dj − τ ≥ (1 + δ)pj , and is not yet admitted by
the online algorithm.

We consider a non-migratory online algorithm A satisfying the following properties.

(P1) A only admits available jobs.

(P2) Retrospectively, for each time τ and each machine i, there is a threshold ui,τ ∈ [0,∞]
such that any job j that was available and not admitted by A at time τ satisfies pj ≥ ui,τ

for every i.

(P3) The function u(i) : R → [0,∞], τ ↦→ ui,τ is piece-wise constant and right-continuous for
every machine i ∈ [m]. Further, there are only countably many points of discontinuity.
(This last property is used to simplify the exposition.)

Key Lemma on the Size of Non-Admitted Jobs

For the proof of the main result in this section, we rely on the following strong, structural
lemma about the volume processed by a feasible non-migratory schedule in some time interval
and the size of jobs admitted by a non-migratory online algorithm satisfying (P1) and (P2) in
the same time interval. We define uτ = maxi ui,τ for each time point τ .

Let σ be a feasible non-migratory schedule. Without loss of generality, we assume that σ

completes all jobs that it started on time. Let Xσ be the set of jobs completed by σ and not
admitted by A. For 1 ≤ i ≤ m, let Xσ

i be the set of jobs in Xσ processed by machine i. Let Cx

be the completion time of job x ∈ Xσ in σ.

Lemma 5.8. Let 0 ≤ ζ1 ≤ ζ2 and fix x ∈ Xσ
i as well as Y ⊂ Xσ

i \ {x}. If

68

5.4 Competitiveness: Admitting Sufficiently Many Jobs

(R) rx ≥ ζ1 as well as ry ≥ ζ1 for all y ∈ Y ,

(C) Cx ≥ Cy for all y ∈ Y , and

(P)
∑︁

y∈Y py ≥ ε
ε−δ (ζ2 − ζ1)

hold, then px ≥ uζ2, where uζ2 = maxi ui,ζ2 is the threshold imposed by A at time ζ2. In
particular, if uζ2 =∞, then no such job x exists.

Proof. We show the lemma by contradiction. More precisely, we show that, if px < uζ2 , the
schedule σ cannot complete x on time and, hence, is not feasible.

Remember that x ∈ Xσ
i implies that A did not admit job x at any point τ . At time ζ2, there

are two possible reasons why x was not admitted: px ≥ uζ2 or dx − ζ2 < (1 + δ)px. In case of
the former, the statement of the lemma holds. Toward a contradiction, suppose px < uζ2 and,
thus, dx− ζ2 < (1 + δ)px has to hold. As job x arrives with a slack of at least εpx at its release
date rx and rx ≥ ζ1 by assumption, we have

ζ2 − ζ1 ≥ ζ2 − dx + dx − rx > −(1 + δ)px + (1 + ε)px = (ε− δ)px. (5.1)

Since all jobs in Y complete earlier than x by Assumption (C) and are only released after ζ1

by (R), the volume processed by σ in [ζ1, Cx) on machine i is at least ε
ε−δ (ζ2− ζ1) + px by (P).

Moreover, σ can process at most a volume of (ζ2 − ζ1) on machine i in [ζ1, ζ2). These two
bounds imply that σ has to process job parts with a processing volume of at least

ε

ε− δ
(ζ2 − ζ1) + px − (ζ2 − ζ1) >

δ

ε− δ
(ε− δ)px + px = (1 + δ)px

in [ζ2, Cx), where the inequality follows using Inequality (5.1). Thus, Cx > ζ2 +(1+ δ)px > dx,
which contradicts the feasibility of σ.

Observe that, by (P1) and (P2), the online algorithm A admits an available job that satis-
fies pj < uτ . In particular, if uτ =∞ for some time point τ , then A admits any available job.
Hence, for 0 ≤ ζ1 ≤ ζ2 with uζ2 =∞, there does not exist a job x ∈ Xσ

i and a set Y ⊂ Xσ
i \{x}

satisfying (R), (C), and (P) for any machine i.

Bounding the Number of Non-Admitted Jobs

In this section, we use the Properties (P1), (P2), and (P3) to bound the throughput of a non-
migratory optimal (offline) algorithm. To this end, we fix an instance as well as an optimal
schedule with job set Opt. Let A be a non-migratory online algorithm satisfying (P1) to (P3).

Let X be the set of jobs in Opt that the algorithm A did not admit. We assume without loss
of generality that all jobs in Opt complete on time. Let X ⊆ X be the set of jobs scheduled on
any fixed machine with highest throughput, i.e., no machine in the optimal schedule processes
more jobs from X than |X|. Without loss of generality, let 1 be a machine where A achieves

69

5 Online Throughput Maximization

lowest throughput. Assumption (P3) guarantees that the threshold u1,τ is piece-wise constant
and right-continuous, i.e., u(1) is constant on intervals of the form [τt, τt+1). Let I represent
the set of maximal intervals It = [τt, τt+1) where u(1) is constant. That is, u1,τ = ut holds for
all τ ∈ It and u1,τt+1 ̸= ut, where ut := u1,τt , The main result of this section is the following
theorem.

Theorem 5.9. Let X be the set of jobs that are scheduled on a machine with highest throughput
in an optimal schedule. Let I = {I1, . . . , IT } be the set of maximal intervals on a machine of A
with lowest throughput such that the machine-dependent threshold is constant for each interval
and has the value ut in interval It = [τt, τt+1). Then,

|X| ≤
T∑︂

t=1

ε

ε− δ

τt+1 − τt

ut
+ T,

where we set τt+1−τt

ut
= 0 if ut =∞ and τt+1−τt

ut
=∞ if {τt, τt+1} ∩ {−∞,∞} ≠ ∅ and ut <∞.

We observe that T =∞ trivially proves the statement as X contains at most finitely many
jobs. The same is true if τt+1−τt

ut
= ∞ for some t ∈ [T]. Hence, for the remainder of this

section we assume without loss of generality that I only contains finitely many intervals and
that τt+1−τt

ut
<∞ holds for every t ∈ [T].

To prove this theorem, we develop a charging scheme that assigns jobs x ∈ X to intervals
in I. The idea behind our charging scheme is that Opt does not contain arbitrarily many jobs
that are available in It since ut provides a natural lower bound on their processing times. In
particular, the processing time of any job that is released during interval It and not admitted
by the algorithm exceeds the lower bound ut. Thus, the charging scheme relies on the release
date rx and the size px of a job x ∈ X as well as on the precise structure of the intervals
created by A.

The charging scheme we develop is based on a careful modification of the following parti-
tion (Ft)T

t=1 of the set X. Fix an interval It ∈ I and define the set Ft ⊆ X as the set that
contains all jobs x ∈ X released during It, i.e., Ft = {x ∈ X : rx ∈ It}. Since, upon re-
lease, each job x ∈ X is available and not admitted by A, the next fact directly follows from
Properties (P1) and (P2).

Fact 5.10. For all jobs x ∈ Ft it holds px ≥ ut. In particular, if ut =∞, then Ft = ∅.

In fact, the charging scheme maintains this property and only assigns jobs in X to intervals It

if px ≥ ut. In particular, no job will be assigned to an interval with ut =∞.
We now formalize how many jobs in X are assigned to a specific interval It. Let

φt :=
⌊︂ ε

ε− δ

τt+1 − τt

ut

⌋︂
+ 1

70

5.4 Competitiveness: Admitting Sufficiently Many Jobs

if ut < ∞, and φt = 0 if ut = ∞. We refer to ut as the target number of It. As discussed
before, we assume τt+1−τt

ut
< ∞, and, thus, the target number is well-defined. If each of the

sets Ft satisfies |Ft| ≤ φt, then Theorem 5.9 immediately follows. In general, |Ft| ≤ φt does not
have to be true since jobs in Opt may be preempted and processed during several intervals It.
Therefore, for proving Theorem 5.9, we show that there always exists another partition (Gt)T

t=1
of X such that |Gt| ≤ φt holds.

The high-level idea of this proof is the following: Consider an interval It = [τt, τt+1). If Ft

does not contain too many jobs, i.e., |Ft| ≤ φt, we would like to set Gt = Ft. Otherwise, we
find a later interval It′ with |Ft′ | < φt′ such that we can assign the excess jobs in Ft to It′ .

Proof of Theorem 5.9. As observed, it suffices to show the existence of a partition G = (Gt)T
t=1

of X such that |Gt| ≤ φt in order to prove the theorem.
In order to repeatedly apply Lemma 5.8, we only assign excess jobs x ∈ Ft to Gt′ for t < t′ if

their processing time is at least the threshold of It′ , i.e., px ≥ ut′ . By our choice of parameters,
a set Gt′ with φt′ many jobs of size at least ut′ “covers” the interval It′ = [τt′ , τt′+1) as often
as required by (P) in Lemma 5.8, i.e.,

∑︂
x∈Gt′

px ≥ φt′ · ut′ =
(︄⌊︄

ε

ε− δ

τt′+1 − τt′

ut′

⌋︄
+ 1

)︄
· ut′ ≥ ε

ε− δ
(τt′+1 − τt′). (5.2)

The proof consists of two parts: the first one is to inductively (on t) construct the parti-
tion G = (Gt)T

t=1 of X, where |Gt| ≤ φt holds for t ∈ [T − 1]. The second one is the proof that
a job x ∈ Gt satisfies px ≥ ut which will imply |GT | ≤ φT . During the construction of G we
define temporary sets At ⊂ X for intervals It. The set Gt is chosen as a subset of Ft ∪ At of
appropriate size. In order to apply Lemma 5.8 to each job in At individually, alongside At, we
construct a set Yx,t and a time τx,t ≤ rx for each job x ∈ X that is added to At. Let C∗

y be
the completion time of some job y ∈ X in the optimal schedule Opt. The second part of the
proof is to show that x, τx,t, and Yx,t satisfy

(R) ry ≥ τx,t for all y ∈ Yx,t,

(C) C∗
x ≥ C∗

y for all y ∈ Yx,t, and

(P)
∑︁

y∈Yx,t
py ≥ ε

ε−δ (τt − τx,t).

This implies that x, Y = Yx,t, ζ1 = τx,t, and ζ2 = τt satisfy the conditions of Lemma 5.8,
and thus the processing time of x is at least the threshold at time τt, i.e., px ≥ uτt ≥ ut.

Constructing G = (Gt)T
t=1. We inductively construct the sets Gt in the order of their

indices. We start by setting At = ∅ for all intervals It with t ∈ T . We define Yx,t = ∅ for each
job x ∈ X and each interval It. The preliminary value of the time τx,t is the minimum of the

71

5 Online Throughput Maximization

starting point τt of the interval It and the release date rx of x, i.e., τx,t := min{τt, rx}. We
refer to the step in the construction where Gt was defined by step t.

Starting with t = 1, let It be the next interval to consider during the construction with t < T .
Depending on the cardinality of Ft ∪ At, we distinguish two cases. If |Ft ∪ At| ≤ φt, then we
set Gt = Ft ∪At.

If |Ft ∪At| > φt, then we order the jobs in Ft ∪At in increasing order of completion times in
the optimal schedule. The first φt jobs are assigned to Gt while the remaining |Ft ∪ At| − φt

jobs are added to At+1. In this case, we might have to redefine the times τx,t+1 and the
sets Yx,t+1 for the jobs x that were newly added to At+1. Fix such a job x. If there is no
job z in the just defined set Gt that has a smaller release date than τx,t, we set τx,t+1 = τx,t

and Yx,t+1 = Yx,t ∪ Gt. Otherwise let z ∈ Gt be a job with rz < τx,t that has the smallest
time τz,t. We set τx,t+1 = τz,t and Yx,t+1 = Yz,t ∪Gt.

Finally, we set GT = FT ∪AT . We observe that uT <∞ implies φT =∞ because τT +1 =∞.
Since this contradicts the assumption φt < ∞ for all t ∈ [T], this implies uT = ∞. We will
show that px ≥ uT for all x ∈ GT . Hence, GT = ∅. Therefore |GT | = φT = 0.

Bounding the size of the jobs in Gt. We consider the intervals again in increasing order of
their indices and show by induction that any job x in Gt satisfies px ≥ ut which implies Gt = ∅
if ut = ∞. Clearly, if x ∈ Ft ∩Gt, Fact 5.10 guarantees px ≥ ut. Hence, in order to show the
lower bound on the processing time of x ∈ Gt, it is sufficient to consider jobs in Gt \ Ft ⊂ At.
To this end, we show that for such jobs (R), (C), and (P) are satisfied. Thus, Lemma 5.8
guarantees that px ≥ uτt ≥ ut because uτt ≥ u1,τt = ut by definition. Hence, At = ∅ if ut =∞
since in this case the global bound is also unbounded, i.e., uτt ≥ ut =∞.

By construction, A1 = ∅. Hence, (R), (C), and (P) are satisfied for each job x ∈ A1.
Suppose that the Conditions (R), (C), and (P) are satisfied for all x ∈ As for all 1 ≤ s < t.

Hence, for s < t, the set Gs only contains jobs x with px ≥ us. Fix x ∈ At. We want to show
that px ≥ ut. By the induction hypothesis and by Fact 5.10, py ≥ ut−1 holds for all y ∈ Gt−1.
Since x did not fit in Gt−1 anymore, |Gt−1| = φt−1.

We distinguish two cases based on Gt−1. If there is no job z ∈ Gt−1 with rz < τx,t−1,
then τx,t = τx,t−1, and (R) and (C) are satisfied by construction and by the induction hypoth-
esis. For (P), consider

∑︂
y∈Yx,t

py =
∑︂

y∈Yx,t−1

py +
∑︂

y∈Gt−1

py

≥ ε

ε− δ
(τt−1 − τx,t−1) + ut−1 · φt−1

≥ ε

ε− δ
(τt−1 − τx,t−1) + ε

ε− δ
(τt − τt−1)

= ε

ε− δ
(τt − τx,t) ,

72

5.4 Competitiveness: Admitting Sufficiently Many Jobs

where the first inequality holds due to the induction hypothesis. By Lemma 5.8, px ≥ uτt ≥ ut.
If there is a job z ∈ Gt−1 with rz < τx,t−1 ≤ τt−1, then z ∈ At−1. In step t − 1, we chose z

with minimal τz,t−1. Thus, ry ≥ τy,t−1 ≥ τz,t−1 for all y ∈ Gt−1 and rx ≥ τx,t−1 > rz ≥ τz,t−1

which is Condition (R) for the jobs in Gt−1. Moreover, by the induction hypothesis, ry ≥ τz,t−1

holds for all y ∈ Yz,t−1. Thus, τx,t and Yx,t satisfy (R). For (C), consider that C∗
x ≥ C∗

y for
all y ∈ Gt−1 by construction and, thus, C∗

x ≥ C∗
z ≥ C∗

y also holds for all y ∈ Yz,t−1 due to the
induction hypothesis. For (P), observe that

∑︂
y∈Yx,t

py =
∑︂

y∈Yz,t−1

py +
∑︂

y∈Gt−1

py

≥ ε

ε− δ
(τt−1 − τz,t−1) + ut−1 · φt−1

≥ ε

ε− δ
(τt−1 − τz,t−1) + ε

ε− δ
(τt − τt−1)

≥ ε

ε− δ
(τt − τx,t).

Here, the first inequality follows from the induction hypothesis and the second from the defi-
nition of ut−1 and φt−1. Hence, Lemma 5.8 implies px ≥ uτt ≥ ut.

We note that px ≥ ut for all x ∈ Gt and for all t ∈ [T].

Bounding |X|. By construction, we know that
⋃︁T

t=1 Gt = X. We start with considering
intervals It with ut = ∞. Then, It has an unbounded threshold, i.e., uτ = ∞ for all τ ∈ It,
and Ft = ∅ by Fact 5.10. In the previous part we have seen that the conditions for Lemma 5.8
are satisfied. Hence, Gt = ∅ if ut =∞. For t with ut <∞, we have |Gt| ≤ φt =

⌊︂
ε

ε−δ
τt+1−τt

ut

⌋︂
+1.

As explained before, this bounds the number of jobs in X.

5.4.2 Admitting Sufficiently Many Jobs

In this section, we show the following theorem and give the proof of Theorem 5.1.

Theorem 5.11. An optimal non-migratory (offline) algorithm completes at most a factor
(︂

8
ε +4

)︂
more jobs on time than admitted by the threshold algorithm.

Proof. As in the previous section, fix an instance and an optimal solution Opt. Let X be the set
of jobs in Opt that the threshold algorithm did not admit. We assume without loss of generality
that all jobs in Opt finish on time. Further, let J denote the set of jobs that the threshold
algorithm admitted. Then, X ∪ J is a superset of the jobs in Opt. Thus, |X| ≤

(︂
8
ε + 3

)︂
|J |

implies Theorem 5.11.
To this end, let X ⊆ X denote the jobs in Opt scheduled on a machine with highest

throughput. Without loss of generality, let 1 be again a machine where the threshold algorithm
achieves lowest throughput. Let J denote the jobs scheduled by the threshold algorithm on the
first machine. Then, showing |X| ≤

(︂
8
ε + 3

)︂
|J | suffices to prove the main result of this section.

73

5 Online Throughput Maximization

Given that the threshold algorithm satisfies Assumptions (P1), (P2), and (P3), Theorem 5.9
already provides a bound on the cardinality of X in terms of the intervals corresponding
to the schedule on the least loaded machine. Thus, it remains to show that the threshold
algorithm indeed qualifies for applying Theorem 5.9 and that the bound developed therein can
be translated to a bound in terms of |J |.

We start by showing that the threshold algorithm satisfies the assumptions necessary for
applying Theorem 5.9. Clearly, as the threshold algorithm only admits a job j at time τ

if dj − τ ≥
(︂
1 + ε

2

)︂
pj , setting δ = ε

2 proves that the threshold algorithm satisfies (P1).
For (P2), we retrospectively analyze the schedule generated by the threshold algorithm. For a
time τ , let ji denote the job scheduled on machine i. Then, setting ui,τ := ε

4pji or ui,τ = ∞
if no such job ji exists, indeed provides us with the machine-dependent threshold necessary
for (P2). This discussion also implies that u(i) has only countably many points of discontinuity
as there are only finitely many jobs in the instance, and that u(i) is right-continuous.

Hence, let I denote the set of maximal intervals It = [τt, τt+1) for t ∈ [T] of constant
threshold u1,τ . Thus, by Theorem 5.9,

|X| ≤
T∑︂

t=1

ε

ε− δ

τt+1 − τt

ut
+ T. (5.3)

As the threshold ui,τ is proportional to the processing time of the job currently scheduled
on machine i, the interval It either represents an idle interval of machine 1 (with u1,τ =∞) or
corresponds to the uninterrupted processing of some job j on machine 1. We denote this job
by jt if it exists. We consider now the set Ij ⊆ I of intervals with jt = j for some particular
job j ∈ J . As observed, these intervals correspond to job j being processed which happens for
a total of pj units of time. Combining with ut = ε

4pj for It ∈ Ij , we get

∑︂
t:It∈Ij

τt+1 − τt

ut
= pj

ε
4pj

= 4
ε

.

As δ = ε
2 , we additionally have that ε

ε−δ = 2. Hence, we rewrite Equation (5.3) by

|X| ≤ 8
ε
|J |+ T.

It remains to bound T in terms of |J | to conclude the proof. To this end, we recall that the
admission of a job j to a machine interrupts the processing of at most one previously admitted
job. Hence, the admission of |J | jobs to machine 1 creates at most 2|J |+ 1 intervals.

If the threshold algorithm does not admit any job to machine 1 with lowest throughput,
i.e., |J | = 0, then u1,τ = ∞ for each time point τ . Hence, there exists no job in the instance
that the threshold algorithm did not admit. Thus, |X| ≤ |J | = |J | which completes the proof.

74

5.5 Lower Bound on the Competitive Ratio

Otherwise, 2|J |+ 1 ≤ 3|J |. Therefore,

|X| ≤
(︃8

ε
+ 3

)︃
|J |.

Combining with the observation about X and J previously discussed, we obtain

|Opt| ≤ |X ∪ J | ≤ m|X|+ |J | ≤ m

(︃8
ε

+ 3
)︃
|J |+ |J | ≤

(︃8
ε

+ 4
)︃
|J |,

which concludes the proof.

Finalizing the proof of Theorem 5.1

Proof of Theorem 5.1. In Theorem 5.3 we show that the threshold algorithm completes at
least half of all admitted jobs J on times. Theorem 1.1 in [KP01] (Theorem 5.2) gives a
bound on the throughput of an optimal migratory schedule in terms of the throughput of
an optimal non-migratory solution. In Theorem 5.9, we bound the throughput |Opt| of an
optimal non-migratory solution in terms of |J |. Combining these theorems shows that the
threshold algorithm achieves a competitive ratio of c = 6 · 2 ·

(︂
8
ε + 4

)︂
= 96

ε + 48.

5.5 Lower Bound on the Competitive Ratio

We give a lower bound, that (up to constants) matches our upper bound in Theorem 5.1. This
shows that the threshold algorithm is best possible for online throughput maximization.

Theorem 5.12. Every deterministic online algorithm has a competitive ratio Ω
(︂

1
ε

)︂
.

The proof idea is as follows: We release Ω
(︂

1
ε

)︂
levels of jobs. In each level, the release date of

any but the first job is the deadline of the previous job. Whenever an online algorithm decides
to complete a job from level ℓ (provided no further jobs are released), then the release of jobs
in level ℓ stops and a sequence of O

(︂
1
ε

)︂
jobs in level ℓ + 1 is released. Jobs in level ℓ + 1 have

processing time that is too large to fit in the slack of a job of level ℓ. Thus, an algorithm has
to discard the job started at level ℓ to run a job of level ℓ + 1. This implies that it can only
finish one job while the optimum can finish a job from every other level.

Proof of Theorem 5.12. Let ε < 1
10 such that 1

8ε ∈ N. Toward a contradiction, suppose there
is an online algorithm with competitive ratio c < 1

8ε . We construct an adversarial instance in
which each job j belongs to one of 2 · ⌈c + 1⌉ levels and fulfills dj = rj + (1 + ε) · pj . The
processing time for any job j in level ℓ is pj = p(ℓ) = (2ε)ℓ. This (along with the interval
structure) makes sure that no two jobs from consecutive levels can both be completed by a
single schedule, which we will use to show that the online algorithm can only complete a single
job throughout the entire instance. The decrease in processing times between levels, however,

75

5 Online Throughput Maximization

makes sure that the optimum finishes a job from every other level, resulting in an objective
value of ⌈c + 1⌉, which contradicts the algorithm being c-competitive.

The sequence starts with level 0 at time 0 with the release of one job j with processing
time p(0) = 1 and, thus, deadline dj = 1 + ε. We will show inductively that, for each level ℓ,
there is a time tℓ when there is only a single job jℓ left that the algorithm can still finish, and
this job is from the current level ℓ and, thus, pjℓ

= p(ℓ) = (2ε)ℓ. We will also make sure that
at tℓ at most a

(︂
2
3

)︂
-fraction of the time window of jℓ has passed. From tℓ on, no further jobs

from level ℓ are released, and jobs from level ℓ + 1 start being released or, if ℓ = 2 · ⌈c + 1⌉− 1,
we stop releasing jobs altogether. It is clear that t0 exists.

Consider some time tℓ, and we will release jobs from level ℓ + 1 leading to time tℓ+1. The
first job j from level ℓ+1 has release date tℓ and, by the above constraints, dj = tℓ +(1+ε) ·pj ,
where pj = p(ℓ+1) = (2ε)ℓ+1. As long as no situation occurs that fits the above description
of tℓ+1, we release an additional job of level ℓ + 1 at the deadline of the previous job from
this level (with identical time-window length and processing time). We show that we can find
time tℓ+1 before 1

8ε jobs from level ℓ + 1 have been released. Note that the deadline of the 1
8εth

job from level ℓ + 1 is tℓ + 1
8ε · (1 + ε) · 2ε · p(ℓ), which is smaller than the deadline of djℓ

since djℓ
− tℓ ≥ 1

3 · p
(ℓ) by the induction hypothesis and ε < 1

10 . This shows that, unless more
than 1

8ε jobs from level ℓ + 1 are released (which will not happen as we will show), all time
windows of jobs from level ℓ + 1 are contained in that of jℓ.

Note that there must be a job j⋆ among the 1
8ε first ones in level ℓ + 1 that the algorithm

completes if no further jobs are released within the time window of j⋆: By the induction
hypothesis, the algorithm can only hope to finish a single job released before time tℓ and the
optimum could complete 1

8ε jobs from level ℓ + 1, so j⋆ must exist for the algorithm to be c-
competitive. Now we can define jℓ+1 to be the first such job j⋆ and find tℓ+1 within its time
window: At the release date of j⋆, the algorithm could only complete jℓ. However, since the
algorithm finishes jℓ+1 if there are no further jobs released, and ε < 1

10 , it must have worked
on jℓ+1 for more than p(ℓ+1)

2 units of time until rℓ+1 + 2
3 ·p

(ℓ+1) =: tℓ+1. This quantity, however,
exceeds the slack of jℓ, meaning that the algorithm cannot finish jℓ anymore as the slack of jℓ

is εp(ℓ) = 2ℓεℓ+1. Therefore, tℓ+1 has the desired properties.
This defines t2·⌈c+1⌉, and indeed the algorithm will only finish a single job. We verify that

an optimal algorithm can schedule a job from every other level. Note that, among levels of
either parity, processing times are decreasing by a factor of 4ε2 between consecutive levels. So,
for any job j, the total processing time of jobs other than j that need to be processed within
the time window of j adds up to less than

∞∑︂
ℓ=1

(4ε2)ℓ · pj = 4ε2 ·
∞∑︂

ℓ=0
(4ε2)ℓ · pj = 4ε2

1− 4ε2 · pj

≤ 4
10 ·

1
1− 4

100
· εpj < ε · pj = dj − rj − pj ,

76

5.6 Concluding Remarks

which completes the proof.

5.6 Concluding Remarks

We provide an online algorithm for scheduling deadline-sensitive jobs on identical parallel
machines. We close the problem with the best (up to constants) competitive ratio Θ

(︂
1
ε

)︂
.

Our lower bound points at two research directions: First, it is constructed on a single machine
and it is not immediately clear how to translate this to the multiple-machine setting. In fact,
the impossibility result for jobs without slack also relies on a single machine and, up to date, it
is not yet answered if slack is even necessary for achieving non-trivial competitive ratios in the
presence of multiple machines. Moreover, for the more tractable problem of machine utilization
the competitive ratio even improves with an increasing number of machines as shown in [SS16].

Second, we only use unit-weight jobs in the lower bound as this is the setting we are mostly
interested in. However, there is no better lower bound in the weighted setting. That is,
there is still a gap between our lower bound Ω

(︂
1
ε

)︂
and the upper bound O

(︂
1
ε2

)︂
by Lucier et

al. [LMNY13]. It would be interesting to close this gap. The analysis of our algorithm crucially
relies on the fact that jobs are only preempted by significantly smaller jobs. In the weighted
variant, interruption must also happen for longer yet more valuable jobs, which shows that one
would need to develop new techniques to improve the analysis. Of course, it is also possible
that there is another algorithm with yet another analysis that closes this gap.

Another interesting question asks whether randomization allows for improved results. On a
single machine, there is indeed an O(1)-competitive randomized algorithm, even without any
slack assumption [KP03]. We are not aware of lower bounds that rule out similar results on
multiple machines.

77

6
Online Throughput Maximization

with Commitment
We consider again online throughput maximization where jobs with deadlines arrive
online over time at their release dates. The task is to find a preemptive schedule on m

machines maximizing the number of jobs that finish on time. We quantify the impact
that provider commitment requirements have on the performance of online algorithms.
We require again that jobs contain some slack ε > 0. We present the first online
algorithm for handling commitment on parallel machines for arbitrary slack ε. When
the scheduler must commit upon starting a job, the algorithm is Θ

(︁ 1
ε

)︁
-competitive.

Somewhat surprisingly, this is the same optimal performance bound (up to constants)
as for scheduling without commitment. If commitment decisions must be made before a
job’s slack becomes less than a δ-fraction of its processing time, we prove a competitive
ratio of O

(︁ 1
ε−δ

)︁
for 0 < δ < ε. This result nicely interpolates between commitment

upon starting a job and commitment upon arrival. For the latter model, we show that
no (randomized) online algorithm admits a bounded competitive ratio.
Finally, we observe that for scheduling with commitment restricting to unit weights is
essential; for job-dependent weights, we rule out competitive deterministic algorithms.
Bibliographic Remark: The presented lower bounds are based on joint work with L.
Chen, N. Megow, K. Schewior, and C. Stein [CEM+20]. The algorithm and its analysis
are based on joint work with N. Megow and K. Schewior [EMS20]. Therefore, some
parts correspond to or are identical with [CEM+20] and [EMS20].

Table of Contents

6.1 Introduction . 80

6.2 The Blocking Algorithm . 83

6.3 Completing All Admitted Jobs on Time . 87

6.4 Competitiveness: Admitting Sufficiently Many Jobs . 89

6.5 Lower Bounds on the Competitive Ratio . 91

6.6 Concluding Remarks . 94

79

6 Online Throughput Maximization with Commitment

6.1 Introduction

The model we consider in this chapter is almost identical to the one in Chapter 5. To recap,
jobs from an unknown job set J arrive online over time at their release dates rj . Each job j ∈ J
has a processing time pj ≥ 0 and a deadline dj . There are m identical parallel machines to
process these jobs or a subset of them. A job is said to complete if it receives pj units of
processing time within the interval [rj , dj). We allow preemption, i.e., the processing of a job
can be interrupted at any time. We distinguish schedules with and without migration. If we
allow migration, then a preempted job can resume processing on any machine whereas it must
run completely on the same machine otherwise. The task is to find a feasible schedule with
maximum throughput. In the three-field notation by Graham et al. [GLLRK79b], this problem
is denoted by P | online rj , pmtn |

∑︁
(1− Uj).

We assess the performance of online algorithms with standard competitive analysis. This
means, we compare the throughput of an online algorithm with the throughput achievable by
an optimal offline algorithm that knows the job set in advance. To circumvent known lower
bounds involving “tight” jobs with dj − rj ≈ pj , we require that jobs contain some slack ε > 0,
i.e., every job j satisfies dj − rj ≥ (1 + ε)pj . As in the previous chapter, the competitive ratio
of our online algorithm will be a function of ε; the greater the slack, the better should the
performance of our algorithm be.

In contrast to Chapter 5, we focus on the question how to handle commitment requirements
in online throughput maximization. Modeling commitment addresses the issue that a high-
throughput schedule may abort jobs close to their deadlines in favor of many shorter and more
urgent tasks [FBK+12], which may not be acceptable for the job owner. Consider a company
that starts outsourcing mission-critical processes to external clouds and that may require a
certain provider-side guarantee, i.e., service providers have to commit to complete admitted
jobs before they cannot be moved to other computing clusters anymore. In other situations, a
commitment to complete jobs might be required even earlier just before starting the job, e.g.,
for a faultless copy of a database as companies tend to rely on business analytics to support
decision making. Since analytical tools, which usually work with copies of databases, depend
on faultless data, the completion of such a copy process must be guaranteed once it started.

We distinguish three different models for scheduling with commitment: (i) commitment upon
job arrival, (ii) commitment upon job admission, and (iii) δ-commitment. In the first, most
restrictive model, an algorithm must decide immediately at a job’s release date if the job will
be completed or not. In the second model, an algorithm may discard a job any time before its
start, its admission. This reflects the situation when the start of a process is the critical time
point after which the successful execution is essential (e.g., faultless copy of a database). In the
third model, δ-commitment, an online algorithm must commit to complete a job when its slack
has reduced from the original slack requirement of at least an ε-fraction of the job size to a
δ-fraction for 0 < δ < ε. Then, the latest feasible time for committing to job j is dj− (1+δ)pj .

80

6.1 Introduction

This models an early-enough commitment (parameterized by δ) for mission-critical jobs.

Previous results For related work on online throughput maximization without commitment
requirements, we refer to the previous chapter and the references therein.

Commitment upon job arrival In the most restrictive model, Lucier et al. [LMNY13] rule
out competitive online algorithms for any slack parameter ε when jobs have arbitrary weights.

The special case wj = pj , or machine utilization, is much more tractable than weighted
or unweighted throughput maximization. A simple greedy algorithm achieves the best possi-
ble competitive ratio 1+ε

ε on a single machine, even for commitment upon arrival, as shown
by the analysis of DasGupta and Palis [DP00] and the matching lower bound by Garay et
al. [GNYZ02]. For scheduling with commitment upon arrival on m parallel identical ma-
chines, there is an O(m

√︁
1/ε)-competitive algorithm and an almost matching lower bound by

Schwiegelshohn and Schwiegelshohn [SS16]. When preemption is not allowed, Goldwasser and
Kerbikov [GK03] give a best possible

(︂
2+ 1

ε

)︂
-competitive algorithm on a single machine. Very

recently, Jamalabadi, Schwiegelshohn, and Schwiegelshohn [JSS20] extend this model to par-
allel machines; their algorithm is near optimal with a performance guarantee approaching ln 1

ε

as m tends to infinity.

Commitment upon admission and δ-commitment In our previous work [CEM+20], we
give a more elaborate variant of the threshold algorithm that achieves the first non-trivial upper
bound for both models on a single machine. For commitment upon job admission, Lucier et
al. [LMNY13] give a heuristic that empirically performs very well but for which they cannot
show a rigorous worst-case bound. In fact, later, Azar et al. [AKL+15] show that no bounded
competitive ratio is possible for weighted throughput maximization for small ε. For δ = ε

2
in the δ-commitment model, they design (in the context of truthful mechanisms) an online
algorithm that is Θ

(︂
1

3√1+ε−1 + 1
(3√1+ε−1)2

)︂
-competitive if the slack ε is sufficiently large, i.e.,

if ε > 3. They leave open if this latter condition is an inherent property of any committed
scheduler in this model, and our lower bound for weights answers this affirmatively.

Machine utilization is better understood: We note that, as commitment upon arrival clearly
is more restrictive than commitment upon admission and δ-commitment, the previously men-
tioned results immediately carry over and provide bounded competitive ratios. Without pre-
emption, Goldwasser [Gol03] gives an optimal

(︂
2 + 1

ε

)︂
-competitive algorithm on a single ma-

chine and Lee [Lee03] gives an O
(︂

m
m√ε

)︂
-competitive algorithm on m parallel identical machines.

Our contribution Our main result is an algorithm that is best possible (up to constant
factors) for online throughput maximization with commitment on parallel identical machines.
Our algorithm does not migrate jobs and still achieves a competitive ratio that matches the

81

6 Online Throughput Maximization with Commitment

general lower bound for migratory algorithms. Further, we show a strong lower bound for
scheduling with commitment upon job arrival, even for randomized algorithms.

Impossibility result for commitment upon job arrival In this most restrictive model, an
algorithm must decide immediately at a job’s release date if the job will be completed or not.
We show that no (randomized) online algorithm admits a bounded competitive ratio. Such a
lower bound has only been shown by exploiting arbitrary job weights [LMNY13,Yan17]. Given
our strong negative result, we do not consider this commitment model any further.

Scheduling with commitment For scheduling with commitment upon admission, we give
an (up to constant factors) optimal online algorithm with competitive ratio Θ

(︂
1
ε

)︂
. For schedul-

ing with δ-commitment, our result interpolates between the models commitment upon starting
a job and commitment upon arrival. If δ ≥ ε

2 , the competitive ratio is Θ
(︂

1
ε

)︂
which is best

possible as we showed in Chapter 5. For δ → ε, the commitment requirement essentially im-
plies commitment upon job arrival which has unbounded competitive ratio. Note that we give
the first online algorithms for online throughput maximization with commitment on parallel
identical machines with bounded competitive ratio for arbitrary slackness parameter ε.

Instances with arbitrary weights are hopeless without further restrictions. We show that
there is no deterministic online algorithm with bounded competitive ratio for δ-commitment.
Informally, our construction implies that there is no deterministic online algorithm with bounded
competitive ratio in any commitment model in which a scheduler may have to commit to a
job before it has completed. This is hard to formalize but may give guidance for the design of
alternative commitment models. Our lower bound for δ-commitment is as follows: For δ, ε > 0
with δ ≤ ε < 1 + δ, no deterministic online algorithm has a bounded competitive ratio. In
particular, this rules out bounded performance guarantees for ε ∈ (0, 1). We remark that for
sufficiently large slackness, i.e., ε > 3, Azar et al. [AKL+15] provide an online algorithm that
has bounded competitive ratio. Our new lower bound answers affirmatively their open question
whether high slackness is indeed required.

Finally, our impossibility result for weighted jobs and the positive result for instances without
weights clearly separates the weighted from the unweighted setting.

Our techniques The challenge in online scheduling with commitment is that, once we com-
mitted to complete a job, the remaining slack of this job has to be spent very carefully. The
key component of our algorithm is a job admission scheme which is implemented by different
parameters. The high-level objectives are:

(i) Never start a job for the first time if its remaining slack is too small (parameter δ),

(ii) during the processing of a job, admit only significantly shorter jobs (parameter γ), and

82

6.2 The Blocking Algorithm

(iii) for each admitted shorter job, block some time period (parameter β) during which no
other jobs of similar size are accepted.

The first two goals are quite natural and have been used before (see Chapter 5 and [LMNY13]),
while the third goal is crucial for our new tight result when scheduling with commitment. The
intuition is the following: suppose we committed to complete a job with processing time 1 and
have only a slack of O(ε) left before the deadline of this job. Suppose that c substantially
smaller jobs of size 1

c arrive, where c is the competitive ratio we aim for. On the one hand,
if we do not accept any of them, we cannot hope to achieve c-competitiveness. On the other
hand, accepting too many of them fills up the slack and, thus, leaves no room for even smaller
jobs. The idea is to keep the flexibility for future small jobs by only accepting an ε-fraction of
jobs of similar size (within a factor two).

We distinguish two time periods with different regimes for accepting jobs. During the
scheduling interval of job j, a more restrictive acceptance scheme ensures the completion of j

whereas in the blocking period we guarantee the completion of previously accepted jobs. In
contrast to the threshold algorithm in Chapter 5, where the processing time of the currently
scheduled job provides a uniform acceptance threshold, this distinction enables us to ensure
the completion of every admitted job without being too conservative in accepting jobs.

6.2 The Blocking Algorithm

In this section, we describe the blocking algorithm which handles scheduling with commitment.
We assume that the slackness constant ε > 0 and, in the δ-commitment model, δ ∈ (0, ε) are
given. If δ is not part of the input or if δ ≤ ε

2 , then we set δ = ε
2 .

The algorithm never migrates jobs between machines, i.e., a job is only processed by the
machine that initially started to process it. In this case, we say the job has been admitted to
this machine. Moreover, our algorithm commits to completing a job upon admission. Hence, its
remaining slack has to be spent very carefully on admitting other jobs to still be competitive.
As our algorithm does not migrate jobs, it transfers the admission decision to the shortest
admitted and not yet completed job on each machine. Thus, a job only admits significantly
shorter jobs and prevents the admission of too many jobs of similar size. To this end, the
algorithm maintains two types of intervals for each admitted job, a scheduling interval and
a blocking period. A job can only be processed in its scheduling interval. Thus, it has to
complete in this interval while admitting other jobs. Job j only admits jobs that are smaller
by a factor of γ = δ

16 < 1. For an admitted job k, job j creates a blocking period of length
at most βpk, where β = 16

δ , which blocks the admission of similar-length jobs (cf. Figure 6.1).
The scheduling intervals and blocking periods of jobs admitted by j will always be pairwise
disjoint and completely contained in the scheduling interval of j.

83

6 Online Throughput Maximization with Commitment

scheduling interval blocking period

τ

Figure 6.1: Scheduling interval, blocking period, and processing intervals

Scheduling jobs Similar to the threshold algorithm, the blocking algorithm follows the
Shortest Processing Time (SPT) order for the set of uncompleted jobs assigned to a
machine, which is independent of the admission scheme. SPT ensures that j has highest
priority in the blocking periods of any job k admitted by j.

Admitting jobs The algorithm keeps track of available jobs at any time point τ . A job j

with rj ≤ τ is called available if it has not yet been admitted to a machine by the algorithm
and its deadline is not too close, i.e., dj − τ ≥ (1 + δ)pj .

Whenever a job j is available at a time τ and when there is a machine i such that time τ

is not contained in the scheduling interval of any other job admitted to i, the shortest such
job j is immediately admitted to machine i at time aj := τ , creating the scheduling interval
S(j) = [aj , ej), where ej = aj + (1 + δ)pj and an empty blocking period B(j) = ∅. In general,
however, the blocking period is a finite union of time intervals associated with job j, and its
size is the sum of lengths of the intervals, denoted by |B(j)|. Four types of events trigger a
decision of the algorithm at time τ : the release of a job, the end of a blocking period, the end
of a scheduling interval, and the admission of a job. In any of these four cases, the algorithm
calls the class admission routine. This subroutine iterates over all machines i and checks if j,
the shortest job on i whose scheduling interval contains τ , can admit the currently shortest
available job j⋆.

To this end, any admitted job j checks if pj⋆ < γpj . Only such jobs qualify for admission
by j. Upon admission by j, job j⋆ obtains two disjoint consecutive intervals, the scheduling
interval S(j⋆) = [aj⋆ , ej⋆) and the blocking period B(j⋆) of size at most βpj⋆ . At the admission
of job j⋆, the blocking period B(j⋆) is planned to start at ej⋆ , the end of j⋆’s scheduling
interval. During B(j⋆), job j only admits jobs k with pk < 1

2pj⋆ .
Hence, when job j decides if it admits the currently shortest available job j⋆ at time τ , it

makes sure that j⋆ is sufficiently small and that no job k of similar (or even smaller) processing
time is blocking τ , i.e., it checks that τ /∈ B(k) for all jobs k with pk ≤ 2pj⋆ admitted to the
same machine. In this case, we say that j⋆ is a child of j and that j is the parent of j⋆,
denoted by π(j⋆) = j. If job j⋆ is admitted at time τ by job j, the algorithm sets aj⋆ = τ

and ej⋆ = aj⋆ + (1 + δ)pj⋆ and assigns the scheduling interval S(j⋆) = [aj⋆ , ej⋆) to j⋆.

84

6.2 The Blocking Algorithm

If ej⋆ ≤ ej , the routine sets fj⋆ = min{ej , ej⋆ + βpj⋆} which determines B(j⋆) = [ej⋆ , fj⋆).
As the scheduling and blocking periods of children k of j are supposed to be disjoint, we have
to update the blocking periods. First consider the job k with pk > 2pj⋆ admitted to the
same machine whose blocking period contains τ (if it exists), and let [e′

k, f ′
k) be the maximal

interval of B(k) containing τ . We set f ′′
k = min{ej , f ′

k + (1 + δ + β)pj⋆} and replace the
interval [e′

k, f ′
k) by [e′

k, τ)∪ [τ + (1 + δ + β)pj⋆ , f ′′
k). For all other jobs k with B(k)∩ [τ,∞) ̸= ∅

admitted to the same machine, we replace the remaining part of their blocking period [e′
k, f ′

k)
by [e′

k + (1 + δ + β)pj⋆ , f ′′
k) where f ′′

k := min{ej , f ′
k + (1 + δ + β)pj⋆}. In this update, we follow

the convention that [e, f) = ∅ if f ≤ e. Observe that the length of the blocking period might
decrease due to such updates.

Note that ej⋆ > ej is also possible as j does not take the end of its own scheduling interval ej

into account when admitting jobs. Thus, the scheduling interval of j⋆ would end outside j’s
scheduling interval and inside j’s blocking period. During B(j), the parent π(j) of j, did
not allocate the interval [ej , ej⋆) for completing jobs admitted by j but for ensuring its own
completion. Hence, the completion of both j⋆ and π(j) is not necessarily guaranteed anymore.
To prevent this, we modify all scheduling intervals S(k) (including S(j)) that contain time τ

of jobs admitted to the same machine as j⋆ and their blocking periods B(k). For each job k

admitted to the same machine with τ ∈ S(k) (including j) and ej⋆ > ek we set ek = ej⋆ . We
also update their blocking periods (in fact, single intervals) to reflect their new starting points.
If the parent π(k) of k does not exist, B(k) remains empty; otherwise we set B(k) := [ek, fk)
where fk = min{eπ(k), ek + βpk}. Note that, after this update, the blocking periods of any but
the largest such job will be empty. Moreover, the just admitted job j⋆ does not get a blocking
period in this special case.

During the analysis of the algorithm, we show that any admitted job j still completes
before aj + (1 + δ)pj and that ej ≤ aj + (1 + 2δ)pj holds in retrospect for all admitted jobs j.
Thus, any job j that admits another job j⋆ tentatively assigns this job a scheduling interval of
length (1 + δ)pj⋆ but, for ensuring its own completion, it is prepared to lose (1 + 2δ)pj⋆ time
units of its scheduling interval S(j). We summarize the blocking algorithm in Algorithm 6.1.

Algorithm 6.1: Blocking algorithm
Scheduling routine: At all times τ and on all machines i, run the job with shortest processing time

that has been admitted to i and has not yet completed .

Event: Upon release of a new job at time τ :
Call admission routine.

Event: Upon ending of a blocking period or scheduling interval at time τ :
Call admission routine.

Admission routine:
j⋆ ← a shortest available job at τ , i.e., j⋆ ∈ arg min{pj | j ∈ J , rj ≤ τ and dj − τ ≥ (1 + δ)pj}
i← 1
while j⋆ is not admitted and i ≤ m do

85

6 Online Throughput Maximization with Commitment

K ← the set of jobs on machine i whose scheduling intervals contain τ

if K = ∅ do
admit job j⋆ to machine i

aj⋆ ← τ and ej⋆ ← aj⋆ + (1 + δ)pj⋆

S(j⋆)← [aj⋆ , ej⋆) and B(j⋆)← ∅
call admission routine

else
j ← arg min{pk | k ∈ K}
if j⋆ < γpj and τ /∈ B(j′) for all j′ admitted to i with pj′ ≤ 2pj⋆ do

admit job j⋆ to machine i

aj⋆ ← τ and ej⋆ ← aj⋆ + (1 + δ)pj⋆

if ej⋆ ≤ ej do
fj⋆ ← min{ej , ej⋆ + βpj⋆}
S(j⋆)← [aj⋆ , ej⋆) and B(j⋆)← [ej⋆ , fj⋆)

else
S(j⋆)← [aj⋆ , ej⋆) and B(j⋆)← ∅
modify S(k) and B(k) for k ∈ K

update B(j′) for j′ admitted to machine i with B(j′) ∩ [τ,∞) ̸= ∅
call admission routine

else
i← i + 1

Main Result and Road Map of the Analysis During the analysis, it is sufficient to concentrate
on instances with small slack, as also noted in Chapter 5. For ε > 1, we run the blocking
algorithm with ε = 1, which only tightens the commitment requirement, and obtain constant
competitive ratios. Thus, we assume 0 < ε ≤ 1.

Theorem 6.1. Consider throughput maximization on parallel identical machines with or without
migration. There is an O

(︂
1

ε−δ′

)︂
-competitive online algorithm with commitment, where δ′ = ε

2

in the commitment-upon-admission model and δ′ = max
{︂

δ, ε
2

}︂
in the δ-commitment model.

We note that, in the δ-commitment model, committing to the completion of a job j at an
earlier point in time clearly satisfies committing at a remaining slack of δpj . Therefore, we
may assume δ ∈ [ε

2 , ε) and thus avoid dealing with δ′.
As in the previous chapter, we exploit that the blocking algorithm does not migrate any job.

In other words, we compare again the throughput of our algorithm to the solution of an optimal
non-migratory schedule. Then, we use the result by Kalyanasundaram and Pruhs [KP01,
Theorem 1.1] on optimal migratory and non-migratory schedules to extend the analysis to the
migratory setting; see Theorem 5.2.

The special structure of the blocking algorithm allows us again to split the proof of the result
into two parts. The first part, Section 6.3, is to show that the blocking algorithm completes all
admitted jobs on time. In the second part, Section 6.4, we show that the blocking algorithm

86

6.3 Completing All Admitted Jobs on Time

belongs to the class of online algorithms analyzed in Chapter 5 for bounding the throughput of
an optimal, non-migratory solution. Then, our strong structural result (Theorem 5.9) enables
us to prove that the blocking algorithm admits sufficiently many jobs to be competitive.

6.3 Completing All Admitted Jobs on Time

We show that the blocking algorithm finishes every admitted job on time in Theorem 6.3. As
the blocking algorithm does not migrate jobs, it suffices to consider each machine individually
in this section. The proof relies on the following observations: (i) The sizes of jobs admitted
by job j that interrupt each others’ blocking periods are geometrically decreasing, (ii) the
scheduling intervals of jobs are completely contained in the scheduling intervals of their parents,
and (iii) scheduling in SPT order guarantees that job j has highest priority in the blocking
periods of its children. We start by proving the following technical lemma about the length
of the final scheduling interval of an admitted job j, denoted by |S(j)|. In the proof, we use
that π(k) = j for two jobs j and k implies that pk < γpj .

Lemma 6.2. Let 0 < δ < ε be fixed. If γ > 0 satisfies (1 + 2δ)γ ≤ δ, then the length of the
scheduling interval S(j) of an admitted job j is upper bounded by (1 + 2δ)pj. Moreover, S(j)
contains the scheduling intervals and blocking periods of all descendants of j.

Proof. By definition of the blocking algorithm, the end point ej of the scheduling interval of
job j is only modified when j or one of j’s descendants admits another job. Let us consider
such a case: If job j admits a job k whose scheduling interval does not fit into the scheduling
interval of j, we set ej = ek = ak + (1 + δ)pk to accommodate the scheduling interval S(k)
within S(j). The same modification is applied to any ancestor j′ of j with ej′ < ek. This
implies that, after such a modification of the scheduling interval, neither j nor any affected
ancestor j′ of j are the smallest jobs in their scheduling intervals anymore. In particular, no job
whose scheduling interval was modified in such a case at time τ is able to admit jobs after τ .
Hence, any job j can only admit other jobs within the interval [aj , aj + (1 + δ)pj). That is,
ak ≤ aj + (1 + δ)pj for every job k with π(k) = j.

Thus, by induction, it is sufficient to show that ak +(1+2δ)pk ≤ aj +(1+2δ)pj for admitted
jobs k and j with π(k) = j. Note that π(k) = j implies pk < γpj . Hence,

ak + (1 + 2δ)pk ≤ (aj + (1 + δ)pj) + (1 + 2δ)γpj ≤ aj + (1 + 2δ)pj ,

where the last inequality follows from the assumption (1 + 2δ)γ ≤ δ. Due to the construction
of B(k) upon admission of job k by job j, we also have B(k) ⊆ S(j).

Theorem 6.3. Let 0 < δ < ε be fixed. If 0 < γ < 1 and β ≥ 1 satisfy

β/2
β/2 + (1 + 2δ)

(︁
1 + δ − 2(1 + 2δ)γ

)︁
≥ 1, (6.1)

87

6 Online Throughput Maximization with Commitment

then the blocking algorithm completes a job j admitted at aj ≤ dj − (1 + δ)pj on time.

Our choice of parameters guarantees that Equation (6.1) is satisfied.

Proof. Let j be a job admitted by the blocking algorithm with aj ≤ dj − (1 + δ)pj . Showing
that job j completes before time d′

j := aj + (1 + δ)pj proves the theorem. Due to scheduling in
SPT order, each job j has highest priority in its own scheduling interval if the time point does
not belong to the scheduling interval of a descendant of j. Thus, it suffices to show that at
most δpj units of time in [aj , d′

j) belong to scheduling intervals S(k) of descendants of j. By
Lemma 6.2, the scheduling interval of any descendant k′ of a child k of j is contained in S(k).
Hence, it is sufficient to only consider K, the set of children of j.

In order to bound the contribution of each child k ∈ K, we impose a class structure on
the jobs in K depending on their size relative to job j. More precisely, we define (Cc(j))c∈N0

where Cc(j) contains all jobs k ∈ K that satisfy γ
2c+1 pj ≤ pk < γ

2c pj . As k ∈ K implies pk < γpj ,
each child of j belongs to exactly one class and (Cc(j))c∈N0 indeed partitions K.

Consider two jobs k, k′ ∈ K where, upon admission, k interrupts the blocking period of k′.
By definition, we have pk < 1

2pk′ . Hence, the chosen class structure ensures that k belongs
to a strictly higher class than k′, i.e., there are c, c′ ∈ N with c > c′ such that k ∈ Cc(j)
and k′ ∈ Cc′(j). In particular, the admission of a job k ∈ Cc(j) implies either that k is the first
job of class Cc(j) that j admits or that the blocking period of the previous job in class Cc(j)
has completed. Based on this distinction, we are able to bound the loss of scheduling time
for j in S(j) due to S(k) of a child k.

Specifically, we partition K into two sets. The first set K1 contains all children of j that
where admitted as the first jobs in their class Cc(j). The set K2 contains the remaining jobs.

We start with K2. Consider a job k ∈ Cc(j) admitted by j. By Lemma 6.2, we know
that |S(k)| = (1 + µδ)pk, where 1 ≤ µ ≤ 2. Let k′ ∈ Cc(j) be the previous job admitted
by j in class Cc(j). Then, B(k′) ⊆ [ek′ , ak). Since scheduling and blocking periods of children
of j are disjoint, j has highest scheduling priority in B(k′). Hence, during B(k′) ∪ S(k) job j

is processed for at least |B(k′)| units of time. In other words, j is processed for at least
a |B(k′)|

|B(k′)∪S(k)| -fraction of B(k′) ∪ S(k). We rewrite this ratio as

|B(k′)|
|B(k′) ∪ S(k)| = βpk′

βpk′ + (1 + µδ)pk
= νβ

νβ + (1 + µδ) ,

where ν := pk′
pk
∈ (1

2 , 2]. By differentiating with respect to ν and µ, we observe that the last
term is increasing in ν and decreasing in µ. Thus, we lower bound this expression by

|B(k′)|
|B(k′) ∪ S(k)| ≥

β/2
β/2 + (1 + 2δ) .

Therefore, j is processed for at least a β/2
β/2+(1+2δ) -fraction in

⋃︁
k∈K B(k) ∪

⋃︁
k∈K2 S(k).

88

6.4 Competitiveness: Admitting Sufficiently Many Jobs

We now consider the set K1. The total processing volume of these jobs is bounded from above
by
∑︁∞

c=0
γ
2c pj = 2γpj . By Lemma 6.2, |S(k)| ≤ (1 + 2δ)pk. Combining these two observations,

we obtain
⃓⃓⃓ ⋃︁

k∈K1 S(k)
⃓⃓⃓
≤ 2(1 + 2δ)γpj . Combining the latter with the bound for K2, we

conclude that j is scheduled for at least⃓⃓⃓⃓
[aj , d′

j) \
⋃︂

k∈K

S(k)
⃓⃓⃓⃓
≥ β/2

β/2 + (1 + 2δ)
(︂
(1 + δ)− 2(1 + 2δ)γ

)︂
pj ≥ pj

units of time, where the last inequality follows from Equation (6.1). Therefore, j completes
before d′

j = aj + (1 + δ)pj ≤ dj , which concludes the proof.

6.4 Competitiveness: Admitting Sufficiently Many Jobs

After having proved that the blocking algorithm indeed completes all admitted jobs on time in
the previous section, it remains to show that the blocking algorithm admits sufficiently many
jobs to achieve the competitive ratio of O

(︂
1

ε−δ′

)︂
where δ′ = ε

2 for commitment upon admission

and δ′ = max
{︂

ε
2 , δ
}︂

for δ-commitment. To this end, we show that the blocking algorithm
belongs to the class of online algorithms considered in Section 5.4.1. Then, Theorem 5.9
provides a bound on the throughput of an optimal non-migratory schedule. We restate the
necessary properties of an online non-migratory algorithm A for convenience.

(P1) A only admits available jobs.

(P2) Retrospectively, for each time τ and each machine i, there is a threshold ui,τ ∈ [0,∞]
such that any job j that was available and not admitted by A at time τ satisfies pj ≥ ui,τ

for every i.

(P3) The function u(i) : R → [0,∞], τ ↦→ ui,τ is piece-wise constant and right-continuous for
every machine i ∈ [m]. Further, there are only countably many points of discontinuity.

The first property is clearly satisfied by the definition of the blocking algorithm. For the
second and the third property, we observe that a new job j⋆ is only admitted to a machine i

during the scheduling interval of another job j admitted to the same machine if pj⋆ < γpj .
Further, the time point of admission must not be blocked by a similar- or smaller-size job k

previously admitted during the scheduling interval of j. This leads to the bound pj⋆ < 1
2pk for

any job k whose blocking period contains the current time point. Combining these observations
leads to a machine-dependent threshold ui,τ ∈ [0,∞] satisfying (P2) and (P3).

More precisely, fix a machine i and a time point τ . Using j → i to denote that j was
admitted to machine i, we define ui,τ := minj: j→i,τ∈S(j) γpj if there is no job k admitted to
machine i with τ ∈ B(k). As usual, we have min ∅ = ∞. Otherwise, we set ui,τ := 1

2pk.
We note that the function u(i) is piece-wise constant and right-continuous due to our choice

89

6 Online Throughput Maximization with Commitment

of right-open intervals for defining scheduling intervals and blocking periods. Moreover, the
points of discontinuity of u(i) correspond to the admission of a new job, the end of a scheduling
interval, and the start as well as the end of a blocking period of jobs admitted to machine i.
Since we only consider instances with a finite number of jobs, there are at most finitely many
points of discontinuity of u(i). Hence, we can indeed apply Theorem 5.9.

Then, the following theorem is the main result of this section.

Theorem 6.4. An optimal non-migratory (offline) algorithm can complete at most a factor α+5
more jobs on time than admitted by the blocking algorithm, where α := ε

ε−δ

(︂
2β + 1+2δ

γ

)︂
.

Proof. We fix an instance and an optimal solution Opt. We use X to denote the set of jobs in
Opt that the blocking algorithm did not admit. Without loss of generality, we can assume that
all jobs in Opt complete on time. If J is the set of jobs admitted by the blocking algorithm,
then X ∪ J is a superset of the jobs successfully finished in the optimal solution. Hence,
showing |X| ≤ (α + 4)|J | suffices to prove Theorem 6.4.

We compare again the throughput of a highest loaded machine of the optimal solution to the
throughput on a least loaded machine of the blocking algorithm. More precisely, let X ⊆ X

be the jobs in Opt scheduled on a machine with highest throughput and let J ⊆ J be the jobs
scheduled by the blocking algorithm on a machine with lowest throughput. With Theorem 5.9,
we show |X| ≤ (α + 4)|J | to bound the cardinality of X in terms of |J |.

To this end, we retrospectively consider the interval structure created by the algorithm on the
machine that schedules J ; let this without loss of generality be the first machine. Let I be the
set of maximal intervals It = [τt, τt+1) such that u1,τ = u1,τt for all τ ∈ It. We define ut = u1,τt

for each interval It. As discussed above, the time points τt for t ∈ [T] correspond to the
admission, the end of a scheduling interval, and the start as well as the end of a blocking
period of jobs admitted to machine 1. As the admission of a job adds at most three time
points, we have that |I| ≤ 3|J |+ 1.

As the blocking algorithm satisfies Properties (P1) to (P3), we can apply Theorem 5.9 to
obtain

|X| ≤
T∑︂

t=1

ε

ε− δ

τt+1 − τt

ut
+ |I| ≤

T∑︂
t=1

ε

ε− δ

τt+1 − τt

ut
+ (3|J |+ 1).

It remains to bound the first part in terms of |J |. If ut < ∞, let jt ∈ J be the smallest job j

with τt ∈ S(j) ∪ B(j). Then, at most ε
ε−δ

τt+1−τt

ut
(potentially fractional) jobs will be charged

to job jt because of interval It. By definition of ut, we have ut = γpjt if It ⊆ S(jt), and
if It ⊆ B(jt), we have ut = 1

2pjt . The total length of intervals It for which j = jt holds sums
up to at most (1 + 2δ)pj for It ⊆ S(j) and to at most 2βpj for It ⊆ B(j). Hence, in total, the
charging scheme assigns at most ε

ε−δ (2β + 1+2δ
γ) = α jobs in X to job j ∈ J . Therefore,

|X| ≤
(︂
α + 3

)︂
|J |+ 1.

90

6.5 Lower Bounds on the Competitive Ratio

If J = ∅, the blocking algorithm admitted all jobs in the instance, and |X| ≤ |J | follows.
Otherwise, |X| ≤

(︂
α + 4

)︂
|J |, and we obtain

|Opt| ≤ |X ∪ J | ≤ m|X|+ |J | ≤ m(α + 4)|J |+ |J | ≤ (α + 5)|J |,

which concludes the proof.

Finalizing the proof of Theorem 6.1

Proof of Theorem 6.1. In Theorem 6.3 we show that the blocking algorithm completes all
admitted jobs J on time. This implies that the blocking algorithm is feasible for the model
commitment upon admission. As no job j ∈ J is admitted later than dj−(1+δ)pj , the blocking
algorithm also solves scheduling with δ-commitment. Theorem 1.1 in [KP01] (Theorem 5.2)
gives a bound on the throughput of an optimal migratory schedule in terms of the throughput
of an optimal non-migratory solution. In Theorem 6.4, we bound the throughput |Opt| of an
optimal non-migratory solution by |J |, the throughput of the blocking algorithm. Combining
these theorems shows that the blocking algorithm achieves a competitive ratio of

c = 6(α + 5) = 6
(︄

ε

ε− δ

(︂
2β + 1 + 2δ

γ

)︂
+ 5

)︄
.

Our choice of parameters β = 16
δ and γ = δ

16 implies c ∈ O
(︂

ε
(ε−δ)δ

)︂
. For commitment upon

arrival or for δ-commitment in the case where δ ≤ ε
2 , we run the algorithm with δ′ = ε

2 .
Hence, c ∈ O

(︂
1

ε−δ′

)︂
= O

(︂
1
ε

)︂
. If δ > ε

2 , then we set δ′ = δ in our algorithm. Thus, ε
δ′ ∈ O(1)

and, again, c ∈ O
(︂

1
ε−δ′

)︂
.

6.5 Lower Bounds on the Competitive Ratio

We emphasize that the blocking algorithm matches the lower bound presented in the previous
chapter for online throughput maximization when scheduling without commitment. In this
section, we give an impossibility result even for randomized algorithms for scheduling with
commitment upon arrival. Since the δ-commitment requirement essentially tightens to com-
mitment upon arrival if δ converges to ε, the divergence of the competitive ratio of the blocking
algorithm for δ → ε is justified.

Further, we develop several lower bounds for scheduling with commitment in the presence
of weights.

Commitment Upon Arrival

We substantially strengthen earlier results for weighted jobs [LMNY13,Yan17] and show that
the model is hopeless even in the unweighted setting and even for randomized algorithms.

91

6 Online Throughput Maximization with Commitment

Theorem 6.5. No randomized online algorithm has a bounded competitive ratio for commitment
upon arrival.

In the proof of the theorem, we use the following algebraic fact.

Lemma 6.6. If some positive numbers q1, . . . , qk, c ∈ R+ satisfy the properties
(i)

∑︁k
ℓ=1 qℓ ≤ 1 and

(ii)
∑︁j

ℓ=1 qℓ · 2ℓ−1 ≥ 2j−1

c for all j = 1, . . . , k,
then c ≥ k+1

2 .

Proof. We take a weighted sum over all inequalities in (ii), where the weight of the inequality
corresponding to j < k is 2k−j−1 and the weight of the inequality corresponding to j = k is 1.
The result is

k∑︂
ℓ=1

qℓ · 2k−1 ≥ (k + 1) · 2k−2

c
⇔

k∑︂
ℓ=1

qℓ ≥
(k + 1)

2c
.

If c < k+1
2 , this contradicts (i).

We proceed to the proof of the theorem.

Proof of Theorem 6.5. Consider any ε > 0 and an arbitrary γ ∈ (0, 1). Toward a contradiction,
suppose that there is a (possibly randomized) c-competitive algorithm, where c may depend
on ε.

Let k ∈ N with k ≥ 2c. The instance consists of one machine and at most k waves of jobs,
but the instance may end after any wave.

Wave ℓ has 2ℓ jobs. Each job from the ℓth wave has release date ℓ
k · γ, deadline 1, and

processing time 1
2ℓ · 1−γ

1+ε . Choosing pj ≤ 1−γ
1+ε for all jobs j ensures that dj − rj ≥ (1 + ε)pj .

Further, note that the total volume of jobs in wave ℓ adds up to no more than 1− γ.
Define qℓ to be the expected total processing time of jobs that the algorithm accepts from

wave ℓ. We observe:
(i) Since all accepted jobs have to be scheduled within the interval [0, 1], we must have∑︁k

ℓ=1 qℓ ≤ 1.
(ii) For each ℓ, possibly no further jobs are released after wave ℓ. Since, in this case, the

optimum schedules all jobs from wave ℓ and the jobs’ processing times decrease by a
factor of 2 from wave to wave, it must hold that

∑︁j
ℓ=1 qℓ · 2ℓ−1 ≥ 2j−1

c for all j ∈ [k].
This establishes the conditions of Lemma 6.6 for q1, . . . , qk, which implies c ≥ k+1

2 > c. This
gives a contradiction.

Commitment on Job Admission and δ-commitment.

Since scheduling with commitment is more restrictive than scheduling without commitment,
the lower bound Ω(1

ε) from Theorem 5.12 holds for throughput maximization with commitment
upon job admission and δ-commitment.

92

6.5 Lower Bounds on the Competitive Ratio

In the remainder of this section, we consider weighted throughput maximization where jobs
may have arbitrary weights or where the weights are equal to their processing times.

Commitment upon admission For scheduling with arbitrary weights, Azar et al. [AKL+15]
rule out any bounded competitive ratio for deterministic algorithms. Thus, our bounded
competitive ratio for the unweighted setting (Theorem 6.1) gives a clear separation between
the weighted and the unweighted setting.

Scheduling with δ-commitment We give a lower bound depending on parameters ε and δ.

Theorem 6.7. Consider scheduling weighted jobs in the δ-commitment model. For δ, ε > 0
with δ ≤ ε < 1 + δ, no deterministic online algorithm has a bounded competitive ratio.

Proof. We reuse the idea of [AKL+15] to release the next job upon admission of the previous
one while heavily increasing the weights of subsequent jobs. However, the scheduling models
differ in the fact that the δ-commitment model allows for processing before commitment which
is not allowed in the commitment-upon-admission model.

Toward a contradiction, suppose that there is a c-competitive algorithm. We consider the
following instance with one machine and n jobs with the same deadline d, where d = 1 + ε.
Job j ∈ [n] has weight (c + 1)j which implies that any c-competitive algorithm has to admit
job j at some point even if all jobs 1, . . . , j − 1 are admitted. In the δ-commitment model,
the commitment to job j cannot happen later than d − (1 + δ)pj , which is shortly before the
release date of job j + 1.

More precisely, the first job is released at r1 = 0 with processing time p1 = 1. If jobs 1, . . . , j

have been released, then job j + 1 is released at rj+1 = d− (1 + δ)pj + φpj , for φ ∈ (0, δ), and
has processing time

pj+1 = d− rj+1
1 + ε

= d− (d− (1 + δ)pj + φpj)
1 + ε

= 1 + δ − φ

1 + ε
pj =

(︄
1 + δ − φ

1 + ε

)︄j

.

An instance with n such jobs has a total processing volume of

n∑︂
j=1

pj =
n−1∑︂
j=0

(︄
1 + δ − φ

1 + ε

)︄j

=
1−

(︂
1+δ−φ

1+ε

)︂n

1− 1+δ−φ
1+ε

.

Any c-competitive algorithm has to complete the n jobs before d = 1 + ε. This also holds
for n → ∞ and φ → 0, and thus 1+ε

ε−δ ≤ 1 + ε is implied. This is equivalent to ε ≥ 1 + δ. In
other words, if ε < 1 + δ, there is no deterministic c-competitive online algorithm.

In particular, there is no bounded competitive ratio possible for ε ∈ (0, 1). A restriction of ε

appears to be necessary since Azar et al. [AKL+15] provide such a bound when the slackness
is sufficiently large, i.e, ε > 3. In fact, our bound answers affirmatively the open question

93

6 Online Throughput Maximization with Commitment

in [AKL+15] whether or not high slackness is indeed required. Again, this strong impossibility
result gives a clear separation between the weighted and the unweighted problem as we show
in the unweighted setting a bounded competitive ratio for any ε > 0 (Theorem 6.1).

Proportional weights For scheduling with commitment, it is known that simple greedy algo-
rithms achieve the best possible competitive ratio Θ

(︂
1
ε

)︂
[DP00,GNYZ02]. In this section, we

show a weaker lower bound for randomized algorithms.

Theorem 6.8. Consider proportional weights (wj = pj). For commitment on job admission and
the δ-commitment model, the competitive ratio of any randomized algorithm is Ω

(︂
log 1

ε

)︂
.

Proof. Let k =
⌊︂

log
(︂

1
8ε

)︂⌋︂
, and consider a c-competitive algorithm. The instance consists of

one machine and at most k jobs, where job j ∈ [k] arrives at 2ε
∑︁j−1

ℓ=1 2ℓ−1 and has processing
time 2j−1 and slack ε2j−1. The release date of job j is

2ε
j−1∑︂
ℓ=1

2ℓ−1 < 2ε · 2log(1/(8ε)) ≤ 1
4 ,

at which time any job j′ < j that the algorithm has committed to has at least p1− 1
4 = 3

4 units
of processing time left. However, the slack of j is at most

ε · 2j−1 ≤ ε · 2⌊log(1/(8ε))⌋−1 ≤ 1
16 .

This implies that no algorithm should commit to two jobs at the same time. If qℓ is the
probability that the algorithm commits to job ℓ, then

∑︁k
ℓ=1 qℓ ≤ 1.

Further, if the algorithm commits to j < k, then this has to happen at the latest at time

rj + ε2j−1 = 2ε
j−1∑︂
ℓ=1

2ℓ−1 + ε2j−1 < 2ε
j∑︂

ℓ=1
2ℓ−1 = rj+1.

That is, unknowing whether j + 1 will be released or not, the algorithm has to be competitive
with the optimum that only schedules job j. As such an optimum achieves a value of pj = 2j−1,
any c-competitive algorithm has to satisfy

∑︁j
ℓ=1 qℓ · 2ℓ−1 ≥ 2j−1

c .
Therefore, we are able to apply Lemma 6.6 to q1, . . . , qk, showing c ≥ k+1

2 = Ω
(︂

log 1
ε

)︂
.

6.6 Concluding Remarks

We answer the major open questions regarding online throughput maximization with com-
mitment requirements and give an optimal online algorithm on identical parallel machines for
the problem P | online rj , pmtn |

∑︁
(1−Uj) when scheduling with commitment upon admission

or with δ-commitment. Surprisingly, the asymptotic performance of an online scheduler does

94

6.6 Concluding Remarks

not change significantly under these moderate, yet valuable commitment requirements. For
the most restrictive model, commitment upon arrival, we rule out any online algorithm with
bounded competitive ratio.

As observed in the previous chapter, our lower bounds on the competitive ratio are based
on single-machine instances. Hence, it remains open whether the problem where m is not
part of the input admits an online algorithm with a better competitive ratio as is the case
for Pm | online rj , pmtn |

∑︁
pj(1− Uj) [SS16].

95

7
Dynamic Multiple Knapsacks

In the Multiple Knapsack problem, we are given multiple knapsacks with different
capacities and items with values and sizes. The task is to find a subset of items of
maximum total value that can be packed into the knapsacks without exceeding the
capacities. We investigate this problem and special cases thereof in the context of
dynamic algorithms and design data structures that efficiently maintain near-optimal
knapsack solutions for dynamically changing input. More precisely, we handle the arrival
and departure of individual items or knapsacks during the execution of the algorithm
with worst-case update time poly-logarithmic in the number of items. As an optimal
and any approximate solution may change drastically with changing input, we only
maintain implicit solutions and support certain queries in poly-logarithmic time, such
as asking for the packing of an item or the solution value.
While dynamic algorithms are well-studied in the context of graph problems, there is
hardly any work on packing problems and generally much less on non-graph problems.
Given the theoretical interest in knapsack problems and their practical relevance, it is
somewhat surprising that Knapsack has not been addressed before in the context of
dynamic algorithms. Our work bridges this gap.
Bibliographic Remark: This chapter is based on joint work with M. Böhm, N. Megow,
L. Nölke, J. Schlöter, B. Simon, and A. Wiese [BEM+20]. Therefore, some parts corre-
spond to or are identical with [BEM+20], which is submitted for publication at SODA
2021. The proofs of Sections 7.6 and 7.7 will (also) appear in the PhD thesis by L.
Nölke.

Table of Contents

7.1 Introduction . 98

7.2 Data Structures and Preliminaries . 102

7.3 Dynamic Linear Grouping . 105

7.3.1 Algorithm . 106

7.3.2 Analysis . 107

7.4 Identical Knapsacks . 111

7.4.1 Algorithm . 111

97

7 Dynamic Multiple Knapsacks

7.4.2 Analysis . 114

7.5 Ordinary Knapsacks When Solving Multiple Knapsack . 130

7.5.1 Algorithm . 130

7.5.2 Analysis . 134

7.6 Special Knapsacks When Solving Multiple Knapsack . 145

7.6.1 Algorithm . 145

7.7 Solving Multiple Knapsack . 147

7.7.1 Algorithm . 148

7.7.2 Analysis . 151

7.8 Concluding Remarks . 154

7.1 Introduction

Knapsack problems are among the most fundamental optimization problems, studied since the
early days of optimization theory. In the most basic variant, the Knapsack problem, there
are given a knapsack with capacity S ∈ N and a set J of n items, where J = [n], and each
item j has a size sj ∈ N and a value vj ∈ N. The goal is to find a subset of items, P ⊆ [n],
with maximal total value v(P) =

∑︁
j∈P vj , and with total size s(P) =

∑︁
j∈P sj , that does not

exceed the knapsack capacity S. In the more general Multiple Knapsack problem, we are
given m knapsacks with capacities Si for i ∈ [m]. Here, the task is to select m disjoint subsets
P1, . . . , Pm ⊆ J such that subset Pi satisfies the capacity constraint s(Pi) ≤ Si and the total
value of all subsets

∑︁m
i=1 v(Pi) is maximized.

The Knapsack problem is NP-complete in its decision variant — in fact, it is one of the 21
problems on Karp’s list of NP-complete problems [Kar72] — and it admits pseudo-polynomial
time algorithms. The first published pseudopolynomial-time algorithm for Knapsack from
the 1950s has running time O(n · S) [Bel57]. The decision variant of Multiple Knapsack
is strongly NP-complete, even for identical knapsack capacities, since it is a special case of
Bin Packing [GJ79, KPP04]. Hence, it does not admit pseudopolynomial-time algorithms,
unless P = NP .

As a consequence of these hardness results, each of the knapsack variants has been studied
extensively over the years through the lens of approximation algorithms. Of particular interest
are approximation schemes, families of polynomial-time algorithms that compute for any con-
stant ε > 0 a (1 + ε)-approximate solution, i.e., a feasible solution with value within a factor
of (1 + ε) of the optimal solution value (see also Chapter 2). The first approximation scheme
for the Knapsack problem is due to Ibarra and Kim [IK75] and has running time polynomial
in n and 1

ε . This seminal paper initiated a long sequence of follow-up work, with the latest
improvements appearing only recently [Cha18,Jin19].

98

7.1 Introduction

Multiple Knapsack is substantially harder and does not admit (1 + ε)-approximate al-
gorithms with running time polynomial in 1

ε , unless P = NP , even with two identical knap-
sacks [CK05]. However, some approximation schemes with exponential dependency on 1

ε are
known [Kel99, CK05] as well as improved variants, where the dependency on f

(︂
1
ε

)︂
for some

function f is only multiplicative or additive [Jan09, Jan12]. The currently fastest known ap-
proximation scheme has a running time of 2O(log4(1/ε)/ε) +poly(n) [Jan12]. All these algorithms
are static in the sense that the algorithm has access to the entire instance, and the instance is
not subject to changes.

The importance of knapsack problems in theory and practice is reflected by the two dedi-
cated books [MT90,KPP04]. Given the relevance of knapsack applications in practice and the
ubiquitous dynamics of real-world instances, it is natural to ask for dynamic algorithms that
adapt to small changes in the packing instance while spending only little time to recompute
the solution. More precisely, during the execution of the algorithm, items and knapsacks arrive
and depart, and the algorithm has to maintain an approximate knapsack solution with a small
update time, preferably poly-logarithmic in the current number of items. A dynamic algo-
rithm for knapsack problems can be seen as a data structure that supports update operations
to insert or remove an item or a knapsack as well as relevant query operations to output the
current solution. We use update time to refer to the running time that is needed to update
the underlying data structure and to compute the new solution. We are the first to analyze
knapsack problems in the context of dynamic algorithms.

Generally, dynamic algorithms constitute a vibrant research field in the context of graph
problems. We refer to the surveys [DEGI10, Hen18, BP11] for an overview on dynamic graph
algorithms. For packing and, generally, for non-graph-related problems, dynamic algorithms
with small update time are much less studied. A notable exception is a result for Bin Pack-
ing that maintains a 5

4 -approximate solution with O(log n) update time [IL98]. This lack
of efficient dynamic algorithms is in stark contrast to the aforementioned intensive research
on computationally efficient algorithms for knapsack problems. Our work bridges this gap
initiating the design of algorithms that efficiently maintain near-optimal solutions.

Our Contribution

In this chapter, we present dynamic algorithms for maintaining approximate knapsack solutions
for two problems of increasing complexity: Multiple Knapsack with identical knapsack sizes
and Multiple Knapsack without further restrictions. Our algorithms are fully dynamic
which means that in an update operation they can handle both, the arrival or departure of an
item and the arrival or departure of a knapsack. Further, we consider the implicit solution or
query model, in which an algorithm is not required to store the solution explicitly in memory
such that the solution can be read in linear time at any given point of the execution. Instead,
the algorithm may maintain the solution implicitly with the guarantee that a query about the

99

7 Dynamic Multiple Knapsacks

packing can be answered in poly-logarithmic time. Since Knapsack is already NP-hard even
with full knowledge of the instance, we aim at maintaining (1 + ε)-approximate solutions.

We give worst-case guarantees for update and query times that are poly-logarithmic in n,
the number of items currently in the input, and bounded by a function of ε > 0, the desired
approximation accuracy. For some special cases, we can even ensure a polynomial dependency
on 1

ε . In others, we justify the exponential dependency with NP-hardness results. Denote
by vmax the currently largest item value and by Smax the currently largest knapsack capacity.

• For Multiple Knapsack, we design a dynamic algorithm that maintains a (1 + ε)-
approximate solution with update time 2f(1/ε)

(︂
log n

ε

)︂O(1/ε)
(log m log Smax log vmax)O(1),

where f(1/ε) is quasi-linear, and query timeO
(︂

log n
ε2 +log m

)︂
for single items (Section 7.7).

• The exponential dependency on 1
ε in the update time for Multiple Knapsack is indeed

necessary, even for two identical knapsacks. We show that there is no (1+ε)-approximate
dynamic algorithm with update time

(︂
1
ε log n

)︂O(1)
, unless P = NP (Section 7.2).

• For Multiple Knapsack with m identical knapsacks, we maintain a (1+ε)-approximate
solution with update time

(︂
1
ε log n log Smax log vmax

)︂O(1)
and query time

(︂
1
ε log n

)︂O(1)

if m ≥ 16
ε7 log2 n (Section 7.4). For small m, we refer to Section 7.6 for a high-level

overview and to [BEM+20] for the details.

In each update step, we compute only implicit solutions and provide queries for the solution
value, the knapsack of a queried item, or the complete solution. These queries are consistent
between two update steps and run efficiently, i.e., polynomially in log n and log vmax and with a
dependency on ε and the output size. We remark that it is not possible to maintain a solution
with a non-trivial approximation guarantee explicitly with only poly-logarithmic update time
(even amortized) since it might be necessary to change Ω(n) items per iteration, e.g., if a very
large and very profitable item is inserted and removed in each iteration. Therefore, instead of
packing an item implicitly, we transform items into types and for those, we only store slots
that are then filled with items of the correct type upon query.

Methodology

Dynamic linear grouping We develop this technique to cluster a (sub)set of items into so-
called item types of roughly the same size and value in time

(︂
1
ε log n

)︂O(1)
. Traditionally, linear

grouping is applied for solving bin packing problems, where any feasible solution has to pack
all items [dlVL81]. This property is crucial since the cardinality of the groups depends on the
number of packed items. In knapsack problems, however, a feasible solution may consist of
only a subset of items. We handle this uncertainty by simultaneously executing classical linear
grouping for O(log1+ε n) many guesses of the cardinality of an optimal solution, and thus we
simulate the possible choices which subset to select; see Section 7.3.

100

7.1 Introduction

Identical knapsacks As a special case, we consider Multiple Knapsack with identical
capacities in the dynamic setting. We call an item type small or big if its size is at most
or at least an ε-fraction of the knapsacks’ capacity, respectively. As the number of big items
per knapsack is bounded, we use a configuration integer linear program (ILP) to explicitly
assign these items via configurations to knapsacks. Conversely, the ILP assumes that small
items can be packed fractionally and thus assigns those only via a placeholder. Even after
applying dynamic linear grouping, the number of variables is still prohibitively large. Hence,
we would like to apply the Ellipsoid Method with an approximate separation oracle to the
dual problem similar to its application in [KK82,PST95,Rot12]. However, we cannot use any
of their approaches directly due to two additional variables in the dual problem. Instead, we
add an objective function constraint to the dual problem and carefully exploit the connection
between feasible and infeasible dual solutions to obtain a basic feasible solution for the primal
problem. This enables us to approximately solve the LP relaxation and round the so found
solution in time

(︂
1
ε log n log Smax log vmax

)︂O(1)
if m is sufficiently large; see Section 7.4.

Multiple Knapsack We design a dynamic algorithm for Multiple Knapsack with up-
date time

(︂
log n

ε

)︂O(1/ε)
(log m log Smax log vmax)O(1). We accomplish this goal by partitioning

the given knapsacks based on their capacity, creating two subproblems of Multiple Knap-
sack. This separation allows us to design algorithms that exploit the structural properties
specific to each subproblem. One subproblem consists of relatively few (though non-constantly
many) knapsacks, but they are the largest of the instance. While the small number of these
special knapsacks offers more algorithmic freedom, this freedom is necessary since great care
has to be taken when computing a solution. After all, there may be items of high value that
only fit into special knapsacks. The second subproblem contains almost all remaining smaller
knapsacks. The sheer number of these ordinary knapsacks results in a reversed problem, with
the algorithmic handling of the numerous knapsacks being a major hurdle. On the upside,
mistakes are forgiven more easily, allowing us to even discard a small fraction of knapsacks
entirely. Additionally, we create a third partition of knapsacks that lies in-between the two
subproblems (with respect to knapsack capacity). It consists of knapsacks that contribute
negligible value to an optimal solution. This property induces the precise partitioning and
allows us to consider the knapsacks as empty extra knapsacks, which we use to place leftover
items not packed in the subproblems.

The major challenge with this divide-and-conquer approach is to decide which item is as-
signed to which of the two subproblems. Clearly, for some — special — items this question is
answered by their size as they only fit into special knapsacks, unlike the remaining — ordi-
nary — items. In fact, for them the allocation is so problematic that we resort to downright
putting a number of high-value ordinary items into extra knapsacks. To handle the remainder,
we guess the total size of ordinary items that are put into special knapsacks by an optimal
solution. We then add a virtual knapsack — with capacity equal to this guess — to the ordinary

101

7 Dynamic Multiple Knapsacks

subproblem and solve it with the not yet packed ordinary items as input. The input for the
special subproblem then consists of all special items together with bundles of the ordinary
items packed in the virtual knapsack. In Section 7.5, we explain in detail how the ordinary
subproblem is solved while Section 7.6 gives an overview of the special subproblem.

Related Work

Ever since the first approximation scheme for Knapsack due to Ibarra and Kim [IK75], running
times have been improved steadily over the last decades [GL79, Law79, GL80, KP04, Rhe15,
Cha18, Jin19] with O

(︂
n log 1

ε +
(︂

1
ε

)︂9/4)︂
by Jin [Jin19] currently being the fastest. Recent

work on conditional lower bounds implies that Knapsack does not admit an FPTAS with
running time O

(︂(︂
n + 1

ε

)︂2−δ)︂
, for any δ > 0, unless (min, +)-convolution has a subquadratic

algorithm [CMWW19,MWW19].
A PTAS for Multiple Knapsack was first discovered by Chekuri and Khanna [CK05]

and an EPTAS due to Jansen [Jan09] is also known. The running time of this EPTAS
is 2O(log(1/ε)/ε5) · poly(n). Jansen [Jan12] later presented a second EPTAS with an improved
running time of 2O(log4(1/ε)/ε) + poly(n). These algorithms are all static and do not explicitly
support efficient update operations except when being run from scratch after each update.
Hence, directly applying such an approximation scheme after each update is prohibitive since
a single item arrival can change a packing solution completely, requiring a full recomputation
with running time polynomial in the input size.

At the heart of the two EPTASs [Jan09, Jan12] lies a configuration ILP for rounded items
and/or knapsacks of exponential size. Even though near-optimal solutions to the LP relaxation
can be found and rounded in time O(poly(n)), this is beyond the scope of the poly-logarithmic
update time we are interested in. Additionally, the configuration ILPs still contain Ω(n)
many constraints and variables which is yet another obstacle when aiming for dynamically
maintaining approximate solutions with poly-logarithmic running time. Hence, to improve the
running time according to our goal of poly-logarithmic update time, a more careful approach
for rounding items has to be developed before similar configuration ILPs can be applied.

7.2 Data Structures and Preliminaries

From the perspective of a data structure that implicitly maintains near-optimal solutions for
Multiple Knapsack, our algorithms support several different update and query operations.
These allow for the input to Multiple Knapsack to change, which causes the computation
of a new solution, or for (parts of) that solution to be output, respectively. The supported
update operations are as follows.

• Insert Item: inserts an item into the input

102

7.2 Data Structures and Preliminaries

• Remove Item j: removes item j from the input

• Insert Knapsack: inserts a knapsack into the input

• Remove Knapsack i: removes knapsack i from the input

These update operations compute a new solution which can be output, entirely or in parts,
using the following query operations.

• Query Item j: returns whether item j is packed in the current solution and if so,
additionally returns the knapsack containing it

• Query Solution Value: returns the value of the current solution

• Query Entire Solution: returns all items in the current solution, together with the
information in which knapsack each such item is packed

Since the solution is allowed to change only after an update, these queries are consistent in-
between two update operations. Nevertheless, the answers to queries are not independent of
each other but depend on the precise order of the queries. This is mostly due to our approach
of reserving slots for items of a particular type and filling these slots with items explicitly only
upon query.

To provide the above functionality, we require the use of additional data structures and
make a few basic assumptions which we now discuss. First, while the model imposes no time
bounds on the computation of an initial solution, we can compute such an initial solution
by inserting one item/knapsack at a time and computing the implicit solution after all the
insertions in time nearly linear in n and m and with additional dependencies on ε and vmax

as in the respective algorithms. For simplicity, we assume that elementary operations such
as addition, multiplication, and comparison of two values can be handled in constant time.
Clearly, this is not true as the parameters involved can be as large as vmax and Smax. However,
as we will show, the number of elementary operations is bounded, and thus their results do not
grow arbitrarily large but are in fact bounded by a polynomial in log n, log m, Smax, and vmax

and some function of 1
ε . Thus, we do not explicitly state the size of the involved numbers.

Lastly, we make some standard assumptions on ε. By appropriately decreasing ε, we assume
without loss of generality that 1

ε ∈ N and ε ≤ 1. Further, we present our results in the form
of (1 + O(ε))-approximate algorithms to simplify the exposition. For achieving the required
approximation guarantee of 1 + ε, we can appropriately choose some ε′ ∈ Θ(ε) for running the
algorithms without changing the asymptotic dependency of the running time on ε.

Rounding Values A crucial ingredient to our algorithms is the partitioning of items into only
few value classes Vℓ consisting of items j for which (1+ε)ℓ ≤ vj < (1+ε)ℓ+1, for ℓ ∈ N0. Upon
arrival of an item, we calculate its value class Vℓj

and store j together with vj , sj , and ℓj in

103

7 Dynamic Multiple Knapsacks

the appropriate data structures of the respective algorithm. We assume all items in Vℓ to have
value (1 + ε)ℓ. Since this technique is rather standard, we do not provide a formal proof of the
next lemma but only give its statement.

Lemma 7.1. (i) There are at most O
(︂

log vmax
ε

)︂
many value classes.

(ii) For optimal solutions Opt and Opt′ to the original and rounded instance respectively,
we have (1 + ε)v(Opt′) ≥ v(Opt).

Data Structures The targeted running times do not allow for completely reading the instance
in every round but rather ask for carefully maintained data structures that allow us to quickly
compute and store implicit solutions. For access to the input, we maintain an array that for
each item stores the item’s size, value, and value class, and similarly for knapsacks. However,
our dynamic algorithms mostly rely on maintaining sorted lists of up to n items or m knapsacks,
respectively. For all orderings, break ties according to indices. For sorting the items, we will
mostly use their size or their density, the ratio between the value vj and the size sj of an
item j ∈ J .

Since our goal is to design algorithms with poly-logarithmic update times, it is crucial that
the data structures enable accordingly efficient insertion, deletion, and access times. Bayer and
McCreight [BM72] developed such a data structure in 1972, the so-called B-trees that were
later refined by Bayer [Bay72] to symmetric binary B-trees. These trees store elements sorted
according to some key value in their nodes. In contrast to this early work, in each node k, we
additionally store information about the total size, the total value, the total number, or the
total capacity of the elements in the subtree rooted at k.

As observed by Olivié [Oli82] and by Tarjan [Tar83], updating the original symmetric bi-
nary B-trees can be done with a constant number of rotations, i.e., by constantly often re-
arranging subtrees. For our variant of B-trees, this implies that only a constant number of
internal nodes are involved in an update procedure. In particular, if a subtree is removed or
appended to a certain node, only the values of this node and of its predecessors need to be
updated. The number of predecessors is bounded by the height of the tree which is logarith-
mic in the number of its leaves. Hence, the additional values stored in internal nodes can be
maintained in time O(log n) or O(log m). Storing the additional values such as total size of a
subtree in its root allows us to compute prefixes or the prefix sum with respect to these values
in time O(log n) or O(log m). Prefix computation refers to finding the maximal prefix of the
sorted list such that the elements belonging to the prefix have values that are or whose sum is
bounded by a given input. We return a prefix by outputting the index of its last element.

Lemma 7.2. There is a data structure storing n′ elements sorted with respect to a key value.
Insertion, deletion, or search by key value or index of an element takes time O(log n′), and pre-
fixes and prefix sums with respect to additionally stored values can be computed in time O(log n′).

104

7.3 Dynamic Linear Grouping

Hardness of Computation To conclude this section, we provide a justification for the dif-
ferent running times of our algorithms for Multiple Knapsack depending on the number
of knapsacks. It is known that Multiple Knapsack with two identical knapsacks does not
admit an FPTAS, unless P = NP [CK05].

We are able to extend this result to the case where m < 1
3ε . More precisely, we show that

a (1 + ε)-approximation algorithm for Multiple Knapsack with m < 1
3ε and running time

polynomial in n and 1
ε would imply that 3-Partition can be decided in polynomial time.

For the dynamic setting, this implies that there is no dynamic algorithm with update time
polynomial in n and 1

ε , unless P = NP . We note that this result can be extended to a
larger number knapsacks with arbitrary capacities by adding an appropriate number of small
knapsacks that cannot be used to pack any item.

Theorem 7.3. Unless P = NP, there is no algorithm for Multiple Knapsack that maintains
a (1 + ε)-approximate solution in update time polynomial in n and 1

ε for m < 1
3ε .

Proof. Consider the strongly NP-hard problem 3-Partition where there are 3m items with
sizes aj ∈ N such that

∑︁3m
j=1 aj = mA. The task is to decide whether there exists a parti-

tion (Pi)m
i=1 of [3m] such that |Pi| = 3 and

∑︁
j∈Pi

aj = A for every j ∈ [3m]. We note that this
problem remains strongly NP-hard even if the item sizes aj satisfy A

4 < aj < A
2 [KPP04,GJ79].

Consider the following instance of Multiple Knapsack: There are m knapsacks with
capacity S = A and 3m items. Each item corresponds to a 3-Partition item with sj = aj

and vj = 1 for j ∈ [3m]. Observe that the 3-Partition instance is a Yes-instance if and only
if the optimal solution to the Knapsack problem contains 3m items.

If Multiple Knapsack admits an algorithm with approximation factor (1+ε) and running
time polynomial in 1

ε and n where m < 1
3ε , such an algorithm is able to optimally solve

the Knapsack instance reduced from 3-Partition. Therefore, such an algorithm decides
3-Partition in polynomial time which is not possible, unless P = NP .

7.3 Dynamic Linear Grouping

We describe and analyze our dynamic approach to linear grouping for an item set J ′ ⊆ J
and a number n′ ≤ |J ′| such that any optimal solution can pack at most n′ items of J ′. We
consider J ′ instead of J because one of our dynamic algorithms only uses dynamic linear
grouping on a subset of items. The aim of linear grouping (and of our dynamic version) is to
transform the items into item types of identical size and value to simplify the computation and
achieve the desired update times.

Theorem 7.4. Given a set J ′ with |Opt ∩ J ′| ≤ n′ for all optimal solutions Opt, there is an
algorithm with running time O

(︂
log4 n′

ε4

)︂
that transforms the items in J ′ into O

(︂
log2 n′

ε4

)︂
item

types T and ensures v(OptT) ≥ (1−ε)(1−2ε)
(1+ε)2 v(Opt). Here, OptT is an optimal solution for

the modified instance induced by the item types T and their multiplicities and the items J \J ′.

105

7 Dynamic Multiple Knapsacks

7.3.1 Algorithm

We now describe the algorithm that we use for proving Theorem 7.4. In the following, we use
the notation X ′ for a set X to refer to X ∩ J ′ while X ′′ refers to X \ J ′. Further, we fix
an optimal solution Opt. Recall that, upon arrival, item values of items in J are rounded to
natural powers of (1+ε) to create the value classes Vℓ, where each item j ∈ Vℓ is of value (1+ε)ℓ.

The idea of the algorithm is based on the following observation: Knowing nℓ := |Opt∩V ′
ℓ | is

sufficient to determine the exact subset of V ′
ℓ packed in Opt since, without loss of generality,

the smallest nℓ items are packed. Given nℓ, the classical linear grouping approach developed by
de la Vega and Lueker [dlVL81] could be applied to create item groups that ultimately reduce
the number of different items. However, in a dynamic context, computing (or even guessing) nℓ

is intractable. Hence, the algorithm creates item groups simultaneously for various guesses of nℓ

before rounding the item sizes according to linear grouping. Illustrations of linear grouping
and dynamic linear grouping are shown in Figures 7.1 and 7.2, respectively.

nℓtype t1 type t2 type t3 type t4 type t5

Figure 7.1: Linear grouping for items in V ′
ℓ given nℓ. Dark rectangles correspond to the original

item sizes and light rectangles indicate the rounding to item types.

nℓnℓnℓ
t10 t11t7 t8 t9t1 t2 t3 t4 t5 t6

Figure 7.2: Dynamic linear grouping for items in V ′
ℓ . Each color corresponds to one guess of nℓ.

The algorithm assumes that ℓmax, the largest index of a value class with V ′
ℓ∩Opt ̸= ∅, is given

as input. Next, we set ℓmin := ℓmax −
⌈︂

log1+ε
n′

ε

⌉︂
. Each item j ∈ V ′

ℓ for ℓ /∈ {ℓmin, . . . , ℓmax}
is discarded. For each value class ℓ ∈ {ℓmin, . . . , ℓmax} and each l ∈ {0, . . . , ⌊log1+ε n⌋}, we

106

7.3 Dynamic Linear Grouping

consider ⌈(1 + ε)l⌉ as guess for nℓ and do the following. We determine the first nℓ items of V ′
ℓ

(sorted by non-decreasing size) and create 1
ε almost equal-size groups G1(nℓ), . . . , G1/ε(nℓ).

Group G1(nℓ) contains the ⌊εnℓ⌋ smallest items in V ′
ℓ , and, for general k ∈

[︂
1
ε

]︂
, Gk(nℓ) contains

the ⌊εnℓ⌋ or ⌈εnℓ⌉ smallest items in V ′
ℓ not contained in Gk′(nℓ) for k′ < k. If εnℓ /∈ N, we

ensure that |Gk(nℓ)| ≤ |Gk′(nℓ)| for k ≤ k′. If 1
ε was not yet considered as guess for nℓ, then

we also create G1
(︂

1
ε

)︂
, . . . , G1/ε

(︂
1
ε

)︂
, where Gk

(︂
1
ε

)︂
contains the kth smallest item in V ′

ℓ .
For one guess of nℓ, let jk(nℓ) be the last job in V ′

ℓ belonging to group Gk(nℓ). After having
determined jk(nℓ) for each possible value nℓ

(︂
including 1

ε

)︂
and for each k ∈

[︂
1
ε

]︂
, the size of

each item j ∈ V ′
ℓ is rounded up to the size of the next larger item j⋆ with j⋆ = jk(nℓ) for some

combination of k and nℓ. That is, each item belongs to an item type t with size st and value vt.
We summarize the algorithm in Algorithm 7.1. Without loss of generality, we use the position
of an item j ∈ V ′

ℓ , when Vℓ is sorted by non-decreasing size, to refer to the item itself.

Algorithm 7.1: Dynamic linear grouping
ℓmax ← guess of the largest index of a value class with V ′

ℓ ∩Opt ̸= ∅
ℓmin ← ℓmax − ⌈log1+ε

n′

ε ⌉
for ℓ = ℓmin, . . . , ℓmax do

for l = 0, . . . , ⌊log1+ε n′⌋ do
nℓ ← ⌈(1 + ε)l⌉
for k = 1, . . . , 1

ε do
determine Gk(nℓ) and jk(nℓ)← max{j : j ∈ Gk(nℓ)}

if 1
ε ̸= ⌈(1 + ε)l⌉ for some l ∈ {0, . . . , ⌊log1+ε n′⌋} do

determine G1(1
ε), . . . , G1/ε(1

ε)
for k = 1, . . . , 1

ε do
jk(1

ε)← max{j : j ∈ Gk(1
ε)}

for j ∈ V ′
ℓ do

j⋆ ← mink,nℓ
{jk(nℓ) : jk(nℓ) ≥ j}

s̃j ← sj⋆

for ℓ < ℓmin and ℓ > ℓmax do
discard each item j ∈ V ′

ℓ

7.3.2 Analysis

We start by observing that the loss in the objective function due to rounding item values to
natural powers of (1 + ε) is bounded by a factor of 1

1+ε ; see Lemma 7.1. Let Vℓmax be the
highest value class with V ′

ℓ ∩ Opt ̸= ∅. As ℓmin is chosen such that n′ items of value at
most (1 + ε)ℓmin contribute less than an ε-fraction to v(Opt), the loss in the objective function
by discarding items in value classes V ′

ℓ with ℓ /∈ {ℓmin, . . . , ℓmax} is bounded by a factor (1− ε)
as we show in Lemma 7.6. By taking only

⌈︂
(1 + ε)⌊log1+ε nℓ⌋

⌉︂
items of V ′

ℓ instead of nℓ, we lose

107

7 Dynamic Multiple Knapsacks

at most a factor of 1
1+ε ; see Lemma 7.7. Observing that the groups created by dynamic linear

grouping are an actual refinement of the groups created by the classical linear grouping for a
fixed number of items, we pack our items as done in linear grouping: Not packing the group
with the largest items allows us to “shift” all rounded items of group Gk(nℓ) to the positions
of the (not rounded) items in group Gk+1(nℓ) at the expense of losing a factor of (1 − 2ε) as
we see in Lemma 7.8. Combining these results then shows the following lemma.

Lemma 7.5. There is an index ℓmax such that v(OptT) ≥ (1−ε)(1−2ε)
(1+ε)2 v(Opt), where OptT is an

optimal packing for the modified instance induced by the item types T and their multiplicities
and the set J ′′.

Let P1 be the set of solutions that may use all items in J ′′ and uses items in J ′ only of
the value classes Vℓ with ℓ ∈ {ℓmin, . . . , ℓmax}. Let Opt1 be an optimal solution in P1. The
following lemma bounds the value of Opt1 in terms of Opt.

Lemma 7.6. v(Opt1) ≥ (1− ε)v(Opt).

Proof. From being given ℓmax, we know that v(Opt) ≥ (1+ε)ℓmax . As n′ is an upper bound on
the cardinality of Opt′, the items in the value classes Vℓ with ℓ < ℓmin contribute at most n′−1
items to Opt′ while the value of one such item is bounded by (1+ ε)ℓmin . Thus, the total value
of items in V0, . . . , Vℓmin−1 contributing to Opt′ is bounded by

n′(1 + ε)ℓmin = n′(1 + ε)ℓmax−⌈log1+ε n′/ε⌉ ≤ ε(1 + ε)ℓmax ≤ εv(Opt),

while the items in Vℓ with ℓ > ℓmax do not contribute to v(Opt).
Let J1 be the set of items in Opt′ restricted to the value classes Vℓ with ℓ ∈ {ℓmin, . . . , ℓmax}.

Clearly, J1 and Opt′′ together can be feasibly packed. Hence,

v(Opt1) ≥ v(J1) + v(Opt′′) ≥ v(Opt′)− εv(Opt) + v(Opt′′) ≥ (1− ε)v(Opt),

which concludes the proof.

From now on, we only consider packings in P1, i.e., we restrict J ′ to items in the value
classes Vℓ with ℓ ∈ {ℓmin, . . . , ℓmax}. Let Vℓ be a value class contributing to Opt′

1. As explained
above, knowing nℓ = |V ′

ℓ ∩ Opt1| would be sufficient to determine the items of V ′
ℓ in Opt1,

i.e., to determine V ′
ℓ ∩ Opt1. In the following lemma, we show that we can additionally

assume that nℓ = 0 or nℓ = ⌈(1 + ε)kℓ⌉ for some kℓ ∈ N0. To this end, let P2 contain all the
packings in P1 where the number of big items of each value class Vℓ is either 0 or ⌈(1 + ε)kℓ⌉
for some kℓ ∈ N0. Let Opt2 be an optimal packing in P2.

Lemma 7.7. v(Opt2) ≥ 1
(1+ε)v(Opt1).

108

7.3 Dynamic Linear Grouping

Proof. Consider Opt1, an optimal packing in P1. We construct a feasible packing in P2 that
achieves the desired value of 1

(1+ε)v(Opt1). Let J2 be the subset of Opt′
1 where each value

class V ′
ℓ is restricted to the smallest

⌈︂
(1 + ε)⌊log1+ε nℓ⌋

⌉︂
items in V ′

ℓ if V ′
ℓ ∩Opt1 ̸= ∅.

Fix one value class Vℓ with V ′
ℓ ∩Opt1 ̸= ∅. Restricting to the first

⌈︂
(1 + ε)⌊log1+ε nℓ⌋

⌉︂
items

in Vℓ ∩Opt′
1 implies

v(Vℓ ∩ J2) ≥ (1 + ε)⌊log1+ε nℓ⌋(1 + ε)ℓ ≥ 1
1 + ε

(1 + ε)ℓnℓ = 1
1 + ε

v(V ′
ℓ ∩Opt1).

Clearly, J2 ∪Opt′′
1 is a feasible packing in P2. Since v(Opt′

1) =
∑︁ℓmax

ℓ=ℓmin
v(V ′

ℓ ∩Opt1),

v(Opt2) ≥ v(J2) + v(Opt′′
1) ≥ 1

1 + ε
v(Opt′

1) + v(Opt′′
1) ≥ 1

1 + ε
v(Opt1).

This proves the statement of the lemma.

From now on, we only consider packings in P2. This means, we restrict the items in J ′

to value classes V ′
ℓ with ℓ ∈ {ℓmin, . . . , ℓmax} and assume that nℓ = ⌈(1 + ε)kℓ⌉ for kℓ ∈ N0

or nℓ = 0. Even with nℓ being of the form ⌈(1 + ε)kℓ⌉, independently guessing the exponent
for each value class V ′

ℓ is infeasible in time polynomial in log n and 1
ε . To resolve this, the

dynamic linear grouping creates groups that take into account all possible guesses of nℓ. The
dynamic linear grouping results in item types Tℓ and their multiplicities for the set V ′

ℓ .
Let PT be the set of all feasible packings for the modified instance induced by the item

types Tℓ for ℓmin ≤ ℓ ≤ ℓmax and their multiplicities and the set J ′′. That is, instead of
the original items in J ′, the packings in PT pack the corresponding item types. Note that
packings in PT are not forced to pack a specific number of items per value class. Let OptT be
an optimal solution in PT . The next lemma shows that v(OptT) is at most a factor (1 − 2ε)
less than v(Opt2), the optimal solution value of packings in P2.

Lemma 7.8. v(OptT) ≥ (1− 2ε)v(Opt2).

Proof. We construct a feasible packing in PT based on the optimal packing Opt2. The items
in Opt′′

2 are packed exactly in the same way as they are packed in Opt2. For items in J ′,
we individually consider each value class V ′

ℓ ∩Opt2 with ℓ ∈ {ℓmin, . . . , ℓmax} and construct a
set Jℓ ⊆ (V ′

ℓ ∩Opt2) to obtain JT :=
⋃︁ℓmax

ℓ=ℓmin
Jℓ. Our packing in PT corresponds then to the

items in Opt′′
2∪JT . We show that the items in Jℓ can be packed into the space of the knapsacks

where the items in V ′
ℓ ∩Opt2 are placed while ensuring that v(Jℓ) ≥ (1− 2ε)v(Vℓ ∩Opt′

2).
If V ′

ℓ ∩Opt2 = ∅, then we set Jℓ = ∅ and both requirements are trivially satisfied.
If |V ′

ℓ ∩ Opt2| ≤ 1
ε , we set Jℓ = V ′

ℓ ∩ Opt2. Clearly, v(Jℓ) ≥ (1 − 2ε)v(Vℓ ∩ Opt′
2). For

packing Jℓ, we observe that Tℓ contains the smallest 1
ε items as item types. Hence, their sizes

are not affected by the rounding procedure and we can pack theses items as is done by Opt2.
Let ℓ be a value class with nℓ = |V ′

ℓ ∩ Opt2| > 1
ε . Let G1(nℓ), . . . , G1/ε(nℓ) be the cor-

responding 1
ε groups of ⌊εnℓ⌋ or ⌈εnℓ⌉ many items created by dynamic linear grouping. We

109

7 Dynamic Multiple Knapsacks

set Jℓ = G1(nℓ) ∪ . . . ∪ G1/ε−1(nℓ). Since v(G1/ε(nℓ)) = ⌈εnℓ⌉(1 + ε)ℓ ≤ 2εnℓ(1 + ε)ℓ, we
have v(Jℓ) ≥ (1 − 2ε)v(V ′

ℓ ∩ Opt2). For packing the items in Jℓ, we observe that the item
types created by our algorithm are a refinement of G1(nℓ), . . . , G1/ε(nℓ). Since the dynamic
linear grouping ensures that |G1/ε(nℓ)| ≥ · · · ≥ |G1(nℓ)|, for k ∈

[︂
1
ε

]︂
, we can pack the items of

group Gk(nℓ) where Opt2 packs the items of group Gk+1(nℓ). Therefore,

v(OptT) ≥ v(JT) + v(Opt′′
2) ≥ (1− 2ε)v(Opt′

2) + v(Opt′′
2) ≥ (1− 2ε)v(Opt2)

which concludes the proof.

Since T contains at most 1
ε

(︂⌈︂
log n′/ε
log(1+ε)

⌉︂
+ 1

)︂
many different value classes and since us-

ing
⌈︂

log n′

log(1+ε)

⌉︂
+ 1 different values for nℓ = |Opt ∩ V ′

ℓ | suffices as explained above, the next
lemma follows.

Lemma 7.9. The algorithm reduces the number of item types to O
(︂

log2 n′

ε4

)︂
.

Lemma 7.10. For a given guess ℓmax, the set T can be computed in time O
(︂

log4 n′

ε4

)︂
.

Proof. Recall that n′ is an upper bound on the number of items in J ′ in any feasible solution.
Observe that the boundaries of the linear grouping created by the algorithm per value class are
actually independent of the value class and only refer to the kth item in some class Vℓ. Hence,
the algorithm first computes the different indices needed in this round. We denote the set of
these indices by I ′ = {j1, . . .} sorted in an increasing manner. There are at most ⌊log1+ε n′⌋
many possibilities for nℓ. Thus, the algorithm needs to compute at most 1

ε (log1+ε n′ +1) many
different indices. This means that these indices can be computed and stored in time O

(︂
log n′

ε2

)︂
.

Given the guess ℓmax and ℓmin, fix a value class Vℓ with ℓ ∈ {ℓmin, . . . , ℓmax}. We want to
bound the time the algorithm needs to transform the big items in Vℓ into the modified item
set Tℓ. We will ensure that the dynamic algorithms in the following sections maintain a balanced
binary search tree for each value class Vℓ that stores the items in J ′ sorted by increasing size.
Hence, the sizes of the items corresponding to I ′ can be accessed in time O

(︂
log3 n′

ε2

)︂
to extract

the item-type size st for t ∈ Tℓ. Given an item type t ∈ Tℓ, its multiplicity nt can again be
pre-computed independently of the value class. Thus, Tℓ can be computed in time O

(︂
log3 n′

ε2

)︂
.

As there are O
(︂

log n′

ε2

)︂
many value classes that need to be considered for a given guess ℓmax,

calculating the set T needs O
(︂

log4 n′

ε4

)︂
many computational steps.

Proof of Theorem 7.4. Lemma 7.5 bounds the loss in the objective function, Lemma 7.9 bounds
the number of item types, and Lemma 7.10 bounds the running time.

110

7.4 Identical Knapsacks

7.4 Identical Knapsacks

We give a dynamic algorithm that achieves an approximation ratio of (1 + ε) for Multiple
Knapsack with identical knapsack sizes, i.e., Si = S for all i ∈ [m]. The running time of the
update operation is always polynomial in log n and 1

ε . In this section, we assume m < n as
otherwise assigning the items in some consistent order to the knapsacks is optimal. We focus
on instances where m is large, i.e., m ≥ 16

ε7 log2 n but still dynamic. For m < 16
ε7 log2 n, we use

the algorithm for few knapsacks we present in [BEM+20].

Theorem 7.11. Let ε > 0 and let U = max{Sm, nvmax}. If m ≥ 16
ε7 log2 n, there is a dy-

namic (1 + ε)-approximate algorithm for the Multiple Knapsack problem with m identical
knapsacks with update time

(︂
log U

ε

)︂O(1)
. Queries for single items and the solution value can be

answered in time O
(︂

log n
ε

)︂O(1)
and O(1), respectively. The current solution P can be returned

in time |P |
(︂

log n
ε

)︂O(1)
.

7.4.1 Algorithm

Definitions and data structures We partition the items into two sets, JB, the set of big
items, and JS , the set of small items, with sizes sj ≥ εS and sj < εS, respectively. For an
optimal solution Opt, define OptB = Opt ∩ JB and OptS = Opt ∩ JS .

For this algorithm, we maintain three types of data structures. We store all items in one
balanced binary tree in order of their arrivals, i.e., their indices. In this tree, we store the
size sj and the value vj of each item j and additionally store the index ℓj of its value class
for big items. Big items are also stored in one balanced binary tree per value class Vℓ sorted
by non-decreasing size while all small items are sorted by non-increasing density and stored in
one tree. Overall, we have at most 2 + log1+ε vmax many data structures to maintain. Upon
arrival of a new item, we insert it into the tree of all items and classify this item as big or
small depending on whether sj ≥ εS or sj < εS. If the item is small, we insert it into the data
structure for small items. Otherwise, we determine the index of its value class ℓj and insert
it into the corresponding data structure. If the number m of knapsacks changes, we take this
into account by updating the parameter m in the algorithm.

Algorithm The high-level idea of the algorithm is to apply the dynamic linear grouping
approach developed in the previous section to big items. Given the thus significantly decreased
number of different item types, we set up an ILP to assign big items via configurations while
small items are only assigned via a (fractional) placeholder item.

More precisely, we guess the index ℓmax of the highest value class that belongs to OptB

by testing each possible value ℓmax ∈ {0, . . . , ⌊log1+ε vmax⌋}. Then, we use dynamic linear
grouping (Algorithm 7.1) with J ′ = JB and n′ = min

{︂
m
ε , |JB|

}︂
to obtain T , the set of item

types t with their multiplicities nt.

111

7 Dynamic Multiple Knapsacks

Given these item types, we create the set of all configurations C of big items. A configuration
consists of at most nt items of type t ∈ T and is such that its total size does not exceed
the knapsack capacity S. Hence, a configuration contains at most 1

ε big items. For c ∈ C
and t ∈ T let nc,t denote the number of items of type t in configuration c. Let vc =

∑︁
t∈T nc,tvt

and sc =
∑︁

t∈T nc,tst denote the total value and size, respectively, of the items in c.
Next, we guess vS , the value of OptS , up to a power of (1+ε). Let PS be the maximal prefix

of small items with v(PS) < vS and set sS = s(PS). We solve the following configuration ILP
with variables yc, for c ∈ C, for the current guesses ℓmax and sS . Here, yc counts how often a
certain configuration c is used.

max
∑︂
c∈C

ycvc

subject to
∑︂
c∈C

ycsc ≤ ⌊(1− 3ε)m⌋S − sS∑︂
c∈C

yc ≤ ⌊(1− 3ε)m⌋∑︂
c∈C

ycnc,t ≤ nt for all t ∈ T

yc ∈ Z≥0 for all c ∈ C

(P)

The first and second inequality ensure that the configurations chosen by the ILP can be
packed into ⌊(1 − 3ε)m⌋ knapsacks while reserving sufficient space for the small items. The
third inequality guarantees that only available items are used.

Clearly, we cannot solve the configuration ILP to optimality. Hence, we relax the integrality
constraint and allow fractional solutions. Given such a fractional solution, we round it to an
integral packing PB using at most ⌊εm⌋ additional knapsacks while ensuring that v(PB) ≥ vLP,
where vLP is the optimal solution value for the LP relaxation.

Given an integral packing of the big items, it remains to pack the small items. Let PS be
the maximal prefix of small items with v(PS) < vS and let j⋆ be the densest small item not
in PS . We pack j⋆ into one of the knapsacks kept empty by PB. Then, we fractionally fill up
the ⌊(1 − 2ε)m⌋ knapsacks used by PB and place any item that is cut, i.e., placed into more
than one knapsack, into the ⌈εm⌉ additional knapsacks that are still empty. We can guarantee
that this packing is feasible and packs all items in PS ∪ {j⋆}.

We return the solution for the guesses ℓmax and vS that maximize the total attained value.
We note that the explicit packing of the items is only determined upon query. A possible
(implicit) solution is shown in Figure 7.3. We summarize the algorithm in Algorithm 7.2.

Algorithm 7.2: Dynamic algorithm for identical knapsacks
guess ℓmax, the largest index of a value class with big items in Opt

use dynamic linear grouping for the big items to obtain T
guess vS , the value of small items

PS ← maximal prefix of small items with v(PS) ≤ vS

112

7.4 Identical Knapsacks

sS ← s(PS)
j⋆ ← densest small item not in PS

solve (P) for sS and T
use a Next−Fit Algorithm to pack the small items PS ∪ {j⋆}

We remark that we simplified the algorithm for conciseness as follows: Even after applying
dynamic linear grouping to the big items, the number of feasible configurations is still pro-
hibitively large to directly solve it. Hence, instead of creating all configurations and solving
the LP relaxation of the configuration ILP, we use the Ellipsoid Method on the dual LP to
determine the important configurations and reduce the number of relevant variables. As we
will show, this reduces the number of configurations to a manageable amount, which enables
us to solve the LP relaxation in time polynomial in log n and 1

ε .

⌈εm⌉ knapsacks⌊(1− 2ε)m⌋ knapsacks
with configurations j⋆

for cut items

Figure 7.3: A possible solution of the Algorithm 7.2: Blue and green rectangles represent the
packed big item types. Red rectangles on the left side represent the space left empty
by the configurations and on the right represent the slots for cut items.

Queries We explain how to efficiently answer different queries. Instead of explicitly storing
the packing of any item, we define and update pointers for small items and for each item type
that dictate the knapsack where the next queried item of the respective type is packed. To
stay consistent for the precise packing of a particular item between two update operations, we
additionally cache query answers for the current round in the data structure that stores items.
We give the technical details in the next section.

• Single Item Query: If the queried item is small, we check if it belongs to the prefix
of densest items that is part of our solution. In this case, the pointer for small items
determines the knapsack. If the queried item is big, we retrieve its item type and check
if it belongs to smallest items of this type that are packed by the implicit solution. In
this case, the pointer for this item type dictates the knapsack.

113

7 Dynamic Multiple Knapsacks

• Solution Value Query: As the algorithm works with rounded values, after having
found the current solution, we use prefix computation on the small items and on any
value class of big items to calculate and store the actual solution value. When queried,
we return the stored solution value in constant time.

• Entire Solution Query: We use prefix computation on the small items as well as on
the value classes of the big items to retrieve the packed items. Next, we use the single
item query to determine their respective knapsacks.

7.4.2 Analysis

Setting up the configuration ILP The first step is to analyze the loss in the objective function
value due to the linear grouping. To this end, set J ′ = JB and n′ = min{m

ε , |JB|}. Moreover,
let OptT be an optimal packing for the instance induced by the item types T (obtained from
applying dynamic linear grouping to JB) and their multiplicities as well as JS . Then, the next
corollary immediately follows from Theorem 7.4.

Corollary 7.12. There exists an index ℓmax such that v(OptT) ≥ (1−ε)(1−2ε)
(1+ε)2 v(Opt).

In the next lemma, we show that there is a guess vS with corresponding size sS such
that vILP + v(PS) + vj⋆ , with the optimal solution value vILP of (P), is a good guess for
the optimal solution value v(OptT). Here, j⋆ is the densest small item not contained in PS ,
and PS is the maximal prefix of small items with v(PS) < vS . The high-level idea of the proof
is to restrict an optimal solution OptT to ⌊(1 − 3ε)m⌋ most valuable knapsacks and to show
that sS underestimates the size of small items in these ⌊(1− 3ε)m⌋ knapsacks. Transforming
these knapsacks into configurations yields a feasible solution for the configuration ILP.

Lemma 7.13. There is a guess vS with vILP + vS ≥ 1−4ε
1+ε v(OptT). Moreover, v(PS) + vj⋆ ≥ vS.

Proof. Let OptB,T := OptT ∩ JB and OptS,T := OptT ∩ JS . We construct a candidate
set JILP of items that are feasible for (P) and obtain a value of at least (1−4ε)v(OptB,T). To
this end, take an optimal packing OptT and consider the ⌊(1−3ε)m⌋ most valuable knapsacks
in this packing. Let JB,T and JS,T consist of the big and small items, respectively, in these
knapsacks. Since m ≥ 16

ε7 log2 n, we have ⌊(1− 3ε)m⌋ ≥ (1− 4ε)m. Hence,

v(JB,T) + v(JS,T) ≥ (1− 4ε)v(OptT) .

Create the variable values yc corresponding to the number of times configuration c is used
by the items in JB,T . We observe that JB,T ∪ JS,T can be feasibly packed into ⌊(1 − 3ε)m⌋
knapsacks. Therefore, ∑︂

c∈C
yc ≤ ⌊(1− 3ε)m⌋ ,

114

7.4 Identical Knapsacks

and ∑︂
c∈C

ycsc + s(JS,T) ≤ ⌊(1− 3ε)m⌋S .

Since we guess the value of the small items in the dynamic algorithm up to a factor of (1+ε),
there is one guess vS satisfying vS ≤ v(JS,T) < (1 + ε)vS . Let PS be the maximal prefix of
small items with v(PS) < vS and let j⋆ be the densest small item not in PS . Hence,

v(PS) + vj⋆ ≥ vS ≥
1

1 + ε
v(JS,T).

As PS contains the densest small items, this implies sS := s(PS) ≤ s(JS,T). Thus,

∑︂
c∈C

ycsc ≤ ⌊(1− 3ε)m⌋S − s(JS,T) ≤ ⌊(1− 3ε)m⌋S − sS .

Therefore, the just created yc are feasible for the ILP with the guess vS , and

vILP + vS ≥ v(JB,T) + 1
1 + ε

v(JS,T) ≥ 1
1 + ε

(v(JB,T) + v(JS,T)) ≥ 1− 4ε

1 + ε
v(OptT),

which concludes the proof.

Solving the LP relaxation Next, we explain how to approximately solve the LP relaxation
of the configuration ILP (P) and round the solution to an integral packing in slightly more
knapsacks. Since any basic feasible solution of (P) has at most O

(︁
|T |
)︁

strictly positive vari-
ables, solving its dual problem with the Grötschel-Lovasz-Schrijver [GLS81] variant of the
Ellipsoid Method determines the relevant variables. We refer to the books by Bertsimas and
Tsitsiklis [BT97] and Papadimitriou and Steiglitz [PS82] for details on the Ellipsoid Method.

As we will show, the separation problem is a Knapsack problem, which we can solve only
approximately in time polynomial in log n and 1

ε , unless P = NP . The approximate separation
oracle we develop correctly detects infeasibility while a solution that is declared feasible may
only be feasible for a closely related problem causing a loss in the objective function value of a
factor at most (1−ε). We cannot use the approaches by Plotkin, Shmoys, and Tardos [PST95]
or Karmarkar and Karp [KK82] directly because our configuration ILP contains two extra
constraints which correspond to additional variables in the dual and thus to two extra terms
in the objective function. Instead, we add an objective function constraint to the dual and
test feasibility for a set of geometrically increasing guesses of the objective function value.
Given the maximal guess for which the dual is infeasible, we use the variables corresponding
to constraints added by the Ellipsoid Method to solve the primal. The multiplicative gap
between the maximal infeasible and the minimal feasible such guess allows us to obtain a
fractional solution with objective function value at least 1−ε

1+εvLP, where vLP is the optimal
objective function value of the LP relaxation of (P).

115

7 Dynamic Multiple Knapsacks

Lemma 7.14. Let U = max{Sm, nvmax}. Then, there is an algorithm that finds a feasible
solution for the LP relaxation of (P) with value at least 1−ε

1+εvLP and with running time bounded
by
(︂

log U
ε

)︂O(1)
.

For proving this lemma, we abuse notation and also refer to the LP relaxation of (P) by (P):

max
∑︂
c∈C

ycvc

subject to
∑︂
c∈C

ycsc ≤ ⌊(1− 3ε)m⌋S − sS∑︂
c∈C

yc ≤ ⌊(1− 3ε)m⌋∑︂
c∈C

ycntc ≤ nt for all t ∈ T

yc ≥ 0 for all c ∈ C

(P)

Let γ and β be the dual variables of the capacity constraint and the number-of-knapsacks
constraint, respectively. Let αt for t ∈ T be the dual variable of the constraint ensuring that
only nt items of type t are packed. Then, the dual is given by the following linear program.

min ⌊(1− 3ε)m⌋β + (⌊(1− 3ε)m⌋S − sS)γ +
∑︂
t∈T

ntαt

subject to β + scγ +
∑︂
t∈T

αtntc ≥ vc for all c ∈ C

αt ≥ 0 for all t ∈ T
β, γ ≥ 0

(D)

As discussed above, for applying the Ellipsoid Method, we need to solve the separation prob-
lem efficiently. The separation problem either confirms that the current solution (α∗, β∗, γ∗)
is feasible or finds a violated constraint. As we will see, verifying the first constraint of (D)
corresponds to solving a Knapsack problem. Hence, we do not expect to optimally solve the
separation problem in time polynomial in log n and 1

ε . Instead, we apply the dynamic program
(DP) for Knapsack by Lawler [Law79] after restricting the item set further and rounding the
item values. This modification is necessary to obtain a sufficiently small running time.

Let v̄t = vt − α∗
t − γ∗st for t ∈ T . If there exists an item type with v̄t > β∗, we return

the configuration using one item of this item type. Otherwise, we set ṽt =
⌊︂

v̄t
ε4β∗

⌋︂
· ε4β∗.

By running the DP [Law79] for Knapsack for a knapsack of capacity S on the item set T
with multiplicities min

{︂
1
ε , nt

}︂
and values ṽt, we obtain a solution x∗ where x∗

t indicates how
often item type t is packed. If

∑︁
t∈T x∗

t ṽt > β∗, we return the configuration defined by x∗ as
separating hyperplane. Otherwise, we return declared feasible for the current solution.
We summarize the algorithm in Algorithm 7.3.

Algorithm 7.3: Separation oracle
for t ∈ T do

116

7.4 Identical Knapsacks

v̄t ← vt − α∗
t − γ∗st

if v̄t′ > β∗ for some t do // separating hyperplane
return c with nc,t = 1 for t = t′ and nc,t = 0 otherwise

else
for t ∈ T do

ṽt ←
⌊︁
v̄t/(ε4β∗)

⌋︁
· ε4β∗

run DP to obtain x∗

if
∑︁

t∈T x∗
t ṽt > β∗ do // separating hyperplane

return x∗

else
return declared feasible

The next lemma shows that this algorithm approximately solves the separation problem by
either correctly declaring infeasibility and giving a feasible separating hyperplane or by finding
a solution that is almost feasible for (D). The slight infeasibility for the dual problem will
translate to a small decrease in the optimal objective function value of the primal problem.

Lemma 7.15. Given (α∗, β∗, γ∗), there is an algorithm with running time O
(︃

log4 n
ε14

)︃
which

either guarantees that β∗ + scγ
∗ +

∑︁
t∈T α∗

t ntc ≥ (1 − ε)vc holds for all c ∈ C or finds a
configuration c ∈ C with β∗ + scγ

∗ +
∑︁

t∈T α∗
t ntc < vc.

Proof. Fix a configuration c and recall that sc =
∑︁

t∈T ntcst and vc =
∑︁

t∈T ntcvt. Then,
checking β∗ + scγ

∗ +
∑︁

t∈T α∗
t ntc ≥ vc for all configurations c ∈ C is equivalent to showing

maxc∈C
∑︁

t∈T (vt − α∗
t − γ∗st)ntc ≤ β∗. This problem translates to solving the following ILP

and comparing its objective function value to β∗.

max
∑︂
t∈T

(vt − α∗
t − γ∗st)xt

s.t.
∑︂
t∈T

stxt ≤ S

xt ≤ nt for all t ∈ T
xt ∈ Z+

(S)

This ILP is itself a (single) Knapsack problem. Hence, the solution x∗ found by the Algo-
rithm 7.3 is indeed feasible for (S).

We start by bounding the running time of Algorithm 7.3. For each item type t ∈ T , we
have v̄t = vt − α∗

t − γ∗st and ṽt =
⌊︂

v̄t
ε4β∗

⌋︂
· ε4β∗. Observe that T only contains big items.

Hence, it suffices to consider min
{︂

1
ε , nt

}︂
items per item type in the DP. It can be checked in

time O
(︂

log2 n
ε4

)︂
, whether v̄t ≤ β∗ is violated for some t ∈ T . Otherwise, the running time of

the DP is bounded by O
(︂

|T |2
ε6

)︂
= O

(︂
log4 n

ε14

)︂
[Law79].

It remains to show that the solution x∗ either defines a separating hyperplane, i.e., a con-
figuration c with β∗ + scγ

∗ +
∑︁

t∈T α∗
t ntc < vc, or ensures β∗ + scγ

∗ +
∑︁

t∈T α∗
t ntc ≥ (1− ε)vc

117

7 Dynamic Multiple Knapsacks

for all c ∈ C. If
∑︁

t∈T x∗
t ṽt > β∗, then

∑︂
t∈T

x∗
t v̄t ≥

∑︂
t∈T

x∗
t ṽt > β∗,

and thus x∗ defines a separating hyperplane.
Consider now

∑︁
t∈T x∗

t ṽt ≤ β∗. Toward a contradiction, suppose that there is a configura-
tion c′, defined by packing xt items of type t, such that

∑︂
t∈T

xt

(︂
(1− ε)vt − α∗

t − γ∗st

)︂
> β∗.

Since T contains only big item types, we have
∑︁

t∈T xt ≤ 1
ε . This implies that there exists at

least one item type t′ in T with xt′ ≥ 1 and (1− ε)vt′ − α∗
t′ − γ∗st′ ≥ εβ∗. Moreover,

v̄t = vt − α∗
t − γ∗st ≥ (1− ε)vt − α∗

t − γ∗st

holds for all item types t ∈ T . This implies for t′ that v̄t′ ≥ εβ∗. Hence,

∑︂
t∈T

xtv̄t ≥ εxt′ v̄t′ +
∑︂
t∈T

xt

(︂
(1− ε)vt − α∗

t − γ∗st

)︂
> εv̄t′ + β∗ ≥ (1 + ε2)β∗.

By definition of ṽ, we have v̄t − ṽt ≤ ε4β∗ and
∑︁

t∈T xt(v̄t − ṽt) ≤ ε3β∗. This implies

∑︂
t∈T

xtṽt =
∑︂
t∈T

xtv̄t −
∑︂
t∈T

xt(v̄t − ṽt) > (1 + ε2)β∗ − ε3β∗ ≥ β∗,

where the last inequality follows from ε ≤ 1. By construction of the DP, x∗ is an optimal
solution for the instance induced by the values ṽt and multiplicities min

{︂
1
ε , nt

}︂
and achieves

a total value at most β∗. Therefore,

β∗ ≥
∑︂
t∈T

x∗
t ṽt ≥

∑︂
t∈T

xtṽt > β∗,

which gives a contradiction.

Proof of Lemma 7.14. As discussed above, the high-level idea is to solve (D), the dual of (P),
with the Ellipsoid Method and to consider only the variables corresponding to constraints
added by the Ellipsoid Method for solving (P).

As (S) is part of the separation problem for (D), there is no efficient way to exactly solve
the separation problem, unless P = NP . Lemma 7.15 provides us a way to approximately
solve the separation problem. As an approximately feasible solution for (D) cannot be directly
used to determine the important variables in (P), we add an upper bound r on the objective
function as a constraint to (D) and search for the largest r such that the Ellipsoid Method

118

7.4 Identical Knapsacks

returns infeasible. This implies that r is an upper bound on the objective function of (D) which
in turn guarantees a lower bound on the objective function value of (P) by weak duality.

Of course, testing all possible values for r is intractable and we restrict the possible choices
for r. Observe that vLP ∈ [vmax, nvmax] where vLP is the optimal value of (P). Thus, for k ∈ N
with ⌈log1+ε vmax⌉ ≤ k ≤ ⌈log1+ε(nvmax)⌉, we use r = (1+ε)k as upper bound on the objective
function. That is, we test if (D) extended by the objective function constraint

⌊(1− 3ε)m⌋β + (⌊(1− 3ε)m⌋S − sS)γ +
∑︂
t∈T

ntαt ≤ r

is declared feasible by the Ellipsoid Method with the approximate separation oracle for (S).
We refer to the feasibility problem by (Dr).

For a given solution (α∗, β∗, γ∗) of (Dr) the separation problem asks for one of the two:
either the affirmation that the point is feasible or a separating hyperplane that separates
the point from any feasible solution. The non-negativity of α∗

t , β∗, and γ∗ an be checked
in time O(|T |) = O

(︂
log2 n

ε4

)︂
. In case of a negative answer, the corresponding non-negativity

constraint is a feasible separating hyperplane. Similarly, in time O(|T |), we can check whether
the objective function constraint ⌊(1 − 3ε)m⌋β + (⌊(1 − 3ε)m⌋S − sS)γ +

∑︁
t∈T ntαt ≤ r is

violated and add it as a new inequality if necessary. In case the non-negativity and objective
function constraints are not violated, the separation problem is given by the knapsack problem
in (S). Algorithm 7.3 either outputs a configuration that yields a valid separating hyperplane
or declares (α∗, β∗, γ∗) feasible, i.e., β∗ + scγ

∗ +
∑︁

t∈T α∗
t ntc ≥ (1 − ε)vc for all c ∈ C. This

implies that (α∗, β∗, γ∗) is feasible for the following LP. (Note that we changed the right side
of the constraints when compared to (D).)

min ⌊(1− 3ε)m⌋β + (⌊(1− 3ε)m⌋S − sS)γ +
∑︂
t∈T

ntαt

s.t. β + scγ +
∑︂
t∈T

αtntc ≥ (1− ε)vc for all c ∈ C

αt ≥ 0 for all t ∈ T
β, γ ≥ 0

(D(1−ε))

Let r∗ be minimal such that (Dr∗) is declared feasible. Let v
(1−ε)
D denote the optimal solution

value of (D(1−ε)). As (α∗, β∗, γ∗) is feasible with objective value at most r∗, we have v
(1−ε)
D ≤ r∗.

Let v(1−ε) denote the optimal solution value of its dual, i.e., of the following LP.

119

7 Dynamic Multiple Knapsacks

max
∑︂
c∈C

yc(1− ε)vc

subject to
∑︂
c∈C

ycsc ≤ ⌊(1− 3ε)m⌋S − sS∑︂
c∈C

yc ≤ ⌊(1− 3ε)m⌋∑︂
c∈C

ycntc ≤ nt for all t ∈ T

yc ≥ 0 for all c ∈ C

(P(1−ε))

Then, y = 0 is feasible for (P(1−ε)), and by weak duality, we have

v(1−ε) ≤ v
(1−ε)
D ≤ r∗.

Note that (P) and (P(1−ε)) have the same feasible region and their objective functions only
differ by a factor (1− ε). This implies that

vLP = v(1−ε)

1− ε
≤ r∗

1− ε
. (7.1)

Because of this relation between vLP and r∗ it suffices to find a feasible solution for (P) with
objective function value close to r∗ in order to prove the lemma.

To this end, let Cr be the configurations that correspond to the inequalities added by the
Ellipsoid Method while solving (Dr) for r = r∗

1+ε . Consider the problems (P) and (D) restricted
to the variables yc, for c ∈ Cr, and to the constraints corresponding to c ∈ Cr, respectively, and
denote these restricted LPs by (P′) and (D′). Let v′ and v′

D be their respective optimal values.
It holds that v′

D > r as the Ellipsoid Method also returns infeasibility for (D′) when run
on (D′) extended by the objective function constraint for r. As y = 0 is feasible for (P′)
and α = 0, β = maxc∈Cr vc, and γ = 0 are feasible for (D′), their objective function values
coincide by strong duality, i.e., v′ = v′

D > r. If we have an optimal solution to (P′), then this
solution is also feasible for (P) and achieves an objective function value

v′ >
r∗

1 + ε
≥ 1− ε

1 + ε
vLP,

where we used Equation (7.1) for the last inequality.
It remains to show that the Ellipsoid Method can be applied to the setting presented here

and that the running time of the just described algorithm is indeed bounded by a polynomial
in log n, 1

ε , and log U . Recall that U is an upper bound on the absolute values of the denomi-
nators and numerators appearing in (D), i.e., on Sm and nvmax. Observe that by Lemma 7.15,
the separation oracle runs in time O

(︂
log4 n

ε14

)︂
. The number of iterations of the Ellipsoid Method

will be bounded by a polynomial in log U and ñ ∈ O
(︂

log2 n
ε4

)︂
. Here, ñ is an upper bound on

the number of variables in the problems (Dr) (and hence also (D(1−ε))).

120

7.4 Identical Knapsacks

The feasible region of (Dr) is a subset of the feasible region of (D(1−ε)), even when the
objective function constraint is added to the latter LP. The Ellipsoid Method usually is applied
to full-dimensional, bounded polytopes that guarantee two bounds: If the polytope is non-
empty, then its volume is at least v > 0. The polytope is contained in a ball of volume
at most V . As shown in the book by Bertsimas and Tsitsiklis [BT97], these assumptions
can always be ensured and the parameters v and V can be chosen as polynomial functions
of ñ and U . Since we cannot check feasibility of (Dr) directly, we choose the parameters v

and V as described in [BT97, Chapter 8] for the problem (D(1−ε)) extended by the objective
function constraint for r. After N = O

(︂
ñ log V

v

)︂
iterations, the modified Ellipsoid Method

either finds a feasible solution to (D(1−ε)) with objective function value at most r or correctly
declares (Dr) infeasible. In [BT97, Chapter 8] it is shown that the number of iterations N

satisfies N = O(ñ4 log(ñU)) and that the overall running time is polynomially bounded in ñ

and log U .
Hence, (P′), the problem (P) restricted to variables corresponding to constraints added by

the Ellipsoid Method, has at most N variables and, thus, a polynomial time algorithm for
linear programs can be applied to (P′) to obtain an optimal solution in time

(︂
log U

ε

)︂O(1)
.

Obtaining an integral solution Next, we show how to turn a fractional solution to a particular
class of packing LPs into a feasible solution using some additional knapsacks given by resource
augmentation. The LP relaxation of the configuration ILP considered here belongs to this class
of LPs, and the assumption m ≥ 16

ε7 log2 n ensures that we can round a basic feasible solution
to an integral packing of big items using at most ⌊(1− 2ε)m⌋ knapsacks.

Formally, we consider a packing problem of items into a given set K of knapsacks with
capacities Si. These knapsacks are grouped to obtain the set G where group g ∈ G contains mg

knapsacks and has total capacity Sg. The objective is to maximize the total value without
violating any capacity constraint. Each item j has a certain type t, i.e., value vj = vt and
size sj = st, and in total there are nt items of type t. Items can either be packed as single
items or as part of configurations. A configuration c, that packs nc,t items of type t, has
total value vc =

∑︁
t nc,tvt and size sc =

∑︁
t nc,tst. The set E represents the items and the

configurations that we are allowed to pack for maximizing the total value. Without loss of
generality, we assume that for each element e ∈ E there exists at least one knapsack i where
this element fits, i.e, se ≤ Si.

Let 0 ≤ δ ≤ 1 and s ≥ 0. Later we will choose δ = 1−Θ(ε) since intuitively an Θ(ε)-fraction
of the knapsacks remains unused. Consider the packing ILP for the above described problem
with variables ze,g, where e ∈ E and g ∈ G. The ILP may additionally contain constraints of
the form ∑︂

e∈E,g∈G′

seze,g ≤ δ
∑︂
g∈G′

Sg − s and
∑︂

e∈E′,g∈G′

ze,g ≤ δ
∑︂
g∈G′

mg ,

i.e., the elements assigned to a subset of knapsack types G′ do not violate the total capacity of

121

7 Dynamic Multiple Knapsacks

a δ-fraction of the knapsacks in G′ while reserving a space of size s and a particular subset E′

of these elements uses at most a δ-fraction of the available knapsacks.
Let v(z) be the value attained by a certain solution z and let n(z) be the number of non-

zero variables of z. The following lemma shows that there is an integral solution of value at
least v(z) using at most n(z) extra knapsacks. The high-level idea of the proof is to round
down each non-zero variable ze,g and pack the corresponding elements as described by ze,g. For
achieving enough value, we additionally place one extra element e into the knapsacks given by
resource augmentation for each variable ze,g that was subjected to rounding.

More precisely, for each element e and each knapsack group g, we define z̄′
e,g = ⌊ze,g⌋

and z̄′′
e,g = ⌈ze,g − z̄′

e,g⌉. Note that z̄′ + z̄′′ may require more items of a certain type than are
available. Hence, for each item type t that is now packed more than nt times, we reduce the
number of items of type t in z̄′ + z̄′′ by either adapting the chosen configurations if t is packed
in a configuration or by decreasing the variables of type zt,g if items of type t are packed as
single items in knapsacks of group g. Let z′ and z′′ denote the solutions obtained by this
transformation. For some elements e, the packing described by z′

e,g + z′′
e,g may now use more

or less elements than ze,g due to the just described reduction of items.

Lemma 7.16. Any fractional solution z to the packing ILP described above can be rounded
to an integral solution with value at least v(z) using at most n(z) additional knapsacks of
capacity maxi∈K Si.

Proof. Consider a particular item type t. If z̄′ + z̄′′ packs at most nt items of this type, then
the value achieved by z for this particular item type is upper bounded by the value achieved
by z′ + z′′. If an item type was subjected to the modification, then z′ + z′′ packs exactly nt

items of this type while z packs at most nt items. This implies that v(z′ + z′′) ≥ v(z).
It remains to show how to pack z̄′ + z̄′′ (and, thus, z′ + z′′) into the knapsacks given by K

and potentially n(z) additional knapsack. Clearly, z̄′ can be packed exactly as z was packed.
If ze,g = 0 for e ∈ E and g ∈ G, then z̄′

e,g = 0. Hence, the number of non-zero entries in z̄′′ is
bounded by n(z). Consider one element e ∈ E and a knapsack group g with z̄′′

e,g = 1 and let i

be a knapsack where e fits. Pack e into i.
Since reducing the number of packed items of a certain type only decreases the size of the

corresponding configuration or the number of individually packed elements, the solution z′ +z′′

can be packed exactly as described for z̄′+ z̄′′. Therefore, we need at most n(z) extra knapsacks
to pack z′′, which concludes the proof.

Having found a feasible solution with the Ellipsoid Method, we use Gaussian elimination
to obtain a basic feasible solution with no worse objective function value. We note that
this procedure has a running time bounded by (N |T |)O(1), where N is the number of non-
zero variables in the solution found by the Ellipsoid Method. Since basic feasible solutions
have at most |T | + 2 non-vanishing variables, the assumptions 16

ε7 log2 n ≤ m and m < n

122

7.4 Identical Knapsacks

imply 16
ε7 log2 m ≤ m. This in turn guarantees |T | + 2 ≤ ⌊εm⌋. Hence, rounding the solution

as described above uses at most ⌊(1− 2ε)m⌋ knapsacks and achieves a value of at least vLP.

Corollary 7.17. If 16
ε7 log2 n ≤ m, any feasible solution of the LP relaxation of (P) with at

most N non-zero variables can be rounded to an integral solution using at most ⌊(1 − 2ε)m⌋
knapsacks with total value at least vLP in time (N |T |)O(1).

Given an integral packing of big items, we explain how to pack small items, i.e., items
with sj < εS, using resource augmentation. More precisely, let K be a set of knapsacks and
let J ′

S ⊆ J be a subset of items that are small with respect to every knapsack in K. Let J ′ ⊂ J
be a set of items admitting an integral packing into m = |K| knapsacks that preserves a space
of at least s(J ′

S) in these m knapsacks. We develop a procedure to extend this packing to
an integral packing of all items J ′ ∪ J ′

S in ⌈(1 + ε)m⌉ knapsacks where the ⌈εm⌉ additional
knapsacks can be chosen to have the smallest capacity of knapsacks in K.

We use a packing approach similar to Next Fit for the problem Bin Packing. That is,
consider an arbitrary order of the small items and an arbitrary order of the knapsacks filled
with big items. We open the first knapsack in this order for small items. If the next small
item j still fits into the open knapsack, we place it there and decrease the remaining capacity
accordingly. If it does not fit anymore, we pack this item into the next empty slot of an
additional knapsacks (possibly opening a new one), close the current original knapsack, and
open the next one for packing small items. We call such an item cut.

Lemma 7.18. The procedure described above feasibly packs all items J ′ ∪ J ′
S in ⌈(1 + ε)m⌉

knapsacks where the ⌈εm⌉ additional knapsacks can be chosen to have the smallest capacity of
knapsacks in K.

Proof. We start by showing that all small items are packed after the last original knapsack
is closed. Toward a contradiction, suppose that there is a small item j left after all original
knapsacks were closed while packing small items. As a knapsack is only closed if the current
small item does not fit anymore, this implies that the volume of all small items that are packed
so far have a total volume at least as large as the total remaining capacity of knapsacks in K

after packing J ′. Since j is left unpacked after all original knapsacks have been closed, the
total volume of all items in J ′ ∪ J ′

S is strictly larger than the total capacity of the original
knapsacks in K. This contradicts the assumption imposed on J ′

B and on J ′
S . Hence, all items

in J ′
S are packed. Therefore, the packing created by the procedure is integral and feasible.

It remains to bound the number of additional knapsacks. Observe that each item that we
packed into a knapsack given by resource augmentation while an original knapsack was still
available, implied the closing of the current knapsack and the opening of a new one. Hence, for
each original knapsack at most one small item was placed into the additional knapsacks. Thus,
at most m small items are packed into the additional knapsacks. Since by definition of small
items at least 1

ε items fit into one additional knapsack, we only need ⌈εm⌉ extra knapsacks for
such items.

123

7 Dynamic Multiple Knapsacks

Bounding the performance and the running time

Lemma 7.19. Let PF be the solution returned by Algorithm 7.2 and let Opt be a current optimal
solution. It holds that v(PF) ≥ (1−ε)2(1−2ε)(1−4ε)

(1+ε)4 v(Opt).

Proof. Fix Opt. The solution found by our algorithm achieves the maximal value over all
combinations of guesses vS , the value contributed by small items, and of ℓmax, the largest index
of a value class of a big item in Opt. Thus, it suffices to find a combination of vS and ℓmax such
that P , the corresponding packing, is feasible and satisfies v(P) ≥ (1−ε)2(1−2ε)(1−4ε)

(1+ε)4 v(Opt).
Let OptB be the set of big items in Opt, let ℓmax := max{ℓ : Vℓ∩OptB ̸= ∅}, and let OptT

be the most valuable packing after linear grouping with ℓmax. For this guess ℓmax, let PS ∪{j⋆}
be the set of small items of Lemma 7.13 such that vILP + v(PS) + vj⋆ ≥ 1−4ε

1+ε v(OptT). By
Corollary 7.17, there is a set of big items PB with a feasible packing into ⌊(1−2ε)m⌋ knapsacks
with total value at least 1−ε

1+εvILP. Packing j⋆ on its own and PS following a Next-Fit-like
algorithm, we extend this to a feasible packing of PB ∪PS ∪{j⋆} into ⌈(1 + ε)⌊(1− 2ε)m⌋⌉+ 1
knapsacks; see Lemma 7.18. Due to the assumption m ≥ 16

ε7 log2 n, we can bound the number
of total knapsacks indeed by m. With Lemma 7.13,

v(PF) ≥ v(P) ≥ 1− ε

1 + ε
vILP + vS + vj⋆ ≥ (1− ε)(1− 4ε)

(1 + ε)2 v(OptT).

With Corollary 7.12 we get

v(PF) ≥ (1− ε)2(1− 2ε)(1− 4ε)
(1 + ε)4 v(Opt),

which concludes the proof.

The next lemma bounds the running time of our algorithm. The proof follows from the
fact that the algorithm considers at most O(log1+ε vmax) guesses for ℓmax and O(log1+ε nvmax)
guesses for vS , the running time for dynamic linear grouping bounded in Lemma 7.10, and the
running time for solving the configuration ILP as described in Lemma 7.14 and Corollary 7.17.

Lemma 7.20. Let U := max{Sm, nvmax}. The running time of our algorithm is bounded
by
(︂

log U
ε

)︂O(1)
.

Answering Queries Note that, throughout the course of the dynamic algorithm, we only
implicitly store solutions. In the remainder of this section, we explain how to answer the
queries stated in Section 7.2 and bound the running times of the corresponding algorithms.
We refer to the time frame between two updates as a round and introduce a counter τ that is
increased after each update and denotes the current round. Since answers to queries have to
stay consistent in a round, we cache existing query answers by additionally storing a round t(j)
and a knapsack k(j) for each item in the data structure for items where t(j) stores the last

124

7.4 Identical Knapsacks

round in which item j has been queried and k(j) points to the knapsack of j in round t(j).
Storing t(j) is necessary since resetting the cached query answers after each update takes too
much running time. If j was not selected in t(j), we store and return this with k(j) = 0.

Let ȳc, for c ∈ C, be the packing for the big items in terms of the variables of the configuration
ILP. During the Ellipsoid Method and the rounding of the fractional solution to an integral
solution, the set C := {c ∈ C : ȳc ≥ 1} was constructed. We assume that this set is ordered
in some way and stored in a list. In the following we use the position of c ∈ C in that list
as the index of c. For assigning ȳc distinct knapsacks to c ∈ C we use the ordering of the
configurations and map the knapsacks

∑︁c−1
c′=1 ȳc′ + 1, . . . ,

∑︁c
c′=1 ȳc′ to c.

For small items, we store all items in a balanced binary search tree sorted by non-increasing
density. For simplicity, let PS = {1, . . . , j⋆ − 1} be the set of items (sorted by non-increasing
density) that translate the guess vS into the size sS of small items in the current solution.
Item j⋆ is packed into its own knapsack. Any item j ≤ j⋆ − 1 is either packed regularly into
the empty space of a knapsack with a configuration or it is packed into a knapsack designated
for packing cut small items. Therefore, we maintain two pointers: κr points to the next
knapsack where a small item is supposed to go if it is packed regularly and κc points to the
knapsack where the next cut small item is packed. We initialize these values with κr = 1
and κc = ⌊(1 − 2ε)m⌋ + 1. To determine if an item is packed regularly or as cut item, we
store in ρr the remaining capacity of κr initialized with κr = S − s1 where s1 is the size of the
first configuration in C. We store in ρc the remaining slots of small items in knapsack κc and
initialize this with ρc = 1

ε .
For each type t of big items, we maintain a pointer κt to the knapsack where the next queried

item of type t is supposed to be packed. Moreover, the counter ηt stores how many slots κt

still has available for items of type t. These two values are initialized with the first knapsack
that packs items of type t and ηt = nc,t where c is the configuration of κt. If no items of type t

are packed, we set κt = 0. Let n̄t denote the number of items of type t belonging to solution ȳ.
We will only pack the first, i.e., smallest, n̄t items of type t. Figure 7.4 depicts the pointers
and counters after some items already have been queried.

Consider a queried small item j. If t(j) = τ , we return k(j). Otherwise, set t(j) = τ and de-
termine whether j is currently part of the solution. If j does not belong to the densest j⋆ items,
we return k(j) = 0. Otherwise, we determine where j is packed. If j = j⋆, we return k(j) = m.
Else, we figure out whether j is packed into the knapsack κr or into κc. If ρr ≥ sj , we simply
update ρr to ρr− sj and return k(j) = κr. Otherwise, we decrease ρc by one and pack j as cut
item in κc. If ρc = 0 holds after the update, we increase κc by one and set ρc = 1

ε . Further,
we need to close κr and update κr and ρr accordingly. To this end, we increase κr by one and
determine ρr, the remaining capacity in knapsack κr. Then, we return k(j).

Consider a queried big item j. If t(j) = τ , we return k(j). Otherwise, we set t(j) = τ

and compute whether item j is packed by the current solution. Let Vℓ be the value class
of j. If ℓ /∈ {ℓmin, . . . , ℓmax}, we return k(j) = 0. Otherwise, we retrieve the type t of item j.

125

7 Dynamic Multiple Knapsacks

κc

ρc = 4
κr

ρr = −
κ1

η1 = 1

1

κ2
η2 = 1

2

2

2

κ4
η4 = 1

4 4

3 3 3

⌈εm⌉ knapsacks⌊(1− 2ε)m⌋ knapsacks
with configurations j⋆

for cut items

Figure 7.4: Pointers and counters used for answering queries: Lightly colored rectangles repre-
sent slots to be filled with items. Big (blue and green) items are packed one item
per slot. Item type 3 does not have any slots left. Small (red) items are packed
either until the slot is filled (left side) or one item per slot (right side). The not yet
queried, small item j⋆ gets its own knapsack.

Given t, we determine if j belongs to the first n̄t items of type t. If this is not the case, we
return k(j) = 0. If this is the case, then we set k(j) = κt instead and we decrease ηt by one. If
this remains non-zero, we return k(j) = κt. Otherwise, we find the next knapsack that packs
items of type t and update κt and ηt accordingly before returning k(j). We summarize this
algorithm in Algorithm 7.4.

Algorithm 7.4: Answering item queries in round τ

if t(j) ̸= τ do
t(j)← τ

if sj < εS do // small item
if j > j⋆ do

k(j)← 0 // not selected
else-if j = j⋆ do

k(j)← m

else-if sj ≤ ρr do
k(j)← κr

ρr ← ρr − sj

else
k(j)← κc

κr ← κr + 1; update ρr

ρc ← ρc − 1
update κc and ρc if necessary

else // big item
ℓ← value class of j

126

7.4 Identical Knapsacks

if ℓ /∈ {ℓmin, . . . , ℓmax} do
k(j)← 0 // not selected

else
t← item type of j

if j not among the first n̄t items of type t do
k(j)← 0 // not selected

else
k(j) = κt

ηt ← ηt − 1
update κt and ηt if necessary

return k(j)

For being able to return the solution value in constant query time, we actually compute the
solution value once after each update operation and store it. More precisely, the value achieved
by the small items, vS can be computed with a prefix computation of the first j⋆ items in the
density-sorted tree for small items. For computing the value of big items, we consider each
value class Vℓ with ℓ ∈ {ℓmin, . . . , ℓmax} individually. Per value class and per item type, we
use prefix computation to determine the value vt of the first n̄t items of type t. Lemma 7.25
guarantees that the running time is indeed upper bounded by the update time and, thus, does
not change the order of magnitude described in Lemma 7.20.

When queried the complete solution, we return a list of packed items together with their
respective knapsacks. To this end, we start by querying the j⋆ densest small items using the
algorithm for item queries. For big items, we query the first n̄t items of each item type t ∈ T .

We prove the parts of the following lemmas individually.

Lemma 7.21. The solution determined by the query algorithms is feasible and achieves the
claimed total value. The query times of our algorithm are as follows:

(i) Single item queries can be answered in time O
(︂

log n + max
{︂

log log n
ε , 1

ε

}︂)︂
(ii) solution value queries can be answered in time O(1), and

(iii) queries of the entire solution P can be answered in time O
(︂
|P | log4 n

ε4 log log n
ε

)︂
.

Lemma 7.22. The solution determined by the query algorithms is feasible and achieves the
claimed total value.

Proof. By construction of t(j) and k(j), the answers to queries happening between two con-
secutive updates are consistent.

For small items, observe that 1, . . . , j⋆ are the densest small items in the current instance.
By Lemma 7.18, the packing obtained by our algorithms is feasible for these items. In
Lemma 7.19 we argue that these items contribute enough value to our solution.

For big items, we observe that their actual size is at most the size of their item types. Hence,
packing an item of type t where the implicit solution packs an item of type t is feasible. The

127

7 Dynamic Multiple Knapsacks

algorithms correctly pack the first n̄t items of type t. A knapsack with configuration c ∈ C
correctly obtains nc,t items of type t. Moreover, each configuration c ∈ C gets assigned ȳc

knapsacks. Hence, the algorithm packs exactly the number of big items as dictated by the
implicit solution ȳ.

Lemma 7.23. The data structures for big items can be generated in time O
(︂

log4 n
ε9

)︂
. Queries for

big items can be answered in time O
(︂

log n + log log n
ε

)︂
.

Proof. We assume that C is already stored in some list. We start by formally mapping knap-
sacks to configurations. To this end, we create a list α = (αc)c∈C , where αc =

∑︁c−1
c′=1 ȳc′ is the

first knapsack with configuration c ∈ C. Using αc = αc−1 + ȳc−1, we can compute these values
in constant time. Hence, by iterating once through C, list α can be generated in O(|C|).

We start by recomputing the indices needed for the dynamic linear grouping approach.
For each value class Vℓ with ℓ ∈ {ℓmin, . . . , ℓmax}, we access the items corresponding to the
boundaries of the item types Tℓ in order to obtain the item types Tℓ. By construction, these
types are already ordered by non-decreasing size st. By Lemma 7.10, these item types can be
computed in time O

(︂
log4 n

ε4

)︂
and stored in one list Tℓ per value class Vℓ.

For maintaining and updating the pointer κt, we generate a list Ct of all configurations c ∈ C
with nc,t ≥ 1. By iterating through each c ∈ C, we can add c to the list of t if nc,t ≥ 1.
We additionally store nc,t and αc in the list Ct. While iterating through the configurations,
we additionally compute n̄t =

∑︁
c∈C ȳcnc,t and store n̄t in the same list as the item types Tℓ.

Note that, since the list of C is ordered by index, the created lists Ct are also sorted by index.
For each item type, we point κt to the first knapsack of the first added configuration c and
set ηt = nc,t. If the list of an item type remains empty, we set κt = 0. Since each configuration
contains at most 1

ε item types, the lists Ct can be generated in time O
(︂

|C||T |
ε

)︂
.

Now consider a queried big item j. In time O(log n), we can decide whether j has already
been queried in the current round. If not, let Vℓ be the value class of j, which was computed
upon arrival of j. If ℓ /∈ {ℓmin, . . . , ℓmax}, then j does not belong to the current solution and no
data structures need to be updated. Otherwise, the type of j is determined by accessing the
item types Tℓ in time O

(︂
log log n

ε

)︂
. Once t is determined, n̄t can be added to the left boundary

of type t in order to determine if j is packed or not. If j belongs to the current solution,
pointer κt dictates the answer to the query.

In order to update κt and ηt, we extract c, the configuration of knapsack κt in time O(log |C|)
by binary search over the list α. If κt + 1 < αc+1, then κt is increased by one and ηt set to nc,t

in constant time. If not, then the next configuration c′ containing t can be found with binary
search over the list Ct in time O(log |C|). If no such configuration is found, we set κt = 0.
Otherwise, we set κt = αc′ and ηt = nc′,t. Overall, queries for big items can be answered in
time O

(︂
max

{︂
log |C|, log log n

ε

}︂)︂
.

Observing that |C| ∈ O(|T |) = O
(︂

log2 n
ε4

)︂
completes the proof.

128

7.4 Identical Knapsacks

Lemma 7.24. Given the data structures for big items, the data structures for small items can
be generated in time O

(︂
log log n

ε

)︂
. The running time for answering queries for small items

is O
(︂

log n + max
{︂

log log n
ε , 1

ε

}︂)︂
.

Proof. We initialize κr = 1 and ρ = S − s1 where s1 is the total size of the configuration
assigned to the first knapsack. For packing cut items, we use the pointer κc to the current
knapsack for cut items while ρc stores the remaining slots of small items. We initialize these
values with κc = ⌊(1 − 2ε)m⌋ + 1 and ρc = 1

ε . These initializations can be computed in
time O(log |C|) (for extracting s1).

Now consider a queried small item j. In time O(log n) we can decide whether j has already
been queried in the current round. In constant time, we can decide whether j > j⋆. If j > j⋆,
the answer is not selected. If j = j⋆, we return m. If j < j⋆, the algorithm only needs to
decide if j is packed into κr or κc, which can be done in constant time. Finally, κr and κc as well
as ρr and ρc need to be updated. While κc, κr, and ρc can be updated in constant time, we need
to compute the configuration c and remaining capacity S−sc of knapsack κr when the pointer
is increased. By using binary search over the list α, the configuration can be determined in
time O(log |C|). Once the configuration is known, ρr can be calculated in time O

(︂
1
ε

)︂
. Overall,

queries for small items can be answered in time O
(︂

log n + max
{︂

log |C|, 1
ε

}︂)︂
.

Using that |C| ∈ O(|T |) = O
(︂

log2 n
ε4

)︂
concludes the proof.

Lemma 7.25. The total solution value can be computed in O
(︂

log3 n
ε4

)︂
. A query for the solution

value can be answered in time O(1).

Proof. The true value ṽS achieved by the small items can be determined by computing the
prefix of the first j⋆ items in the density-sorted tree for small items in time O(log n) by
Lemma 7.2.

For computing the value of a big item, we consider each value class Vℓ with ℓ ∈ {ℓmin, . . . , ℓmax}
individually. There are at most O

(︂
log n

ε2

)︂
many value classes by Lemma 7.6. For one value

class, in time O
(︂

log n
ε2

)︂
, iterate through the item types t. For each item type, we can access

the total value of the first n̄t items in time O(log n) by Lemma 7.2.
As these running times are subsumed by the running time of the update operation, we

actually compute the solution value once after each update operation and store the value
allowing for constant running time to answer the query.

Lemma 7.26. A query for the complete solution can be answered in time O
(︂
|P | log4 n

ε4 log log n
ε

)︂
,

where P is the set of items in our solution.

Proof. The small items belonging to P can be accessed in time O(j⋆ log n) by Lemma 7.2. By
Lemma 7.24, their knapsacks can be determined in time O

(︂
log n + max

{︂
log log n

ε , 1
ε

}︂)︂
.

129

7 Dynamic Multiple Knapsacks

For big items, we consider again at most O
(︂

log n
ε2

)︂
many value classes individually. In

time O
(︂

log n
ε2

)︂
, we access the boundaries of the corresponding item types. In time O(n̄t log n),

we can access the n̄t items of type t belonging to our solutions by Lemma 7.2. Lemma 7.23
ensures that their knapsacks can be determined in time O

(︂
log n + log log n

ε

)︂
.

In total, this bounds the running time by O
(︂
|P | log4 n

ε4 log log n
ε

)︂
.

Proof of main result

Proof of Theorem 7.11. In Lemma 7.19, we calculate the approximation ratio achieved by our
algorithm. Lemma 7.20 gives the desired bounds on the update time while Lemma 7.21 bounds
the time needed for answering a query. Lemma 7.21 also guarantees that the query answers
are correct and consistent between two updates.

7.5 Ordinary Knapsacks When Solving Multiple Knapsack

In this section, we consider instances for Multiple Knapsack with many knapsacks and
arbitrary capacities. We show how to efficiently maintain a (1 + ε)-approximation when given,
as resource augmentation, L additional knapsacks that have the same capacity as a largest
knapsack in the input instance, where L ∈

(︂
log n

ε

)︂O(1/ε)
. While we may pack items into the

additional knapsacks, an optimal solution is not allowed to use them. The algorithm will again
solve the LP relaxation of a configuration ILP and round the obtained solution to an integral
packing. However, in contrast to the problem for identical knapsacks, not every configuration
fits into every knapsack and we therefore cannot just reserve a fraction of knapsacks in order
to pack the rounded configurations since the knapsack capacities might not suffice. For this
reason, we employ resource augmentation in the case of arbitrary knapsack capacities.

Again, we assume that item values are rounded to powers of (1 + ε) which results in value
classes Vℓ of items with value vj = (1 + ε)ℓ. We prove the following theorem.

Theorem 7.27. For every ε > 0, there is a dynamic algorithm for Multiple Knapsack that,
when given L additional knapsacks as resource augmentation, achieves an approximation fac-
tor of (1 + ε) with update time

(︂
1
ε log n

)︂O(1/ε)
(log m log Smax log vmax)O(1). Item queries are

answered in time O
(︂

log m + log n
ε2

)︂
, and the solution P that is maintained by our algorithm

can be output in time O
(︂
|P | log3 n

ε4

(︂
log m + log n

ε2

)︂)︂
.

7.5.1 Algorithm

Data structures In this section, we maintain three different types of data structures. For
storing every item j together with its size sj , its value vj , and the index of its value class ℓj , we
maintain one balanced binary search tree where the items are sorted by non-decreasing time
of arrival. For each value class Vℓ, we maintain one balanced binary tree for sorting the items

130

7.5 Ordinary Knapsacks When Solving Multiple Knapsack

with ℓj = ℓ in order of non-decreasing size. We store the knapsacks sorted in non-increasing
capacity in one balanced binary tree.

Algorithm The algorithm we develop in this section is quite similar to the dynamic algorithm
for Multiple Knapsack with identical capacities. First, we use dynamic linear grouping for
the current set of items to obtain item types. However, in contrast to identical knapsacks, one
particular item may be big with respect to one knapsack, small with respect to another, and
may not even fit in a third knapsack. Thus, we use the item types to partition the knapsacks
into groups to simulate knapsacks with identical capacities. Within one group, we give an
explicit packing of the big items into slightly less knapsacks than belonging to the group by
solving a configuration ILP. For packing small items, we would like to use a guess of the size of
small items per groups and later use again Next Fit to pack them integrally. However, since
items classify as big in one knapsack group and as small in another group, instead of guessing
the size of small items per knapsack group, we incorporate their packing into the configuration
ILP by reserving sufficient space for the small items in each group. More precisely, we assign
items as big items via configurations or as small items by number to the various groups. The
remainder of the algorithm is straight-forward: we relax the integrality constraint to find a
fractional solution and use the tools developed in Lemmas 7.16 and 7.18 to obtain an integral
packing.

More precisely, we guess ℓmax, the index of the highest value class that belongs to Opt and
use dynamic linear grouping with J ′ = J and n′ = n to obtain T , the set of item types t with
their multiplicities nt, by trying out every ℓmax ∈ {0, . . . , log1+ε vmax}

Based on T , we group the knapsacks such that any item type is either big or small with
respect to every knapsack in a group or does not fit at all. Recall that an item j is small
with respect to a knapsack with capacity Si if sj < εSi and big otherwise. Hence, we consider
the knapsacks sorted non-increasingly by their capacity and determine for each item type for
which knapsacks a corresponding item would be big or small. This yields a set G of O

(︂
log2 n

ε4

)︂
knapsack groups. In Figure 7.5, we show an example with 4 item types and the resulting
knapsack groups.

Denote by Fg the set of all item types that are small with respect to group g, and by Sg the
total capacity of all knapsacks in group g. Let mg be the number of knapsacks in group g and
let G(1/ε) be the groups in G with mg ≥ 1

ε . For each g ∈ G(1/ε), define Sg,ε as the total capacity
of the smallest ⌈εmg⌉ knapsacks in g. Similar to the ILP for identical knapsacks, the ILP
reserves some knapsacks to pack small cut items. We distinguish between G(1/ε) and G \ G(1/ε)

to restrict only large enough groups g, i.e, g ∈ G(1/ε), to ⌊(1− ε)mg⌋ most valuable knapsacks
of g. Per remaining group, we use one knapsack given by resource augmentation to pack cut
small items.

For each group g ∈ G, create all possible configurations of big items that fit into at least
one knapsack in group g and therefore consist of at most 1

ε items which are big with respect

131

7 Dynamic Multiple Knapsacks

1

2

3

4

4 is big
3 is small 3 is big

2 is big2 is small

1 is small

g = 1 g = 2 g = 3 g = 4

Figure 7.5: Item types and resulting knapsack groups

to knapsacks in g. This amounts to O
(︂(︂

log2 n
ε4

)︂1/ε)︂
configurations per group. Order the

configurations non-increasingly by size and denote their set by Cg = {cg,1, . . . , cg,kg}. Let mg,ℓ

be the total number of knapsacks in group g in which we could possibly place configuration cg,ℓ.
Further, denote by nc,t the number of items of type t in configuration c and by sc and vc the
size and value of c, respectively.

Then, we solve the following configuration ILP with variables yc and zg,t. Here, yc counts
how often a certain configuration c is used, and zg,t counts how many items of type t are packed
in knapsacks of group g if type t is small with respect to g. Note that by the above definition
of Cg, we may have duplicates of the same configuration for several groups.

max
∑︂
g∈G

∑︂
c∈Cg

ycvc +
∑︂
g∈G

∑︂
t∈Fg

zg,tvt

s.t.
ℓ∑︂

h=1
ycg,h

≤ mg,ℓ for all g ∈ G, ℓ ∈ [kg]∑︂
c∈Cg

yc ≤ ⌊(1− ε)mg⌋ for all g ∈ G(1/ε)

∑︂
c∈Cg

ycscg,h
+
∑︂

t∈Fg

zg,tst ≤ Sg for all g ∈ G \ G(1/ε)

∑︂
c∈Cg

ycscg,h
+
∑︂

t∈Fg

zg,tst ≤ Sg − Sg,ε for all g ∈ G(1/ε)

∑︂
g∈G

∑︂
c∈Cg

ycnc,t +
∑︂

g∈G:t∈Fg

zg,t ≤ nt for all t ∈ T

yc ∈ Z+ for all g ∈ G, c ∈ Cg

zg,t ∈ Z+ for all t ∈ T , g ∈ G
zg,t = 0 for all t ∈ T , g ∈ G : t /∈ Fg

(P)

132

7.5 Ordinary Knapsacks When Solving Multiple Knapsack

The first inequality ensures that the configurations chosen by the ILP actually fit into the
knapsacks of the respective group while the second inequality ensures that an ε-fraction of
knapsacks in G1/ε remains empty for packing small cut items. The third and fourth inequality
guarantee that the total volume of large and small items together fits within the designated
total capacity of each group. Finally, the fifth inequality makes sure that only available items
are used by the ILP.

After relaxing the above ILP and allowing fractional solutions, we are able to solve it ef-
ficiently. Consider an optimal (fractional) solution to (P) with objective function value vLP.
With Lemma 7.16 we obtain an integral solution that uses the additional knapsacks given by
resource augmentation with value at least vLP. Let P denote this final solution.

Still, the small item types t ∈ Fg are only packed fractionally by P . Lemma 7.18 explains
how to pack the small items integrally. That is, we greedily fill up knapsacks with small items
and pack any cut small item into the knapsacks that were left empty by the configuration ILP
(or that are provided by the resource augmentation).

We use the solution corresponding to a guess ℓmax that maximizes the total value of packed
items. We summarize the algorithm in Algorithm 7.5. Figure 7.6 shows a possible solution.

Algorithm 7.5: Dynamic algorithm for arbitrary knapsacks with resource augmentation
guess ℓmax, the largest index of a value class with items in Opt

use dynamic linear grouping to obtain T
partition the knapsacks according to T
solve (P) for T
use Next Fit to pack the small items per group

Queries Since we do not maintain an explicit packing of any item, we define and update
pointers for each item type that dictate the knapsacks where the corresponding items are
packed. We note that special pointers are also used for packing items into the additional
knapsacks given by resource augmentation. To stay consistent between two update operations,
we cache query answers for the current round in the data structure that store items. We give
the details in the next section.

• Single Item Query: For a queried item, we retrieve its item type and check if it belongs
to the smallest items of this type that our implicit solution packs. In this case, we use
the pointer for this item type to determine its knapsack.

• Solution Value Query: After having found the current solution, we use prefix compu-
tation for every value class for the corresponding item types to calculate and store the
actual solution value. Then, we return this value on query.

• Entire Solution Query: With prefix computation on each value class, we determine
the packed items. Then, the single item query is used to determine their knapsack.

133

7 Dynamic Multiple Knapsacks

1

2

3

4

g = 3g = 1 g = 2 g = 4

⌈εm2⌉ knapsacks⌊(1 − ε)m2⌋ knapsacks
with configurations for cut items

knapsacks
given by resource augmentation

Figure 7.6: Possible solution of the algorithm: Group 2 accommodates the knapsacks for cut
small items within the original knapsacks. Group 1, 3, and 4 use resource augmen-
tation.

7.5.2 Analysis

We start again by showing that the loss in the objective function value due to the linear
grouping of items is bounded by a factor of at most (1−ε)(1−2ε)

(1+ε)2 with respect to v(Opt). To
this end, let Opt be an optimal solution to the current, non-modified instance and let J
be the set of items with values already rounded to powers of (1 + ε). Setting J ′ = J , we
apply Theorem 7.4 to obtain the following corollary. Here, OptT is a optimal solution for the
instance induced by the item types T with multiplicities nt.

Corollary 7.28. There exists an index ℓmax such that v(OptT) ≥ (1−ε)(1−2ε)
(1+ε)2 v(Opt).

We have thus justified the restriction to item types T instead of packing the actual items. In
the next two lemmas, we show that (P) is a linear programming formulation of the Multiple
Knapsack problem described by the set T of item types and their multiplicities and that we
can obtain a feasible integral packing (using resource augmentation) if we have a fractional
solution (without resource augmentation) to (P). Let vLP be the optimal objective function
value of the LP relaxation of (P).

134

7.5 Ordinary Knapsacks When Solving Multiple Knapsack

Similar to the proof of Lemma 7.13 we restrict an optimal solution OptT to the ⌊(1− ε)mg⌋
most valuable knapsacks of a group g if mg ≥ 1

ε and otherwise we do not restrict the part of
the solution corresponding to a group g with mg < 1

ε .

Lemma 7.29. It holds that vLP ≥ (1− 2ε)v(OptT).

Proof. We show the statement by explicitly stating a solution (y, z) that is feasible for (P) and
achieves an objective function value of at least (1 − 2ε)v(OptT).

Consider a feasible optimal packing OptT for item types. The construction of (y, z) con-
siders each group g ∈ G separately. We fix a group g /∈ G(1/ε). Let yc count how often a
configuration c ∈ Cg is used in OptT and let zg,t denote how often an item that is small with
respect to g is packed by OptT in group g. By construction, the first and the third constraint
of (P) are satisfied. The part of the solution (y, z) corresponding to group g achieves the same
value as OptT restricted to this group.

If g ∈ G(1/ε), i.e., if there are at least 1
ε knapsacks in group g, consider the ⌊(1− ε)mg⌋ most

valuable knapsacks in group g with respect to OptT . Define yc to count how often OptT

uses configuration c ∈ Cc in this reduced knapsack set and let zg,t denote how often OptT

uses item type t ∈ Fg in these knapsacks. Clearly, this solution satisfies the first constraint
of (P). By construction,

∑︁
c∈Cg

yc ≤ ⌊(1 − ε)mg⌋ and, hence, the second constraint of the
ILP is also satisfied. Clearly, the ⌊(1 − ε)mg⌋ most valuable knapsacks can be packed into
the ⌊(1 − ε)mg⌋ largest knapsacks in g, which implies the feasibility for the fourth constraint
of the ILP. Observe that ⌊(1 − ε)mg⌋ ≥ (1 − ε)mg − 1 ≥ (1 − 2ε)mg. Thus, the value of
the corresponding packing is at least a (1 − 2ε)-fraction of the value that OptT obtains with
group g.

As (y, z) uses no more items of a certain item type than OptT does, the last constraint of
the ILP is also satisfied. Hence, (y, z) is feasible and

vLP ≥
∑︂
g∈G

(︃ ∑︂
c∈Cg

ycvc +
∑︂

t∈Fg

zg,tvt

)︃
≥ (1− 2ε)v(OptT),

with which we conclude the proof.

The next corollary shows how to round any fractional solution of (P) to an integral solution
(possibly) using additional knapsacks given by resource augmentation. It follows immediately
from Lemma 7.16 if we bound the number of variables in (P). To this end, we observe that |G|
and |T | are in O

(︂
log2 n

ε4

)︂
, and |Cg | ∈

(︂
log n

ε

)︂O(1/ε)
for every group g ∈ G. Let L′ denote the

exact number of variables and let L = L′ + |G|. Thus, L ∈
(︂

log n
ε

)︂O(1/ε)
.

Corollary 7.30. Any feasible solution (y, z) of the LP relaxation of (P) with objective value v

can be rounded to an integral solution with value at least v using at most L extra knapsacks.

135

7 Dynamic Multiple Knapsacks

In the next lemma, we bound the value obtained by our algorithm in terms of v(Opt), for
an optimal solution Opt. Let PF be the solution returned by our algorithm.

Lemma 7.31. v(PF) ≥ (1−2ε)2(1−ε)
(1+ε)2 v(Opt).

Proof. Fix an optimal solution Opt. Observe that our algorithm outputs the solution PF with
the maximum value over all guesses of ℓmax, the index of the highest value class in Opt. Hence,
we find a guess ℓmax and a corresponding solution P that satisfies v(P) ≥ (1−2ε)2(1−ε)

(1+ε)2 v(Opt).
Let ℓmax = max{ℓ : Vℓ∩Opt ̸= ∅}. Then, ℓmax is considered in some round of the algorithm.

Let vILP be the optimal solution value of the configuration ILP (P) and let vLP be the solution
value of its LP relaxation. Corollary 7.30 provides a way to round the corresponding LP
solution (y, z) to an integral solution (ȳ, z̄) using at most L extra knapsacks with objective
function value at least vLP ≥ vILP. The construction of (ȳ, z̄) guarantees that only small items
in the original knapsacks might be packed fractionally.

Consider one particular group g. Lemma 7.18 shows how to pack the small items assigned
by (z̄g) to group g into ⌈(1+ε)mg⌉ knapsacks. If mg < 1

ε , we use one extra knapsack per group
to pack the cut items. If mg ≥ 1

ε , then g ∈ G(1/ε) which implies that the configuration ILP
(and its relaxation) already reserved ⌈εmg⌉ knapsacks of this group for packing small items.
Hence, the just obtained packing P is feasible. By Corollary 7.28 and Lemma 7.29,

v(PF) ≥ v(P) ≥ (1− 2ε)2(1− ε)
(1 + ε)2 v(Opt),

which gives the desired bound on the approximation ratio.

Now, we bound the running time of our algorithm.

Lemma 7.32. In time
(︂

1
ε log n

)︂O(1/ε)
(log m log Smax log vmax)O(1), the dynamic algorithm exe-

cutes one update operation.

Proof. By assumption, upon arrival, the value of each item is rounded to natural powers
of (1 + ε). The algorithm starts with guessing ℓmax, the largest index of a value class to be
considered in the current iteration. There are log vmax many guesses possible, where vmax is
the highest value appearing in the current instance.

By Lemma 7.10, the dynamic linear grouping of all items has at most O
(︂

log4 n
ε4

)︂
iterations.

Let the knapsacks be sorted by increasing capacity and stored in a binary balanced search tree
as defined in Lemma 7.2. Then, the index of the smallest knapsack i with Si ≥ S or the largest
knapsack with Si ≤ S can be determined in time O(log m), where S is a given number. Thus,
the knapsack groups depending on the item types can be determined in time O

(︂
log m log2 n

ε4

)︂
as the number of item types is bounded by O

(︂
log2 n

ε4

)︂
. The number of big items per knapsack

is bounded by 1
ε and, hence, the number of configurations is bounded by O

(︃
log2 n

ε4

(︂
log2 n

ε4

)︂1/ε
)︃

.

136

7.5 Ordinary Knapsacks When Solving Multiple Knapsack

Let N be the number of variables in the configuration ILP. We have N ∈
(︂

log n
ε

)︂O(1/ε)
.

Hence, there is a polynomial function g(N, log Smax, log vmax) that bounds the running time of
finding an optimal solution to the LP relaxation of the configuration ILP [BT97,PS82]. Clearly,
the computational complexity of setting up and rounding the fractional solution is dominated
by solving the LP. Thus,

(︂
1
ε log n

)︂O(1/ε)
(log m log Smax log vmax)O(1) bounds the running time.

In similar time, we can store y and z, the obtained solutions to the configuration LP. Let ȳ

and z̄ be the variables obtained by (possibly) rounding down y and z and let ỹ and z̃ be the
variables corresponding to the resource augmentation as in Lemma 7.16. The time needed to
obtain these variables is dominated by solving the LP relaxation of the configuration ILP.

Answering queries Since we only store implicit solutions, it remains to show how to answer
the corresponding queries. In order to determine the relevant parameters of a particular item,
we assume that all items are stored in one balanced binary search tree that allows us to access
one item in time O(log n) by Lemma 7.2. We additionally assume that this balanced binary
search tree also stores the value class of an item. We use again the round parameter t(j) and
the corresponding knapsack k(j) to cache given answers in order to stay consistent between
two updates. If j was not selected in round t(j), we represent this by k(j) = 0. We assume
that these two parameters are stored in the same binary search tree that also stores the items
and, thus, can be accessed in time O(log n).

We now design an algorithm for non-cached items. The high-level idea is similar to the
algorithm developed in Section 7.4 for identical knapsacks. As the knapsacks have different
capacities in this section, the relative size of an item depends on the particular knapsack group:
An item can be big with respect to one knapsack and small with respect to another. Thus, the
distinction between small and big items does not hold for all knapsacks simultaneously anymore
and needs to be handled carefully. More precisely, upon query of an item j of type t, we start
by determining the group γt in which the next item of type t is packed. The pointers and
counters we use correspond mostly to the ones in Section 7.4 except that we additionally have
a dependency on the particular group g for each parameter. Additionally, we use R

(ε)
g , R

(y)
g

and R
(z)
g to refer to knapsacks given by resource augmentation for group g.

If t is small with respect to γt, then j is packed by Next Fit either as regular or as cut item.
We use the two pointers κr

g for packing small items regularly in group g and κc
g for packing cut

items. If there are at most 1
ε − 1 knapsacks in group g, then κc

g points to the knapsack R
(ε)
g

given by resource augmentation. Otherwise, the configuration ILP left the smallest ⌈εmg⌉
knapsacks in group g empty for packing cut small items. Further, we use R

(z)
g,t to refer to the

knapsack given by resource augmentation that is used for packing one item of type t if the
variable zg,t was subjected to rounding. Since we may only pack as many items of type t in
group g as indicated by the implicit solution, the counter ηS

t determines how many items of
type t can still be packed in group γt if t is small with respect to γt.

137

7 Dynamic Multiple Knapsacks

If t is big with respect to γt, then j is packed in the next slot for items of type t determined
by the configuration ILP. To this end, we use again the counter κt to determine the knapsack
where the next item of type t is packed and the counter ηB

t to determine how many items of
type t can still be packed in knapsack κt if t is big with respect to γt. The knapsack R

(y)
c,g ,

for c ∈ Cg, refers to the knapsack given by resource augmentation used when the variable yc,g

was subjected to rounding.
Table 7.1 summarizes the parameters and counters used to answer queries, and in Figure 7.7,

we give an example of the current packing after some items have been queried. Next, we define
the data structures for answering queries before we formally explain how to answer queries.

1

2

3

4

γ1 = 3
ηS

1 = 3
γ4 = 1 γ2 = γ3 = 2

ηS
2 = 1

3

1

12

⌈εm2⌉ knapsacks⌊(1 − ε)m2⌋ knapsacks
with configurations for cut items knapsacks in R

(y)
2 knapsacks in R

(z)
2

κ3

ηB
3 = 1

κ
(r)
2 κ

(c)
2

ρ
(c)
2 = 4

Figure 7.7: Counters and pointers for answering queries: Gray rectangles inside knapsacks rep-
resent small items. The next item of type 2 (dark green) is placed in the knapsack
given by resource augmentation R

(z)
2 since ηS

2 = z̃2,2. Items of type 1 (light green)
already filled all their slots in group 2 and are now placed in group 3.

Data structures We assume that the knapsacks are sorted by non-increasing capacity and
stored in one binary search tree together with Si, the capacity of the knapsacks. The knapsacks

138

7.5 Ordinary Knapsacks When Solving Multiple Knapsack

Table 7.1: Counters and pointers used during querying items
Counter/Pointer Meaning

Cg Configurations that are used by group g
αc,g First knapsack with configuration c in group g

R
(y)
c,g Knapsack in R(y) used for group g and configuration c

R
(z)
g,t Knapsack in R(z) used for group g and type t

R
(ε)
g Knapsack in R(ε) used for group g with mg < 1

ε

Gt Knapsack groups where items of type t are packed
Cg,t List of configurations c ∈ Cg with nc,t ≥ 1
γt Current knapsack group where items of type t are packed
κt Current knapsack for packing items of a big type t
ηS

t Remaining number of slots for items of type t in γt

ηB
t Remaining number of slots for items of type t in κt

κr
g Current knapsack in g for packing small items regularly

κc
g Current knapsack in g (or in R(ε)) for packing cut small items

ρr
g Remaining capacity in κr

g for packing small items
ρc

g Remaining number of slots for small items in κc
g

given by resource augmentation are stored in three different lists, R(y), R(z), and R(ε), needed
due to rounding y or z or because mg < 1

ε , respectively. The knapsack groups are stored in
the list G sorted by non-increasing knapsack capacity. For each group g, we additionally store
the number mg of knapsacks belonging to g.

Let ȳ, ỹ, z̄, and z̃ be the implicit solution of the algorithm. Here ∗̄ refers to packing configu-
rations or items into the original knapsacks while ∗̃ refers to the knapsacks given by resource
augmentation. Let Cg be the set of configurations c with ȳc,g+ỹc,g ≥ 1 ordered in non-increasing
size sc and stored in one list per group. In the following, we use the position of a configura-
tion c ∈ Cg in that list as the index of c. For mapping the configurations to knapsacks, we
assign the knapsacks

∑︁g−1
g′=1 mg′ +

∑︁c−1
c′=1 ȳc′,g +1, . . . ,

∑︁g−1
g′=1 mg′ +

∑︁c
c′=1 ȳc′,g to configuration c.

For the knapsacks in the resource augmentation, we set R
(y)
c,g =

∑︁g−1
g′=1

∑︁
c′∈Cg′

ỹc′,g′ +
∑︁

c′≤c ỹc′,g

for each group g and each configuration c ∈ Cg.
For each item type t, let n̄t denote the number of items of type t in the solution. We

maintain a pointer γt to the group where the next queried item of type t is supposed to go.
We initialize γt with the first group that packs items of type t. Since the number of items
of type t assigned to group g as small items is determined by z̄g,t + z̃g,t, we additionally
use the counter ηS

t , initialized with z̄γt,t + z̃γt,t, to reflect how many slots group γt still has
for items of type t. For accessing the knapsacks R(z) given by resource augmentation, we
set R

(z)
g,t =

∑︁g−1
g′=1

∑︁
t′∈T z̃g′,t′ +

∑︁t
t′=1 z̃g,t′ for each group g and item type t. Note that zg,t = 0

holds if t is big with respect to g.
When packing small items in group g, we use group pointers κr

g and κc
g to refer to the

knapsack for packing items regularly or for packing cut items. The pointer κr
g is initialized

139

7 Dynamic Multiple Knapsacks

with κr
g =

∑︁g−1
g′=1 mg′ + 1. Further, we use ρr

g to store the remaining capacity for small items
in κr

g and initialize it with ρr
g = Sκr

g
− s1, where s1 is the size of the first configuration in

group g. If mg ≥ 1
ε , we set κc

g =
∑︁g−1

g′=1 mg′ + ⌊(1 − ε)mg⌋ + 1, while mg < 1
ε implies that κc

g

points to the knapsack R
(ε)
g given by resource augmentation. The counter ρc

g stores again the
remaining slots for cut small items in group g and is initialized with 1

ε .
If t is big with respect to γt, we use the pointer κt to direct us to the particular knapsack

where the next item of type t goes, while ηB
t stores how many slots κt still has available for

items of type t. Initially, κt points to the first knapsack with a configuration that contains t

in the first group where t is packed as big item. If c is the corresponding configuration, we
set ηB

t = nc,t. Because of resource augmentation, κt may point to a knapsack in R(y), the
additional knapsacks for rounding y.

Queries Consider a queried, non-cached item j with value class Vℓ. If ℓ /∈ {ℓmin, . . . , ℓmax},
we return k(j) = 0. Otherwise, let t be its type. We check if j belongs to the first n̄t items of
this type. If not, then k(j) = 0 is returned. Otherwise, let γ be the group γt where the next
item of type t is packed.

We first consider the case that t is small with respect to group γ. Recall that ηS
t stores

the number of remaining slots of group γ. If ηS
t = z̃γ,t, then all original slots of group γ are

already filled with items of type t. Hence, j either goes to the knapsack R
(z)
γ,t from resource

augmentation R(z) or to the next group. If z̃γ,t = 1, then j is packed in k(j) = R
(z)
γ,t . We

update γt to point to the next group that packs items of type t and update ηS
t according to

the new group if t is still small with respect to γt. (Otherwise the next item of type t will
be packed according to κt.) Then, we return k(j). Else, we update γt to point to the next
group that packs items of type t and update ηS

t accordingly if t is still small with respect to γt.
Then, the case distinction on the size of t relative to γt is invoked again. If ηt > z̃γ,t, then
we decrease ηt by one and pack j among the original knapsacks. We need to determine if j

is packed regularly or as a cut item. To this end, we compare sj with ρr
γ . If sj ≤ ρr

γ , we
pack j in knapsack κr

γ . Next, ρr
γ is decreased by sj , and we return k(j) = κr

γ . Otherwise, we
close knapsack κr

γ for small items by increasing this pointer by one and pack j as cut item,
i.e., k(j) = κc

γ . We reflect this decision by decreasing ρc
γ by one. If this leads to ρc

γ = 0, we
increase κc

γ by one and set ρc
γ = 1

ε . Further, we update ρr
g.

Now consider the case where t is big with respect to group γ. Then, the pointer κt dictates
the knapsack of j. We decrease ηB

t by one. If this leads to ηB
t = 0, we find the next knapsack

(either in group γ or in the next group) that packs items of type t and update κt, ηB
t , and

possibly γt accordingly. This algorithm is summarized in Algorithm 7.6.

Algorithm 7.6: Answering item queries in round τ

if t(j) ̸= τ

t(j)← τ

140

7.5 Ordinary Knapsacks When Solving Multiple Knapsack

ℓ← index of the value class of j

if ℓ /∈ {ℓmin, . . . , ℓmax} do
k(j)← 0 // not selected

else
t← type of j, γ ← γt

if j ∈ first n̄t items do
if t small w.r.t. γ do // case distinction for big and small items

if ηS
t = z̃γ,t and z̃γ,t = 1 do // resource augmentation
k(j)← R

(z)
g,t

update γt to the next group
update ηS

t accordingly or use κt and ηB
t if necessary

else-if ηS
t = z̃γ,t and z̃γ,t = 0 do // next group

update γt to the next group
update ηS

t accordingly or use κt and ηB
t if necessary

go to back to the case distinction for big and small items
else-if sj ≤ ρr

γ do // regular item
k(j)← κr

γ

ηS
t ← ηS

t − 1
ρr

γ ← ρr
γ − sj

else // cut item
k(j)← κc

γ

ηS
t ← ηS

t − 1
κr

γ ← κr
γ + 1

ρc
γ ← ρc

γ − 1
if ρc

γ = 0
κc

γ ← κc
γ + 1

ρc
γ ← 1

ε

else // big item
k(j)← κt

ηB
t ← ηB

t − 1
update κt, ηB

t , and γt if necessary
else

k(j)← 0 // not selected
return k(j)

For calculating the value of the current solution, we need to calculate the total value of the
first n̄t items. We do this by iterating through the value classes once and per value class,
we iterate once through the list Tℓ of item types for value class Vℓ to access the number n̄t.
Then, we use prefix computation twice in order to access the total value of the first n̄t items of
type t. Again, we do this computation once after each update operation. Lemma 7.36 bounds
the running time of these calculations and shows that incorporating these does not change the
order of magnitude of the running time given in Lemma 7.32.

For returning the complete solution, we iterate once through the value classes and for each

141

7 Dynamic Multiple Knapsacks

value class, we iterate through the list Tℓ to access the number n̄t. Then, we use prefix
computation based on the indices of the items for accessing the first n̄t items of type t. Then,
we access and query each item individually.

We prove the parts of the next lemma again separately.

Lemma 7.33. The solution determined by the query algorithm is feasible as well as consistent
and achieves the claimed total value. The query times of our algorithm are as follows.

(i) Single item queries can be answered in time O
(︂

log m + log n
ε2

)︂
.

(ii) Solution value queries can be answered in time O(1).
(iii) Queries of the entire solution P are answered in time O

(︂
|P | log3 n

ε4

(︂
log m + log n

ε2

)︂)︂
.

Lemma 7.34. The query algorithms return a feasible and consistent solution obtaining the total
value given by the implicit solution.

Proof. By construction of k(j) and t(j), the solution returned by the query algorithms is
consistent between updates.

Observe that ȳ and z̄ is a feasible solution to the configuration ILP (P). Hence, showing that
the algorithm does not assign more than ȳc,g times configuration c and not more than z̄g,t items
of type t to group g is sufficient for having a feasible packing of the corresponding elements into
the ⌊(1 − ε)mg⌋ largest knapsacks of group g if mg ≥ 1

ε or into the mg knapsacks of group g

if mg < 1
ε . When defining L, we made sure that the items and configurations specified by ỹ

and z̃ fit into the knapsacks given by resource augmentation.
If the item type t is small with respect to the group g, then at most z̄g,t items of type t are

packed in group g. Thus, Lemma 7.18 ensures that all small items assigned to group g fit in
the knapsacks for regular and the cut items. Moreover, the treatment of ηS

t = z̃g,t guarantees
that the value obtained by small items packed in g and its additional knapsacks is as in the
implicit solution.

If t is big with respect to group g, then the constructions of κt and ηB
t ensure that ex-

actly
∑︁

c∈Cg
(ȳc + ỹc)nc,t items of type t are packed in group g and in R

(y)
g . Hence, the total

value achieved is as given by the implicit solution.

Lemma 7.35. The data structures can be generated in O
(︃

log4 n
ε8

(︂
log m + log2/ε n

ε4/ε

)︂)︃
many itera-

tions. Queries for a particular item can be answered in O
(︂

log m + log n
ε2

)︂
many steps.

Proof. We start by retracing the steps of the dynamic linear grouping in order to obtain the
set T of item types. We store the types Tℓ of one value class in one list, sorted by non-decreasing
size. By Lemma 7.10, the set T can be determined in time O

(︂
log4 n

ε4

)︂
.

We first argue about the generation of the data structures and the initialization of the various
pointers and counters. We start by generating a list (αc,g)c∈Cg

for each group g where αc,g

stores the first (original) knapsack of configuration c ∈ Cg, i.e.,

αc,g = αc−1,g + ȳc−1,g + 1,

142

7.5 Ordinary Knapsacks When Solving Multiple Knapsack

where α0,g =
∑︁g−1

g′=1 mg′ and y0,g = 0. Next, we set

R
(z)
g,t =

g−1∑︂
g′=1

∑︂
t′∈T

z̃g′,t′ +
t∑︂

t′=1
z̃g,t′

and

R(y)
c,g =

g−1∑︂
g′=1

∑︂
c′∈Cg′

ỹc′,g′ +
∑︂

c′∈Cg ,c′≤c

ỹc′,g ,

where R
(z)
g,t corresponds to the resource augmentation needed because of rounding zg,t and R

(y)
c,g

corresponds to the resource augmentation for rounding yc,g. These lists can be generated by
iterating through the list Cg for each group g in time O(

∑︁
g∈G |Cg|) = O

(︂
log2 n

ε4
log2/ε n

ε4/ε

)︂
.

For maintaining and updating the pointer γt, we generate the list Gt that contains all groups g

where items of type t are packed in the implicit solution. By iterating through the groups once
more and checking

∑︁
c∈Cg

(ȳc,g + ỹc,g)nc,t ≥ 1 or z̄g,t + z̃g,t ≥ 1, we can add the corresponding
groups g to Gt. Then, γt points to the head of the list. While iterating through the groups, we
also calculate n̄t =

∑︁
g∈G

(︂∑︁
c∈C′

g
(ȳc,g + ỹc,g)+ z̄g,t + z̃g,t

)︂
and store the corresponding value to-

gether with the item type. The lists Gt can be generated inO(|T |
∑︁

g∈G |Cg|) = O
(︃

log4 n
ε8

log2/ε n
ε4/ε

)︃
many iterations.

For maintaining and updating the pointer κt we create the list Cg,t storing all configura-
tions c ∈ Cg with nc,t ≥ 1. While iterating through the groups and creating Gt, we also add c

together with nc,t to the list Cg,t if nc,t ≥ 1. Initially, κt points to the head of Cg,t, where g

is the first group that packs t as big item. If c is the corresponding configuration, we start
with ηB

t = nc,t. The time needed for this is bounded by O(|T |
∑︁

g∈G |Cg|) = O
(︃

log4 n
ε8

log2/ε n
ε4/ε

)︃
.

The pointer κr
g is initialized with κr

g =
∑︁g−1

g′=1 mg′ + 1. By using binary search on the list Cg,
we get s1, the total size of configuration 1 assigned to κr

g, and binary search over the knapsacks
allows us to obtain Sκr

g
, the capacity of knapsack κr

g. Thus, ρr
g = Sκr

g
− s1 can be initialized in

time O(
∑︁

g∈G(log(|Cg|+ log m)) = O
(︃

log2 n
ε5

(︂
log log n

ε + log m
)︂)︃

.

If mg ≥ 1
ε , we set κc

g =
∑︁g−1

g′=1 mg′ + ⌊(1− ε)mg⌋+ 1, while mg < 1
ε implies that κc

g points to
the knapsack R(ε) = |{g′ : g′ ≤ g, mg′ < 1

ε}| given by resource augmentation. The time needed
for initializing κc

g is O(|G|). In order to determine the position of the next cut item, we also
maintain ρc, initialized with ρc

g = 1
ε , that counts how many slots are still left in knapsack κc

g.
Now consider the query for an item j. We can decide in time O(log n) if j has already been

queried in the current round. Upon arrival of j, we calculated the index ℓ of its value class.
If ℓ ∈ {ℓmin, . . . , ℓmax}, then the item types Tℓ together with their first and last item can be
determined in time O

(︂
log n

ε2

)︂
by retracing the steps of the linear grouping,. By binary search,

the item type of j can be determined in time O
(︂

log log n
ε

)︂
. Once the item type is known, we

check if j belongs to the first n̄t items of this type. If not, then not selected is returned.

143

7 Dynamic Multiple Knapsacks

Otherwise, the pointer γt answers the question in which group item j is packed.
If j is small and ηS

t > z̃t,γt , the knapsack k(j) can be determined in constant time by
nested case distinction and having the correct pointer (either κr

γt
or κc

γt
) dictate the answer.

In order to bound the update time of the data structures, note that packing j as regular item
only implies the updates of ργt and of ηS

t , which take constant time. Hence, it remains to
consider the case where j is packed as a cut item. The capacity of the new knapsack κr

γt
can

be determined in O(log m) by binary search over the knapsack list while the configuration c

of the new knapsack κr
γt

and its total size are determined by binary search over the list αγt in
time O

(︂
log |Cγt |

)︂
= O

(︂
1
ε log log n

ε

)︂
. Then, ρr

γt
= Sκr

γt
− sc can be computed with constantly

many operations. If ρc
γt

= 0 after packing j in κc
γt

, we increase the knapsack pointer by one
and update ρc

γt
= 1

ε . In case ηS
t = z̃γt,t = 1, item j is packed in the knapsack R

(z)
γt,t which

can be decided in constant time. Otherwise the group pointer γt is increased and either ηS
t

is updated according to the new group or κt and ηB
t are used. Updating γt can be done by

binary search over the list Gt in time O(log |G|). The pointer γt is updated at most once before
determining k(j). Hence, the case distinction on the relative size of t is invoked at most twice.

If j is big, the pointer κγt dictates the answer which can be returned in time O(1). For
bounding the running time of the possible update operations, observe that ηt is updated in
constant time with values bounded by n. If ηB

t = 0 after the update, the knapsack pointer κt

needs to be updated as well. The most time consuming update operations are finding a new
configuration c′ and possibly even a new group g′. Finding configuration c′ ∈ Cγt,t can be done
by binary search in time O

(︂
log |Cγt |

)︂
= O

(︂
1
ε log log n

ε

)︂
. To update κt and ηB

t , we extract κt

from the list αγt and nc′,t from the list Cγt,t in time O
(︂
log |Cγt |

)︂
= O

(︂
1
ε log log n

ε

)︂
by binary

search. If the algorithm needs to update γt as well, this can be done by binary search on the
list Gt in time O(log |Gt|) = O

(︂
log log(n)

ε

)︂
.

In both cases, the running time of answering the query and possibly updating data structures
is bounded by the running time of the linear grouping step and by the routine to access one
particular knapsack, i.e., by O

(︂
log m + log n

ε2

)︂
.

Lemma 7.36. The solution value can be calculated in time O
(︂

log3 n
ε4

)︂
.

Proof. For obtaining the value of the current solution, we calculate the total value of the first n̄t

items. We do this by iterating through the value classes once and per value class, we iterate
once through the list Tℓ to access the number n̄t. Then, we use prefix computation twice in
order to access the total value of the first n̄t items of type t. Lemma 7.2 bounds this time
by O(log n). By Lemma 7.9, the number of item types is bounded by O

(︂
log2 n

ε4

)︂
. Combining

these two values bounds the total running time by O
(︂

log3 n
ε4

)︂
. As this time is clearly dominated

by obtaining the implicit solution in the first place, we calculate and store the solution value
when computing the implicit solution value and thus are able to return it in constant time.

144

7.6 Special Knapsacks When Solving Multiple Knapsack

Lemma 7.37. In time O
(︂
|P | log3 n

ε4

(︂
log m + log n

ε2

)︂)︂
a query for the complete solution P can be

answered.

Proof. For returning the complete solution, we determine the packed items and query each
packed item individually. Lemma 7.35 bounds their query times by O

(︂
log m + log n

ε2

)︂
while

Lemma 7.2 bounds the running time for accessing item j. Lemma 7.9 bounds the number of
item types by O

(︂
log2 n

ε4

)︂
. In total, the running time is bounded by O

(︂
|P | log3 n

ε4

(︂
log m+ log n

ε2

)︂)︂
,

where P is the current solution.

Proof of main result

Proof of Theorem 7.27. Lemma 7.31 gives the bound on the approximation ratio of our algo-
rithm and Lemma 7.32 bounds the running time of an update operation. Further, Lemma 7.35
gives the running time for query operations.

7.6 Special Knapsacks When Solving Multiple Knapsack

We give a high-level overview of our dynamic algorithm for a Multiple Knapsack instance
with arbitrarily many knapsacks. While theoretically applicable for any number of knapsacks,
the running time is reasonable when m =

(︂
1
ε log n

)︂Oε(1)
. For the technical details and the

complete analysis we refer to [BEM+20] and the PhD thesis of L. Nölke. Let v be an upper
bound on vmax known in advance. The main result of this section is the following theorem.

Theorem 7.38. For ε > 0, there is a dynamic (1 + ε)-approximate algorithm for Multi-
ple Knapsack with update time 2f(1/ε)

(︂
m
ε log(nvmax)

)︂O(1)
+ O

(︂
1
ε log v log n

)︂
, with f quasi-

linear. Moreover, item queries are answered in time O
(︂

log m
ε log n

)︂
, solution value queries in

time O(1), and queries of the entire solution P in time O
(︂
|P | log m

ε log n
)︂
.

7.6.1 Algorithm

Definitions and data structures Let Opt be the set of items used in an optimal solution
and Opt m

ε2 the set containing the m
ε2 most valuable items of Opt; in both cases, break ties in

favor of smaller items.
When computing the solution, we will assign low-value items fractionally. To this end,

consider an item j and let v be such that 0 ≤ v ≤ vj . Then, the proportional size of item j of
value v is defined as sj

v
vj

.
To efficiently run our algorithm we maintain several data structures. We store the items of

each non-empty value class Vℓ (at most ⌈log1+ε vmax⌉+ 1) in a data structure ordered by non-
decreasing size. Second, for each possible value class Vℓ (at most ⌈log1+ε v⌉+ 1), we maintain
a data structure ordered by non-increasing density that contains all items of value (1 + ε)ℓ or
lower. In particular, we maintain such a data structure even if Vℓ is empty since initialization

145

7 Dynamic Multiple Knapsacks

is prohibitively expensive in terms of running time. We constantly maintain all data structures
leading to the additive term in the update time of O(log n log1+ε v). We use additional data
structures to store our solution and support queries.

Algorithm The approach itself can be divided into two parts that consider high- and low-
value items, respectively. The corresponding partition is guessed such that the high-value items
contain the m

ε2 most valuable items of an optimal solution Opt and the low-value items the
remaining items of Opt. For the important high-value items, a good solution is paramount,
so we employ an EPTAS for Multiple Knapsack. It is run on a low-cardinality set of
high-value candidate items together with m

ε placeholders of equal size that reserve space for
low-value items. The values of placeholders are determined by filling them fractionally with
the densest low-value items.

More precisely, we start by guessing ℓmax, the index of the highest value class with items
in Opt. Let ℓ̃min denote the index of the lowest value class that we need to consider for the m

ε2

most valuable items, that is, ℓ̃min = ℓmax −
⌈︂
log1+ε

m
ε3

⌉︂
. We consider each ℓ̃ ∈ {ℓ̃min, . . . , ℓmax}

as possible guess ℓ̃ for the index of the lowest value class with items in Opt m
ε2 . For this value

class, we additionally guess nmin, the number of items of value class Vℓ̃ belonging to Opt m
ε2 .

There are at most m
ε2 guesses to consider. Given these three guesses, let H m

ε2 denote the set
of candidates for the set Opt m

ε2 . That is, H m
ε2 contains the m

ε2 smallest items from each value
class Vℓ with ℓ ∈ {ℓ̃ + 1, . . . , ℓmax} and the nmin smallest items from value class Vℓ̃.

Now consider the data structure containing all the items of value at most (1 + ε)ℓ̃ sorted
by decreasing density. From this data structure, we (temporarily) remove the nmin smallest
items of value class Vℓ̃. After having completed the calculation for the current set of guesses,
we insert the removed items again.

Next, we guess vL, the total value of low-value items in Opt. We use the just modified
data structure to determine the size of the densest low-value items that have a total value vL,
by possibly cutting the last item. That is, we consider the set J ′ of densest items such
that

∑︁
j∈J ′ vj < vL ≤

∑︁
j∈J ′ vj + vj⋆ , where j⋆ is the densest item not in J ′. Next, we add a

piece of item j⋆ of value vL−
∑︁

j∈J ′ vj and proportional size sj⋆
vL−

∑︁
j∈J ′ vj

vj⋆
to J ′. Given this

“block” of items, we create bundles B1, . . . , B m
ε

of equal value ε
mvL by cutting the block at

appropriate points. The size of bundle Bk is the total size of the items completely contained
in Bk plus the proportional size of the at most two fractional items belonging to Bk.

Next, we consider an instance of Multiple Knapsack with m knapsacks, the items H m
ε2 ,

and an item per placeholder bundle Bk with the size as detailed above and value ε
mvL. On

this instance, we run the EPTAS designed by Jansen [Jan12], parameterized by ε, to obtain a
packing P .

Among all guesses, we take the solution P with the highest value and retrace the removal
of high-value items to obtain the data structure corresponding to the solution. These items
are inserted again right before the next update operation. For each knapsack, we place the

146

7.7 Solving Multiple Knapsack

items in H m
ε2 as indicated by P and all low-value items completely contained in any bundle Bk

that is packed by P in this knapsack. While used candidates (and their packing) can be
stored explicitly, low-value items are given only implicitly by storing the correct guesses and
recomputing Bk on a query. We summarize the algorithm in Algorithm 7.7.

Algorithm 7.7: Dynamic algorithm for special knapsacks
guess ℓmax, ℓ̃, and nmin

compute high-value candidates H m
ε2

guess vL

create placeholder bundles of low-value items B1, . . . , B m
ε

run an EPTAS on H m
ε2

and B1, . . . , B m
ε

Queries We briefly explain how to handle the different types of queries.

• Single Item Query: If the queried item is contained in H m
ε2 , its packing is stored ex-

plicitly. For low-value items, we store the first and last item completely contained in a
bundle. On query of an item, we decide its membership in a bundle by comparing its den-
sity with the pivot elements (breaking ties by index). The packing of the corresponding
bundle is given again explicitly.

• Solution Value Query: After each update operation, we compute and store the solution
value. To this end, we compute the total value of the packed items in H m

ε2 . For low-value
items, we compute the total value of the items completely contained in a bundle that
is assigned to a knapsack. Prefix computation on the data structure of low-value items
enables us to handle this efficiently. Summing the total value of the candidates and the
values of those low-value items yields the value of the current solution.

• Entire Solution Query: For the packed candidates, we output their stored packing.
For the low-value items, we iterate over the items in packed bundles in the density sorted
data structure and skip all fractionally packed items and all bundles not packed by the
current solution.

7.7 Solving Multiple Knapsack

Having laid the groundwork with the previous two sections, we finally show how to main-
tain (1+ε)-approximate solutions for arbitrary instances of the Multiple Knapsack problem
and give the main result of this chapter.

Theorem 7.39. For each ε > 0, there is a dynamic (1+ε)-approximate algorithm for Multiple
Knapsack with update time 2f(1/ε)

(︂
log n

ε

)︂O(1/ε)
(log m log Smax log vmax)O(1), where f

(︂
1
ε

)︂
is

147

7 Dynamic Multiple Knapsacks

quasi-linear. Item queries can be answered in time O(log m)
(︂

log n
ε

)︂O(1)
and the solution P can

be output in time O(|P |+ log m)
(︂

log n
ε

)︂O(1)
.

We obtain this result by partitioning the knapsacks into three sets, special, extra, and ordi-
nary knapsacks, and solving the respective subproblems. This has similarities to the approach
in [Jan09]; however, there it is sufficient to have only two groups of knapsacks. In Section 7.5 we
develop the algorithmic techniques used for solving the ordinary subproblem, and Section 7.6
gives a high-level overview of the algorithm for the special subproblem.

7.7.1 Algorithm

Definitions and data structures Given n and ε, let L denote the number of knapsacks needed
as resource augmentation by the algorithm for the ordinary subproblem (Section 7.5). We can
choose L ∈

(︂
log n

ε

)︂O(1/ε)
. Further, we assume that m >

(︂
1
ε

)︂4/ε
· L because otherwise the

algorithm for the special subproblem (Section 7.6) has update time polynomial in log n. Let
Opt denote the set of items in an optimal solution; we break ties by picking smaller-size items.

We partition the knapsacks into three parts that decrease in knapsack capacity but increase
in cardinality. We refer to them as special, extra, and ordinary knapsacks, with special denoting
the largest knapsacks, ordinary the smallest, and extra the in-between ones. We call an item
ordinary if it fits into the at least one ordinary knapsack and special otherwise. We denote the
set of ordinary and special items by JO and by JS , respectively.

Similar to the proportional size, we define the proportional value. For an item j with size sj

and value vj and a given size s ≤ sj , the proportional value is given by vj
s
sj

.
Since we use the algorithms from Sections 7.5 and 7.6 as subroutines, we require the mainte-

nance of the corresponding data structures. However, the data structures containing all items
of value class at most Vℓ will be set up on the fly. Hence, we do not maintain them with the
update operations. That is, we only maintain one data structure storing all items sorted by
index, one data structure for all knapsacks sorted by non-increasing capacity, and per value
class we store all its items sorted by non-decreasing size.

Algorithm The high-level idea of the algorithm is the following. We start by partitioning the
knapsacks into special, extra, and ordinary knapsacks; this partition depends on the current
instance and is computed in each update operation. The extra knapsacks provide additional
knapsacks needed when solving the special and the ordinary subproblems. Since ordinary
items may be packed in special and ordinary knapsacks, we also guess sO, the size of ordinary
items packed in special knapsacks up to powers of (1 + ε). Next, we add a virtual knapsack
of size sO to the ordinary subproblem and solve the resulting instance with the algorithm for
ordinary knapsacks. Here, our choice for the cardinality of the extra knapsacks will enable us to
treat these as knapsacks given by resource augmentation. Items that are packed in the virtual

148

7.7 Solving Multiple Knapsack

knapsack are then (possibly fractionally) assigned to bundles. These bundles together with
the special items constitute the input to the special subproblem solved with the corresponding
algorithm.

• • •
• • •

• • •5 6

1

2

3

4

special knapsacks extra knapsacks ordinary knapsacks

Figure 7.8: Special, extra, and ordinary knapsacks with special (5 and 6) and ordinary (1
through 4) items

• • •

• • •5 6

B1

B2

B3

1

2

3

4

ordinary subproblem with virtual knapsack (dotted)special subproblem with item bundles

Figure 7.9: Special and ordinary subproblem

More precisely, we group the L
∑︁1/ε

i=1
1

ε3(i−1) largest knapsacks of the instance in 1
ε sets of

geometrically increasing cardinality and non-increasing capacity. The first set contains the L

largest knapsacks and, in general, for i ∈
[︂

1
ε

]︂
, the ith set contains the L

ε3(i−1) largest knapsacks
not yet contained in a set with smaller index. Then, we guess the index k of the last such
group that still contains special knapsacks. The next L

ε3k knapsacks are the extra knapsacks,
and all remaining knapsacks constitute the set of ordinary knapsacks.

Next, we apply dynamic linear grouping to transform the items into item types. Let LS

denote the number of special knapsacks, i.e., LS =
∑︁k

i=1
L

ε3(i−1) . We pack each of the LS
ε2 most

valuable ordinary items, denoted by JE , in a separate extra knapsack, storing their explicit
packing and removing them temporarily from the data structure of their respective value class.

149

7 Dynamic Multiple Knapsacks

The remaining ordinary items are now considered as input to the ordinary subproblem.
Further, we guess sO, the size of ordinary items packed in special knapsacks to create a virtual
ordinary knapsack of capacity sO. As guessing sO exactly is intractable, we only guess sO

up to a factor of (1 + ε). Next, we run the algorithm for ordinary knapsacks as specified in
Section 7.5. When doing this, we treat the virtual knapsack as its own group and do not create
configurations for this knapsack but restrict to the z variables, that place items of a particular
type by number. When rounding the variables (also for the virtual knapsack), we use the extra
knapsacks for providing resource augmentation. This gives a packing of ordinary items either
in ordinary knapsacks, in the virtual knapsack, or in the extra knapsacks.

Let s̄O denote the total size of ordinary items in the virtual knapsack. We sort the items
placed inside by type, i.e., first by value, then by size, and cut the virtual knapsack to create LS

ε

bundles of equal size. This may lead to some ordinary items being contained fractionally in
more than one bundle. Such items will not be packed in the final solution but their proportional
value contributes to the value of a bundle. We denote by BO the set of bundles, and, for each
bundle, we remember how many items of each type are completely contained. Then, each
bundle B is considered as one item of value equal to the proportional value of the items placed
in B; the size of B is εs̄O

LS
.

Next, we set up the data structures used in the special subproblem containing only special
items (as types) and the set of bundles BO. That is, for each value class Vℓ we create one data
structure that contains only the items of this value class sorted by increasing size and one data
structure that contains all items of at most this value class sorted by density. Note that the
values of the ordinary bundles are not necessarily rounded to powers of (1+ ε). However, since
their number is bounded, we (possibly) create a value class for each new value and treat them
as we would treat the regular value classes. Note that we do not insert every special item but
only special item types and their multiplicities. Having set up these data structures, we run
the algorithm for special knapsacks as described in Section 7.6.

Algorithm 7.8: Dynamic algorithm for Multiple Knapsack
guess k

partition knapsacks into special, extra, and ordinary knapsacks
guess ℓmax and use dynamic linear grouping

pack the LS

ε2 most valuable ordinary items into extra knapsacks
guess sO and create a virtual ordinary knapsack of size sO

solve the ordinary subproblem including the virtual knapsack
create bundles of ordinary items
set up the data structure for the special subproblem considering only special items and

these bundles
solve the special subproblem

150

7.7 Solving Multiple Knapsack

Queries For handling queries, we essentially use the same approach as in Sections 7.5 and 7.6
for the ordinary and special subproblem, respectively. By default, we pack the first n̄t items
of a type that contributes n̄t items to the implicit solution. However, we point out two steps
that change the routines slightly. First, we incorporate handling item types as described in
Section 7.5 by setting up pointers also for the special items assigned to special knapsacks.
Second, extra care has to be taken for the items in the virtual knapsack. To this end, we store
the number of items per type that are completely contained in bundles that are chosen by the
special subproblem and only add the number of such items to the overall number of packed
items of a certain type. Further, we additionally maintain a pointer for each type that points
to the bundle in the virtual knapsack where the next item of this type is assigned to. If the
query for an ordinary item returns the virtual knapsack, we use the corresponding pointer to
determine the bundle of this item. Then, we query the bundle as item in the special subproblem
and return the answer for this item.

7.7.2 Analysis

In this section, we analyze the performance of our algorithm in terms of the solution quality
and in terms of the update time. We heavily rely on the results of the previous sections that
guarantee that the solutions to our subproblems are sufficiently good.

Lemma 7.40. Let PF be the final solution the algorithm computes and let Opt be an optimal
solution. We have v(PF) ≥ (1−9ε)(1−ε)(1−2ε)

(1+ε)4 v(Opt).

Proof. Our algorithm returns the solution PF that has the highest total value among all so-
lutions found when trying guesses. If we can construct another solution P that our algo-
rithm might have considered at some point, then the lemma follows since v(PF) ≥ v(P).
To this end, let Opt be an optimal solution and let ℓmax be the largest index of a value class
with Vℓ∩Opt ̸= ∅. We fix an optimal solution OptT of the instance induced by the set of item
types T , obtained when running dynamic linear grouping with ℓmax, and their multiplicities.

Further, we consider the 1
ε many groups of the largest knapsacks that we used to partition

the knapsacks into special, extra, and ordinary. As there are 1
ε many such groups, one of

these groups contributes at most εv(OptT) to the total solution value. Let k ∈
[︂

1
ε

]︂
be such

that the (k + 1)st group is such a low-value group. This value k gives us the partition for
the knapsacks: the first L

∑︁k
i=1

1
ε3(i−1) many knapsacks are the special ones, the knapsacks in

group k + 1 are the extra knapsacks, and all remaining knapsacks are ordinary. Based on this
partition, we also group the items into ordinary and special items.

Let s̃O be the total size of ordinary items packed by OptT in special knapsacks. Thus, our
algorithm considered the combination of ℓmax, k, and sO = (1 + ε)⌊log1+ε s̃O⌋ at some point by
definition. The solution P is obtained by modifying OptT in a way that allows P to be a
possible solution for the algorithm when considering these three guesses.

151

7 Dynamic Multiple Knapsacks

More precisely, we start by removing the items from the extra knapsacks to obtain a solu-
tion Opt′

T . By our choice of k, we have v(Opt′
T) ≥ (1 − ε)v(OptT). Let Opt−E denote an

optimal solution of the instance consisting of all items (as types) and the ordinary as well as
the special knapsacks. Thus,

v(Opt−E) ≥ (1− ε)v(OptT).

Now, we consider the ordinary subproblem, i.e., the instance of Multiple Knapsack con-
sisting of all ordinary knapsacks plus the virtual knapsack and all ordinary items except JE ,
the high-value items our algorithm packs in extra knapsacks. Take the packing of items in
ordinary knapsacks as done by Opt−E and greedily, sorted by non-increasing density, pack
the items that are packed in special knapsacks by Opt−E in the virtual knapsack without
violating its capacity. As sO underestimates the size of these items, this causes a loss of at
most εv(OptT) plus an ordinary item jO with vjO ≤ minj∈JE

vj ≤ εv(OptT). This pack-
ing is feasible for the ordinary subproblem as described above and achieves a value of at
least v((Opt−E ∩ JO) \ JE)− 2εv(OptT). For an optimal solution OptO to this instance,

v(OptO) ≥ v(Opt−E,O)− 2εv(OptT),

where Opt−E,O = (Opt−E ∩ JO) \ JE .
We note that L

ε3k > LS
ε2 + 2L. Hence, the extra knapsacks can indeed act as resource aug-

mentation for the ordinary subproblem. Let PO denote the packing returned by the algorithm
described in Section 7.5. By Theorem 7.27,

v(PO) ≥ 1
1 + ε

v(OptO).

With Opt−E,S := Opt−E ∩ JS and Opt−E,E := Opt−E ∩ JE , we can rewrite Opt−E

as Opt−E,O ∪Opt−E,E ∪Opt−E,S . Let P1 = PO ∪Opt−E,S ∪ JE . Thus,

v(P1) = v(PO) + v(Opt−E,S) + v(JE)

≥ 1
1 + ε

v(OptO) + v(Opt−E,S) + v(Opt−E,E)

≥ 1
1 + ε

v(Opt−E,O)− 2εv(OptT) + v(Opt−E,S) + v(Opt−E,E)

≥ 1
1 + ε

v(Opt−E)− 2εv(OptT)

≥
(︃1− ε

1 + ε
− 2ε

)︃
v(OptT).

Now, we use P1 to obtain the packing P that our algorithm could have considered at some
point. To this end, we observe that P1 still uses the virtual knapsack while our algorithm
packs ordinary items via bundles in special knapsacks. Thus, we take the items in the virtual

152

7.7 Solving Multiple Knapsack

knapsack in P1 and transform them into LS
ε equal-size bundles (with possibly cut items) to

obtain the intermediate packing P2. The packing of Opt−E,S reserves sufficient space to pack
these bundles fractionally into the special knapsacks. If we arrange them such that the at
most LS fractionally packed bundles are those that have lowest value, we can discard these at
a cost of at most εv(OptT). Further, we remove the ordinary items that are now part of more
than one bundle. Since there are at most LS

ε such items and we packed the LS
ε2 most valuable

ordinary items in extra knapsacks, the cost of this removal is bounded by εv(OptT). Hence,

v(P2) ≥ v(P1)− 2εv(OptT) ≥
(︃1− ε

1 + ε
− 4ε

)︃
v(OptT) ≥ 1− 9ε

1 + ε
v(OptT).

Further, combining the bundles of ordinary items and the special items creates a valid solution
to the special subproblem as solved in Section 7.6. Hence, the solution returned by the algo-
rithm on these particular guesses ℓmax, k, and sO satisfies v(P) ≥ 1

1+εv(P2) by Theorem 7.38.
Combining the calculations and using Theorem 7.4, we conclude

v(PF) ≥ v(P) ≥ 1
1 + ε

v(P2) ≥ 1− 9ε

(1 + ε)2 v(OptT) ≥ (1− 9ε)(1− ε)(1− 2ε)
(1 + ε)4 v(Opt).

Next, we bound the update time of our algorithm.

Lemma 7.41. The algorithm has update time 2f(1/ε)
(︂

log n
ε

)︂O(1/ε)
(log m log Smax log vmax)O(1),

where f is a quasi-linear function.

Proof. Our algorithm heavily relies on solving the subproblems efficiently. The running times
of the algorithms are given in Theorems 7.27 and 7.38. However, we note that we do not
maintain the data structures for the special subproblem but create these on the fly after having
determined the item types. Hence, we do not have the additive term for maintaining the at
most O(log1+ε v) data structures of items with value up to (1 + ε)ℓ for ℓ ∈ {0, . . . , ⌊log1+ε v⌋}
sorted by non-increasing density.

Further, guessing k adds a factor of 1
ε to the update time. Placing the LS

ε2 most valuable ordi-
nary items in extra knapsacks and removing them from data structures takes time O

(︂
LS
ε2 log n

)︂
which is within the time bound. The same holds for updating the ordinary data structures
and generating the special data structures as well as solving the respective subproblems.

It remains to show that the bundles of ordinary items stemming from the virtual knapsack
can be generated efficiently. To this end, we sort the item types in some fixed order and store
the number of items per type that are packed in the knapsack. There are at most

(︂
log n

ε

)︂O(1)

item types and at most
(︂

log n
ε

)︂O(1/ε)
many bundles. Hence, we can iterate through the list of

item types and obtain the cutting points using prefix computation as explained in Section 7.2
within the desired time frame.

153

7 Dynamic Multiple Knapsacks

Answering queries As explained above, the queries are handled as described in the respective
subproblems with the exception that the special subproblem also deals with item types and
that ordinary items packed in the virtual knapsack lead to an additional query of their bundle
in the special subproblem. Therefore, the bounds for answering queries given in the respective
section immediately imply the following lemma.

Lemma 7.42. The query times of our algorithm are as follows.
(i) Single item queries are answered in time O

(︂
log m + log n

ε2 + log(log n/ε)
ε

)︂
.

(ii) Solution value queries are answered in time O(1).
(iii) The entire solution P can be output in time O

(︂
|P | log3 n

ε4

(︂
log m + log n

ε2 + log(log n/ε)
ε

)︂)︂
.

Proof of main result We are now ready to prove Theorem 7.39.

Proof of Theorem 7.39. Lemma 7.40 bounds the quality of the solution found by our dynamic
algorithm. Lemma 7.41 and Lemma 7.42 give the bounds on the running times of update and
query operations, respectively.

7.8 Concluding Remarks

We have presented a robust dynamic framework for Multiple Knapsack that implements
update operations (item and knapsack arrivals and departures) as well as query operations,
such as solution value and item presence in the solution. By having n items arrive one by
one, any dynamic algorithm can be turned into a non-dynamic framework while incurring an
additional linear term in the running time. Hence, the performance of any dynamic framework
is subject to the same lower bounds as non-dynamic approximation schemes.

We hope to foster further research within the dynamic-algorithm framework for packing,
scheduling and, generally, non-graph problems. For bin packing and for scheduling to minimize
the makespan on uniformly related machines, we note that existing PTAS techniques from
[KK82] and [Jan10,HS87] combined with rather straightforward data structures can be lifted
to a fully dynamic framework for the respective problems.

154

References
[AAG+19] A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi, and B. Saha. Dynamic set cover:

Improved algorithms and lower bounds. In STOC, pages 114–125. ACM, 2019. doi:
10.1145/3313276.3316376.

[AAPW01] B. Awerbuch, Y. Azar, S. A. Plotkin, and O. Waarts. Competitive routing of virtual
circuits with unknown duration. J. Comput. Syst. Sci., 62(3):385–397, 2001. doi:10.
1006/jcss.1999.1662.

[ABK94] Y. Azar, A. Z. Broder, and A. R. Karlin. On-line load balancing. Theor. Comput. Sci.,
130(1):73–84, 1994. doi:10.1016/0304-3975(94)90153-8.

[AF55] S. B. Akers and J. Friedman. A non-numerical approach to production scheduling
problems. Journal of the Operations Research Society of America, 3(4):429–442, 1955.
doi:10.1287/opre.3.4.429.

[AGZ99] M. Andrews, M. X. Goemans, and L. Zhang. Improved bounds for on-line load balancing.
Algorithmica, 23(4):278–301, 1999. doi:10.1007/PL00009263.

[AKL+15] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. Naor, and J. Yaniv. Truth-
ful online scheduling with commitments. In EC, pages 715–732. ACM, 2015. doi:
10.1145/2764468.2764535.

[AKP+97] Y. Azar, B. Kalyanasundaram, S. A. Plotkin, K. Pruhs, and O. Waarts. On-line load
balancing of temporary tasks. J. Algorithms, 22(1):93–110, 1997. doi:10.1006/jagm.
1995.0799.

[Alb99] S. Albers. Better bounds for online scheduling. SIAM J. Comput., 29(2):459–473, 1999.
doi:10.1137/S0097539797324874.

[Alb03] S. Albers. Online algorithms: a survey. Math. Program., 97(1-2):3–26, 2003. doi:
10.1007/s10107-003-0436-0.

[ALLM18] K. Agrawal, J. Li, K. Lu, and B. Moseley. Scheduling parallelizable jobs online
to maximize throughput. In LATIN, volume 10807, pages 755–776. Springer, 2018.
doi:10.1007/978-3-319-77404-6_55.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Pren-
tice Hall, 1993. https://www.pearson.com/us/higher-education/program/
Ahuja-Network-Flows-Theory-Algorithms-and-Applications/PGM148966.html.

[ANR92] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. In SODA,
pages 203–210. ACM/SIAM, 1992. http://dl.acm.org/citation.cfm?id=139404.
139450.

[AW14] A. Abboud and V. V. Williams. Popular conjectures imply strong lower bounds for
dynamic problems. In FOCS, pages 434–443. IEEE Computer Society, 2014. doi:10.
1109/FOCS.2014.53.

[Bay72] R. Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms. Acta
Informatica, 1:290–306, 1972. doi:10.1007/BF00289509.

155

https://doi.org/10.1145/3313276.3316376
https://doi.org/10.1145/3313276.3316376
https://doi.org/10.1006/jcss.1999.1662
https://doi.org/10.1006/jcss.1999.1662
https://doi.org/10.1016/0304-3975(94)90153-8
https://doi.org/10.1287/opre.3.4.429
https://doi.org/10.1007/PL00009263
https://doi.org/10.1145/2764468.2764535
https://doi.org/10.1145/2764468.2764535
https://doi.org/10.1006/jagm.1995.0799
https://doi.org/10.1006/jagm.1995.0799
https://doi.org/10.1137/S0097539797324874
https://doi.org/10.1007/s10107-003-0436-0
https://doi.org/10.1007/s10107-003-0436-0
https://doi.org/10.1007/978-3-319-77404-6_55
https://www.pearson.com/us/higher-education/program/Ahuja-Network-Flows-Theory-Algorithms-and-Applications/PGM148966.html
https://www.pearson.com/us/higher-education/program/Ahuja-Network-Flows-Theory-Algorithms-and-Applications/PGM148966.html
http://dl.acm.org/citation.cfm?id=139404.139450
http://dl.acm.org/citation.cfm?id=139404.139450
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1007/BF00289509

References

[BB10] A. Beloglazov and R. Buyya. Energy efficient allocation of virtual machines in cloud
data centers. In CCGRID, pages 577–578. IEEE Computer Society, 2010. doi:10.1109/
CCGRID.2010.45.

[BC16] F. Biagini and M. Campanino. Elements of Probability and Statistics. Springer, 1st
edition, 2016. doi:10.1007/978-3-319-07254-8.

[BCP11] N. Bansal, H. Chan, and K. Pruhs. Competitive algorithms for due date scheduling.
Algorithmica, 59(4):569–582, 2011. doi:10.1007/s00453-009-9321-4.

[BDF81] J. L. Bruno, P. J. Downey, and G. N. Frederickson. Sequencing tasks with exponential
service times to minimize the expected flow time or makespan. J. ACM, 28(1):100–113,
1981. doi:10.1145/322234.322242.

[BE98] A. Borodin and R. El-Yaniv. Online computation and com-
petitive analysis. Cambridge University Press, 1998. https:
//www.cambridge.org/de/academic/subjects/computer-science/
algorithmics-complexity-computer-algebra-and-computational-g/
online-computation-and-competitive-analysis?format=PB.

[Bel56] R. Bellman. Mathematical aspects of scheduling theory. J. Soc. Indust. Appl. Math.,
4(3):168–205, 1956. doi:10.1137/0104010.

[Bel57] R. Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, USA, 1957. https://press.princeton.edu/books/paperback/9780691146683/
dynamic-programming.

[BEM+20] M. Böhm, F. Eberle, N. Megow, L. Nölke, J. Schlöter, B. Simon, and A. Wiese. Fully
dynamic algorithms for knapsack problems with polylogarithmic update time. CoRR,
abs/2007.08415, 2020. https://arxiv.org/abs/2007.08415.

[BH97] S. K. Baruah and J. R. Haritsa. Scheduling for overload in real-time systems. IEEE
Trans. Computers, 46(9):1034–1039, 1997. doi:10.1109/12.620484.

[BHI15] S. Bhattacharya, M. Henzinger, and G. F. Italiano. Design of dynamic algorithms via
primal-dual method. In ICALP (1), volume 9134 of Lecture Notes in Computer Science,
pages 206–218. Springer, 2015. doi:10.1007/978-3-662-47672-7_17.

[BHN17] S. Bhattacharya, M. Henzinger, and D. Nanongkai. Fully dynamic approximate maximum
matching and minimum vertex cover in O(log3 n) worst case update time. In SODA,
pages 470–489. SIAM, 2017. doi:10.1137/1.9781611974782.30.

[BHN19] S. Bhattacharya, M. Henzinger, and D. Nanongkai. A new deterministic algorithm for
dynamic set cover. In FOCS, pages 406–423. IEEE Computer Society, 2019. doi:10.
1109/FOCS.2019.00033.

[BHR19] A. Bernstein, J. Holm, and E. Rotenberg. Online bipartite matching with amortized
O(log 2 n) replacements. J. ACM, 66(5):37:1–37:23, 2019. doi:10.4230/LIPIcs.ITCS.
2017.51.

[BHS94] S. K. Baruah, J. R. Haritsa, and N. Sharma. On-line scheduling to maximize task com-
pletions. In RTSS, pages 228–236. IEEE Computer Society, 1994. doi:10.1109/REAL.
1994.342713.

[BJK20] S. Berndt, K. Jansen, and K. Klein. Fully dynamic bin packing revisited. Math. Program.,
179(1):109–155, 2020. doi:10.1007/s10107-018-1325-x.

[BK19] S. Bhattacharya and J. Kulkarni. Deterministically maintaining a (2 + ε)-approximate
minimum vertex cover in o(1/ε2) amortized update time. In SODA, pages 1872–1885.
SIAM, 2019. doi:10.1137/1.9781611975482.113.

156

https://doi.org/10.1109/CCGRID.2010.45
https://doi.org/10.1109/CCGRID.2010.45
https://doi.org/10.1007/978-3-319-07254-8
https://doi.org/10.1007/s00453-009-9321-4
https://doi.org/10.1145/322234.322242
https://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/online-computation-and-competitive-analysis?format=PB
https://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/online-computation-and-competitive-analysis?format=PB
https://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/online-computation-and-competitive-analysis?format=PB
https://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/online-computation-and-competitive-analysis?format=PB
https://doi.org/10.1137/0104010
https://press.princeton.edu/books/paperback/9780691146683/dynamic-programming
https://press.princeton.edu/books/paperback/9780691146683/dynamic-programming
https://arxiv.org/abs/2007.08415
https://doi.org/10.1109/12.620484
https://doi.org/10.1007/978-3-662-47672-7_17
https://doi.org/10.1137/1.9781611974782.30
https://doi.org/10.1109/FOCS.2019.00033
https://doi.org/10.1109/FOCS.2019.00033
https://doi.org/10.4230/LIPIcs.ITCS.2017.51
https://doi.org/10.4230/LIPIcs.ITCS.2017.51
https://doi.org/10.1109/REAL.1994.342713
https://doi.org/10.1109/REAL.1994.342713
https://doi.org/10.1007/s10107-018-1325-x
https://doi.org/10.1137/1.9781611975482.113

References

[BKB07] N. Bobroff, A. Kochut, and K. A. Beaty. Dynamic placement of virtual machines for
managing SLA violations. In Integrated Network Management, pages 119–128. IEEE,
2007. doi:10.1109/INM.2007.374776.

[BKM+91] S. K. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. E. Rosier, and D. E. Shasha.
On-line scheduling in the presence of overload. In FOCS, pages 100–110. IEEE Computer
Society, 1991. doi:10.1109/SFCS.1991.185354.

[BKM+92] S. K. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. E. Rosier, D. E. Shasha,
and F. Wang. On the competitiveness of on-line real-time task scheduling. Real-Time
Systems, 4(2):125–144, 1992. doi:10.1007/BF00365406.

[BKP+17] A. Bernstein, T. Kopelowitz, S. Pettie, E. Porat, and C. Stein. Simultaneously load
balancing for every p-norm, with reassignments. In ITCS, volume 67 of LIPIcs, pages
51:1–51:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/
LIPIcs.ITCS.2017.51.

[BM72] R. Bayer and E. M. McCreight. Organization and maintenance of large ordered indices.
Acta Informatica, 1:173–189, 1972. doi:10.1007/BF00288683.

[BP11] N. Boria and V. T. Paschos. A survey on combinatorial optimization in dynamic environ-
ments. RAIRO - Operations Research, 45(3):241–294, 2011. doi:10.1051/ro/2011114.

[BRVW20] M. Buchem, L. Rohwedder, T. Vredeveld, and A. Wiese. Additive approximation schemes
for load balancing problems. CoRR, abs/2007.09333, 2020. https://arxiv.org/abs/
2007.09333.

[BT97] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization, volume 6 of
Athena Scientific Optimization and Computation Series. Athena Scientific, 1997. http:
//athenasc.com/linoptbook.html.

[CEM+20] L. Chen, F. Eberle, N. Megow, K. Schewior, and C. Stein. A general framework for
handling commitment in online throughput maximization. Math. Prog., 183:215–247,
2020. doi:10.1007/s10107-020-01469-2.

[CFMM14] M. Cheung, F. Fischer, J. Matuschke, and N. Megow. An Ω(∆1/2) Gap example on the
(W)SEPT Policy. Unpublished note, 2014.

[Cha18] T. M. Chan. Approximation schemes for 0-1 knapsack. In SOSA@SODA, volume 61
of OASICS, pages 5:1–5:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/OASIcs.SOSA.2018.5.

[CK05] C. Chekuri and S. Khanna. A polynomial time approximation scheme for the mul-
tiple knapsack problem. SIAM J. Comput., 35(3):713–728, 2005. doi:10.1137/
S0097539700382820.

[CKPT17] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali. Approximation and online algo-
rithms for multidimensional bin packing: A survey. Comput. Sci. Rev., 24:63–79, 2017.
doi:10.1016/j.cosrev.2016.12.001.

[CMM67] R. Conway, W. Maxwell, and L. Miller. Theory of Scheduling. Adison-Wesley Pub. Co.,
1967.

[CMWW19] M. Cygan, M. Mucha, K. Wegrzycki, and M. Wlodarczyk. On problems equivalent to
(min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, 2019. doi:10.1145/
3293465.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In STOC, pages 151–158.
ACM, 1971. doi:10.1145/800157.805047.

157

https://doi.org/10.1109/INM.2007.374776
https://doi.org/10.1109/SFCS.1991.185354
https://doi.org/10.1007/BF00365406
https://doi.org/10.4230/LIPIcs.ITCS.2017.51
https://doi.org/10.4230/LIPIcs.ITCS.2017.51
https://doi.org/10.1007/BF00288683
https://doi.org/10.1051/ro/2011114
https://arxiv.org/abs/2007.09333
https://arxiv.org/abs/2007.09333
http://athenasc.com/linoptbook.html
http://athenasc.com/linoptbook.html
https://doi.org/10.1007/s10107-020-01469-2
https://doi.org/10.4230/OASIcs.SOSA.2018.5
https://doi.org/10.1137/S0097539700382820
https://doi.org/10.1137/S0097539700382820
https://doi.org/10.1016/j.cosrev.2016.12.001
https://doi.org/10.1145/3293465
https://doi.org/10.1145/3293465
https://doi.org/10.1145/800157.805047

References

[DEGI10] C. Demetrescu, D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic Graph Algorithms,
pages 9:1–9:28. Chapman & Hall/CRC, 2 edition, 2010. doi:10.1201/9781584888239.

[DGV08] B. C. Dean, M. X. Goemans, and J. Vondrák. Approximating the stochastic knapsack
problem: The benefit of adaptivity. Math. Oper. Res., 33(4):945–964, 2008. doi:10.
1287/moor.1080.0330.

[dlVL81] W. F. de la Vega and G. S. Lueker. Bin packing can be solved within 1+epsilon in linear
time. Combinatorica, 1(4):349–355, 1981. doi:10.1007/BF02579456.

[DP00] B. DasGupta and M. A. Palis. Online real-time preemptive scheduling of jobs with
deadlines. In APPROX, volume 1913 of Lecture Notes in Computer Science, pages 96–
107. Springer, 2000. doi:10.1007/3-540-44436-X_11.

[DP09] D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press, 1 edition, 2009. doi:10.1017/
CBO9780511581274.

[EEI64] W. L. Eastman, S. Even, and I. M. Isaacs. Bounds for the optimal scheduling of n jobs on
m processors. Management Science, 11(2):268–279, 1964. doi:10.1287/mnsc.11.2.268.

[EFMM19] F. Eberle, F. Fischer, J. Matuschke, and N. Megow. On index policies for stochastic
minsum scheduling. Oper. Res. Lett., 47(3):213–218, 2019. doi:10.1016/j.orl.2019.
03.007.

[EL09] L. Epstein and A. Levin. A robust APTAS for the classical bin packing problem. Math.
Program., 119(1):33–49, 2009. doi:10.1007/s10107-007-0200-y.

[EL13] L. Epstein and A. Levin. Robust approximation schemes for cube packing. SIAM J.
Optim., 23(2):1310–1343, 2013. doi:10.1137/11082782X.

[EL14] L. Epstein and A. Levin. Robust algorithms for preemptive scheduling. Algorithmica,
69(1):26–57, 2014. doi:10.1007/s00453-012-9718-3.

[EMS20] F. Eberle, N. Megow, and K. Schewior. Optimally handling commitment issues in online
throughput maximization. In ESA, volume 173 (to appear) of LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

[FBK+12] A. D. Ferguson, P. Bod́ık, S. Kandula, E. Boutin, and R. Fonseca. Jockey: Guaranteed
job latency in data parallel clusters. In EuroSys, pages 99–112. ACM, 2012. doi:10.
1145/2168836.2168847.

[FFG+18] B. Feldkord, M. Feldotto, A. Gupta, G. Guruganesh, A. Kumar, S. Riechers, and D. Wajc.
Fully-dynamic bin packing with little repacking. In ICALP, volume 107 of LIPIcs, pages
51:1–51:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/
LIPIcs.ICALP.2018.51.

[FW98] A. Fiat and G. J. Woeginger, editors. Online Algorithms, The State of the Art (the book
grow out of a Dagstuhl Seminar, June 1996), volume 1442 of Lecture Notes in Computer
Science. Springer, 1998. doi:10.1007/BFb0029561.

[GG61] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock
problem. Oper. Res., 9(6):849–859, 1961. doi:10.1287/opre.11.6.863.

[GGK16] A. Gu, A. Gupta, and A. Kumar. The power of deferral: Maintaining a constant-
competitive steiner tree online. SIAM J. Comput., 45(1):1–28, 2016. doi:10.1137/
140955276.

[GGP97] L. Georgiadis, R. Guérin, and A. K. Parekh. Optimal multiplexing on a single link:
Delay and buffer requirements. IEEE Trans. Inf. Theory, 43(5):1518–1535, 1997. doi:
10.1109/18.623149.

158

https://doi.org/10.1201/9781584888239
https://doi.org/10.1287/moor.1080.0330
https://doi.org/10.1287/moor.1080.0330
https://doi.org/10.1007/BF02579456
https://doi.org/10.1007/3-540-44436-X_11
https://doi.org/10.1017/CBO9780511581274
https://doi.org/10.1017/CBO9780511581274
https://doi.org/10.1287/mnsc.11.2.268
https://doi.org/10.1016/j.orl.2019.03.007
https://doi.org/10.1016/j.orl.2019.03.007
https://doi.org/10.1007/s10107-007-0200-y
https://doi.org/10.1137/11082782X
https://doi.org/10.1007/s00453-012-9718-3
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.4230/LIPIcs.ICALP.2018.51
https://doi.org/10.4230/LIPIcs.ICALP.2018.51
https://doi.org/10.1007/BFb0029561
https://doi.org/10.1287/opre.11.6.863
https://doi.org/10.1137/140955276
https://doi.org/10.1137/140955276
https://doi.org/10.1109/18.623149
https://doi.org/10.1109/18.623149

References

[GGW11] J. C. Gittins, K. D. Glazebrook, and R. R. Weber. Multi-Armed Bandit Allocation Indices.
John Wiley & Sons, Ltd, 2nd edition, 2011. doi:10.1002/9780470980033.

[GHKM14] K. D. Glazebrook, D. J. Hodge, C. Kirkbride, and R. J. Minty. Stochastic scheduling:
A short history of index policies and new approaches to index generation for dynamic
resource allocation. J. Sched., 17(5):407–425, 2014. doi:10.1007/s10951-013-0325-1.

[GI99] A. Goel and P. Indyk. Stochastic load balancing and related problems. In FOCS, pages
579–586. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814632.

[Git79] J. C. Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal Sta-
tistical Society, Series B, 41:148–177, 1979. doi:10.1111/j.2517-6161.1979.tb01068.
x.

[Git89] J. C. Gittins. Multi-Armed Bandit Allocation Indices. Wiley, 1989.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[GJL98] M. M. Güntzer, D. Jungnickel, and M. Leclerc. Efficient algorithms for the clear-
ing of interbank payments. Eur. J. Oper. Res., 106(1):212–219, 1998. doi:10.1016/
S0377-2217(97)00265-8.

[GK03] M. H. Goldwasser and B. Kerbikov. Admission control with immediate notification. J.
Sched., 6(3):269–285, 2003. doi:10.1023/A:1022956425198.

[GKKP17] A. Gupta, R. Krishnaswamy, A. Kumar, and D. Panigrahi. Online and dynamic algo-
rithms for set cover. In STOC, pages 537–550. ACM, 2017. doi:10.1145/3055399.
3055493.

[GKNS18] A. Gupta, A. Kumar, V. Nagarajan, and X. Shen. Stochastic load balancing on unrelated
machines. In SODA, pages 1274–1285. SIAM, 2018. doi:10.1137/1.9781611975031.83.

[GKS14] A. Gupta, A. Kumar, and C. Stein. Maintaining assignments online: Matching, schedul-
ing, and flows. In SODA, pages 468–479. SIAM, 2014. doi:10.1137/1.9781611973402.
35.

[GL79] G. Gens and E. Levner. Computational complexity of approximation algorithms for
combinatorial problems. In MFCS, volume 74 of Lecture Notes in Computer Science,
pages 292–300. Springer, 1979. doi:10.1007/3-540-09526-8_26.

[GL80] G. Gens and E. Levner. Fast approximation algorithms for knapsack type problems. In
Optimization Techniques, pages 185–194. Springer, 1980. doi:10.1007/BFb0006603.

[Gla79] K. Glazebrook. Scheduling tasks with exponential service times on parallel processors.
J. Appl. Probab., 16(3):65–689, 1979. doi:10.2307/3213099.

[GLLRK79a] R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan. Optimization and approximation
in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics,
5:287–326, 1979. doi:10.1016/S0167-5060(08)70356-X.

[GLLRK79b] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. In Discrete
Optimization II, volume 5 of Annals of Discrete Mathematics, pages 287 – 326. Elsevier,
1979. doi:10.1016/S0167-5060(08)70356-X.

[GLS81] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1(2):169–197, 1981. doi:10.1007/
BF02579273.

159

https://doi.org/10.1002/9780470980033
https://doi.org/10.1007/s10951-013-0325-1
https://doi.org/10.1109/SFFCS.1999.814632
https://doi.org/10.1111/j.2517-6161.1979.tb01068.x
https://doi.org/10.1111/j.2517-6161.1979.tb01068.x
https://doi.org/10.1016/S0377-2217(97)00265-8
https://doi.org/10.1016/S0377-2217(97)00265-8
https://doi.org/10.1023/A:1022956425198
https://doi.org/10.1145/3055399.3055493
https://doi.org/10.1145/3055399.3055493
https://doi.org/10.1137/1.9781611975031.83
https://doi.org/10.1137/1.9781611973402.35
https://doi.org/10.1137/1.9781611973402.35
https://doi.org/10.1007/3-540-09526-8_26
https://doi.org/10.1007/BFb0006603
https://doi.org/10.2307/3213099
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1007/BF02579273
https://doi.org/10.1007/BF02579273

References

[GMUX17] V. Gupta, B. Moseley, M. Uetz, and Q. Xie. Stochastic online scheduling on unrelated
machines. In IPCO, volume 10328 of Lecture Notes in Computer Science, pages 228–240.
Springer, 2017. doi:10.1007/978-3-319-59250-3_19.

[GMUX20] V. Gupta, B. Moseley, M. Uetz, and Q. Xie. Greed works - online algorithms for unrelated
machine stochastic scheduling. Math. Oper. Res., 45(2):497–516, 2020. doi:10.1287/
moor.2019.0999.

[GNYZ02] J. A. Garay, J. Naor, B. Yener, and P. Zhao. On-line admission control and packet
scheduling with interleaving. In INFOCOM, pages 94–103. IEEE Computer Society,
2002. doi:10.1109/INFCOM.2002.1019250.

[Gol03] M. H. Goldwasser. Patience is a virtue: The effect of slack on competitiveness for admis-
sion control. J. Sched., 6(2):183–211, 2003. doi:10.1023/A:1022994010777.

[Gra69] R. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.,
17(2):416–429, 1969. doi:10.1137/0117039.

[Gut13] A. Gut. Probability: A Graduate Course. Springer, 2 edition, 2013. doi:10.1007/
b138932.

[HdLT01] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM,
48(4):723–760, 2001. doi:10.1145/502090.502095.

[Hen18] M. Henzinger. The state of the art in dynamic graph algorithms. In SOFSEM, volume
10706 of Lecture Notes in Computer Science, pages 40–44. Springer, 2018. doi:10.1007/
978-3-319-73117-9_3.

[HK99] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with polyloga-
rithmic time per operation. J. ACM, 46(4):502–516, 1999. doi:10.1145/320211.320215.

[HS87] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling
problems theoretical and practical results. J. ACM, 34(1):144–162, 1987. doi:10.1145/
7531.7535.

[IC03] J. F. R. III and R. Chandrasekaran. Improved bounds for the online scheduling problem.
SIAM J. Comput., 32(3):717–735, 2003. doi:10.1137/S0097539702403438.

[IK75] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM, 22(4):463–468, 1975. doi:10.1145/321906.321909.

[IL98] Z. Ivkovic and E. L. Lloyd. Fully dynamic algorithms for bin packing: Being (mostly) my-
opic helps. SIAM J. Comput., 28(2):574–611, 1998. doi:10.1137/S0097539794276749.

[IM18] S. Im and B. Moseley. General profit scheduling and the power of migration on hetero-
geneous machines. In SPAA, volume 10807 of Lecture Notes in Computer Science, pages
755–776. Springer, 2018. doi:10.1007/978-3-319-77404-6_55.

[IMP15] S. Im, B. Moseley, and K. Pruhs. Stochastic scheduling of heavy-tailed jobs. In STACS,
volume 30 of LIPIcs, pages 474–486. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015. doi:10.4230/LIPIcs.STACS.2015.474.

[IW91] M. Imase and B. M. Waxman. Dynamic steiner tree problem. SIAM J. Discret. Math.,
4(3):369–384, 1991. doi:10.1137/0404033.

[Jan09] K. Jansen. Parameterized approximation scheme for the multiple knapsack problem.
SIAM J. Comput., 39(4):1392–1412, 2009. doi:10.1137/080731207.

[Jan10] K. Jansen. An EPTAS for scheduling jobs on uniform processors: Using an MILP relax-
ation with a constant number of integral variables. SIAM J. Discrete Math., 24(2):457–
485, 2010. doi:10.1137/090749451.

160

https://doi.org/10.1007/978-3-319-59250-3_19
https://doi.org/10.1287/moor.2019.0999
https://doi.org/10.1287/moor.2019.0999
https://doi.org/10.1109/INFCOM.2002.1019250
https://doi.org/10.1023/A:1022994010777
https://doi.org/10.1137/0117039
https://doi.org/10.1007/b138932
https://doi.org/10.1007/b138932
https://doi.org/10.1145/502090.502095
https://doi.org/10.1007/978-3-319-73117-9_3
https://doi.org/10.1007/978-3-319-73117-9_3
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/7531.7535
https://doi.org/10.1145/7531.7535
https://doi.org/10.1137/S0097539702403438
https://doi.org/10.1145/321906.321909
https://doi.org/10.1137/S0097539794276749
https://doi.org/10.1007/978-3-319-77404-6_55
https://doi.org/10.4230/LIPIcs.STACS.2015.474
https://doi.org/10.1137/0404033
https://doi.org/10.1137/080731207
https://doi.org/10.1137/090749451

References

[Jan12] K. Jansen. A fast approximation scheme for the multiple knapsack problem. In SOFSEM,
volume 7147 of Lecture Notes in Computer Science, pages 313–324. Springer, 2012. doi:
10.1007/978-3-642-27660-6_26.

[Jin19] C. Jin. An improved FPTAS for 0-1 knapsack. In ICALP, volume 132 of LIPIcs, pages
76:1–76:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/
LIPIcs.ICALP.2019.76.

[JK19] K. Jansen and K. Klein. A robust AFPTAS for online bin packing with polynomial
migration. SIAM J. Discret. Math., 33(4):2062–2091, 2019. doi:10.1137/17M1122529.

[JKK05] N. Johnson, A. Kemp, and S. Kotz. Binomial Distribution. John Wiley & Sons, Inc., 3
edition, 2005. doi:10.1002/0471715816.

[Joh54] S. M. Johnson. Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly, 1(1):61–68, 1954. doi:10.1002/nav.
3800010110.

[JS18] S. Jäger and M. Skutella. Generalizing the Kawaguchi-Kyan Bound to Stochastic Parallel
Machine Scheduling. In STACS, volume 96 of LIPIcs, pages 43:1–43:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.43.

[JSS20] S. Jamalabadi, C. Schwiegelshohn, and U. Schwiegelshohn. Commitment and slack for
online load maximization. In SPAA, pages 339–348. ACM, 2020. doi:10.1145/3350755.
3400271.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Plenum Press, New
York, 1972. doi:10.1007/978-1-4684-2001-2_9.

[Kel99] H. Kellerer. A polynomial time approximation scheme for the multiple knapsack problem.
In RANDOM-APPROX, volume 1671 of Lecture Notes in Computer Science, pages 51–62.
Springer, 1999. doi:10.1007/978-3-540-48413-4_6.

[KK82] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. In FOCS, pages 312–320. IEEE Computer Society, 1982. doi:
10.1109/SFCS.1982.61.

[KP01] B. Kalyanasundaram and K. Pruhs. Eliminating migration in multi-processor scheduling.
J. Algorithms, 38(1):2–24, 2001. doi:10.1006/jagm.2000.1128.

[KP03] B. Kalyanasundaram and K. Pruhs. Maximizing job completions online. J. Algorithms,
49(1):63–85, 2003. doi:10.1016/S0196-6774(03)00074-9.

[KP04] H. Kellerer and U. Pferschy. Improved dynamic programming in connection with an
FPTAS for the knapsack problem. J. Comb. Optim., 8(1):5–11, 2004. doi:10.1023/B:
JOCO.0000021934.29833.6b.

[KPP04] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer, 2004. doi:
10.1007/978-3-540-24777-7.

[KRT00] J. M. Kleinberg, Y. Rabani, and É. Tardos. Allocating bandwidth for bursty connections.
SIAM J. Comput., 30(1):191–217, 2000. doi:10.1137/S0097539797329142.

[KS94] G. Koren and D. E. Shasha. MOCA: A multiprocessor on-line competitive algorithm for
real-time system scheduling. Theor. Comput. Sci., 128(1&2):75–97, 1994. doi:10.1016/
0304-3975(94)90165-1.

[KS95] G. Koren and D. E. Shasha. Dover: An optimal on-line scheduling algorithm for overloaded
uniprocessor real-time systems. SIAM J. Comput., 24(2):318–339, 1995. doi:10.1137/
S0097539792236882.

161

https://doi.org/10.1007/978-3-642-27660-6_26
https://doi.org/10.1007/978-3-642-27660-6_26
https://doi.org/10.4230/LIPIcs.ICALP.2019.76
https://doi.org/10.4230/LIPIcs.ICALP.2019.76
https://doi.org/10.1137/17M1122529
https://doi.org/10.1002/0471715816
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.4230/LIPIcs.STACS.2018.43
https://doi.org/10.1145/3350755.3400271
https://doi.org/10.1145/3350755.3400271
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-540-48413-4_6
https://doi.org/10.1109/SFCS.1982.61
https://doi.org/10.1109/SFCS.1982.61
https://doi.org/10.1006/jagm.2000.1128
https://doi.org/10.1016/S0196-6774(03)00074-9
https://doi.org/10.1023/B:JOCO.0000021934.29833.6b
https://doi.org/10.1023/B:JOCO.0000021934.29833.6b
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1137/S0097539797329142
https://doi.org/10.1016/0304-3975(94)90165-1
https://doi.org/10.1016/0304-3975(94)90165-1
https://doi.org/10.1137/S0097539792236882
https://doi.org/10.1137/S0097539792236882

References

[KV02] B. Korte and J. Vygen. Combinatorial Optimization. Springer, 2002. doi:10.1007/
978-3-662-56039-6.

[Lab13] B. Labonté. Ein Simulationssystem für stochastische Scheduling-Probleme und empirische
Untersuchung zur Approximationsgüte von Politiken. Master’s thesis, Technische Uni-
versität Berlin, 2013.

[Law79] E. L. Lawler. Fast approximation algorithms for knapsack problems. Math. Oper. Res.,
4(4):339–356, 1979. doi:10.1287/moor.4.4.339.

[Lee03] J. Lee. Online deadline scheduling: multiple machines and randomization. In SPAA,
pages 19–23. ACM, 2003. https://doi.org/10.1145/777412.777416.

[Leu04] J. Y. Leung, editor. Handbook of Scheduling: Algorithms, Models, and Perfor-
mance Analysis. Chapman and Hall/CRC, 2004. http://www.crcnetbase.com/isbn/
978-1-58488-397-5.

[LMNY13] B. Lucier, I. Menache, J. Naor, and J. Yaniv. Efficient online scheduling for deadline-
sensitive jobs: Extended abstract. In SPAA, pages 305–314. ACM, 2013. doi:10.1145/
2486159.2486187.

[LWF96] J. Liebeherr, D. E. Wrege, and D. Ferrari. Exact admission control for networks with a
bounded delay service. IEEE/ACM Trans. Netw., 4(6):885–901, 1996. doi:10.1109/90.
556345.

[Mol19] M. Molinaro. Stochastic ℓp load balancing and moment problems via the l-function
method. In SODA, pages 343–354. SIAM, 2019. doi:10.1137/1.9781611975482.22.

[MP04] R. Mansini and U. Pferschy. Securitization of financial assets: Approximation in
theory and practice. Comput. Optim. Appl., 29(2):147–171, 2004. doi:10.1023/B:
COAP.0000042028.93872.b9.

[MR85] R. H. Möhring and F. J. Radermacher. Introduction to stochastic scheduling problems.
In K. Neumann and D. Pallaschke, editors, Contributions to Operations Research, pages
72–130. Springer, 1985. doi:10.1007/978-3-642-46534-5_6.

[MRW84] R. H. Möhring, F. J. Radermacher, and G. Weiss. Stochastic scheduling problems I -
general strategies. Z. Oper. Research, 28(7):193–260, 1984. doi:10.1007/BF01919323.

[MRW85] R. H. Möhring, F. J. Radermacher, and G. Weiss. Stochastic scheduling problems II -
set strategies-. Z. Oper. Research, 29(3):65–104, 1985. doi:10.1007/BF01918198.

[MSU99] R. Möhring, A. Schulz, and M. Uetz. Approximation in stochastic scheduling: The
power of LP-based priority policies. J. ACM, 46(6):924–942, 1999. doi:10.1145/331524.
331530.

[MSVW16] N. Megow, M. Skutella, J. Verschae, and A. Wiese. The power of recourse for online MST
and TSP. SIAM J. Comput., 45(3):859–880, 2016. doi:10.1137/130917703.

[MT90] S. Martello and P. Toth. Lower bounds and reduction procedures for the bin packing prob-
lem. Discret. Appl. Math., 28(1):59–70, 1990. doi:10.1016/0166-218X(90)90094-S.

[MUV06] N. Megow, M. Uetz, and T. Vredeveld. Models and algorithms for stochastic online
scheduling. Math. Oper. Res., 31(3):513–525, 2006. doi:10.1287/moor.1060.0201.

[MV14] N. Megow and T. Vredefeld. A tight 2-approximation or preemptive stochastic scheduling.
Math. Oper. Res., 39(4):1297–1310, 2014. doi:10.1287/moor.2014.0653.

[MWW19] M. Mucha, K. Wegrzycki, and M. Wlodarczyk. A subquadratic approximation scheme
for partition. In SODA, pages 70–88. SIAM, 2019. doi:10.1137/1.9781611975482.5.

162

https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1287/moor.4.4.339
https://doi.org/10.1145/777412.777416
http://www.crcnetbase.com/isbn/978-1-58488-397-5
http://www.crcnetbase.com/isbn/978-1-58488-397-5
https://doi.org/10.1145/2486159.2486187
https://doi.org/10.1145/2486159.2486187
https://doi.org/10.1109/90.556345
https://doi.org/10.1109/90.556345
https://doi.org/10.1137/1.9781611975482.22
https://doi.org/10.1023/B:COAP.0000042028.93872.b9
https://doi.org/10.1023/B:COAP.0000042028.93872.b9
https://doi.org/10.1007/978-3-642-46534-5_6
https://doi.org/10.1007/BF01919323
https://doi.org/10.1007/BF01918198
https://doi.org/10.1145/331524.331530
https://doi.org/10.1145/331524.331530
https://doi.org/10.1137/130917703
https://doi.org/10.1016/0166-218X(90)90094-S
https://doi.org/10.1287/moor.1060.0201
https://doi.org/10.1287/moor.2014.0653
https://doi.org/10.1137/1.9781611975482.5

References

[Oli82] H. J. Olivié. A new class of balanced search trees: Half balanced binary search trees.
RAIRO Theor. Informatics Appl., 16(1):51–71, 1982. doi:10.1051/ita/1982160100511.

[Pin16] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer International Pub-
lishing, 5 edition, 2016. doi:10.1007/978-3-319-26580-3.

[PS82] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity. Prentice-Hall, 1982.

[PS10] K. Pruhs and C. Stein. How to schedule when you have to buy your energy. In APPROX,
volume 6302 of Lecture Notes in Computer Science, pages 352–365. Springer, 2010. doi:
10.1007/978-3-642-15369-3_27.

[PST95] S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast approximation algorithms for fractional
packing and covering problems. Math. Oper. Res., 20(2):257–301, 1995. doi:10.1287/
moor.20.2.257.

[PST04] K. Pruhs, J. Sgall, and E. Torng. Online scheduling. In Handbook of Schedul-
ing. Chapman and Hall/CRC, 2004. http://www.crcnetbase.com/doi/abs/10.1201/
9780203489802.ch15.

[PW87] M. Pinedo and G. Weiss. The “largest variance first” policy in some stochastic scheduling
problems. Oper. Res., 35(6):884–891, 1987. doi:10.1287/opre.35.6.884.

[Ram92] B. Ram. The pallet loading problem: A survey. International Journal of Production
Economics, 28(2):217–225, 1992. doi:10.1016/0925-5273(92)90034-5.

[Rhe15] D. Rhee. Faster fully polynomial approximation schemes for knapsack problems. Master’s
thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/
98564.

[Rot66] M. H. Rothkopf. Scheduling with random service times. Manag. Sci., 12(9):707–713,
1966. doi:10.1287/mnsc.12.9.707.

[Rot12] T. Rothvoß. The entropy rounding method in approximation algorithms. In SODA, pages
356–372. SIAM, 2012. doi:10.1137/1.9781611973099.32.

[Sch03] A. Schrijver. Combinatorial Optimization. Springer, 2003. https://www.springer.com/
de/book/9783540443896.

[Sch08] A. S. Schulz. Stochastic online scheduling revisited. In COCOA, volume 5165 of Lec-
ture Notes in Computer Science, pages 448–457, Berlin, 2008. Springer. doi:10.1007/
978-3-540-85097-7_42.

[Sga96] J. Sgall. On-line scheduling. In Online Algorithms, volume 1442 of Lecture Notes in
Computer Science, pages 196–231. Springer, 1996. doi:10.1007/BFb0029570.

[Smi56] W. E. Smith. Various optimizers for single-stage production. Naval Research Logistics
Quarterly, 3(1-2):59–66, 1956. doi:10.1002/nav.3800030106.

[SS16] C. Schwiegelshohn and U. Schwiegelshohn. The power of migration for online slack
scheduling. In ESA, volume 57 of LIPIcs, pages 75:1–75:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.75.

[SSS09] P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with bounded migration.
Math. Oper. Res., 34(2):481–498, 2009. doi:10.1287/moor.1090.0381.

[SSU16] M. Skutella, M. Sviridenko, and M. Uetz. Unrelated machine scheduling with stochastic
processing times. Math. Oper. Res., 41(3):851–864, 2016. doi:10.1287/moor.2015.0757.

[ST85] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.
Commun. ACM, 28(2):202–208, 1985. doi:10.1145/2786.2793.

163

https://doi.org/10.1051/ita/1982160100511
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1007/978-3-642-15369-3_27
https://doi.org/10.1007/978-3-642-15369-3_27
https://doi.org/10.1287/moor.20.2.257
https://doi.org/10.1287/moor.20.2.257
http://www.crcnetbase.com/doi/abs/10.1201/9780203489802.ch15
http://www.crcnetbase.com/doi/abs/10.1201/9780203489802.ch15
https://doi.org/10.1287/opre.35.6.884
https://doi.org/10.1016/0925-5273(92)90034-5
http://hdl.handle.net/1721.1/98564
http://hdl.handle.net/1721.1/98564
https://doi.org/10.1287/mnsc.12.9.707
https://doi.org/10.1137/1.9781611973099.32
https://www.springer.com/de/book/9783540443896
https://www.springer.com/de/book/9783540443896
https://doi.org/10.1007/978-3-540-85097-7_42
https://doi.org/10.1007/978-3-540-85097-7_42
https://doi.org/10.1007/BFb0029570
https://doi.org/10.1002/nav.3800030106
https://doi.org/10.4230/LIPIcs.ESA.2016.75
https://doi.org/10.1287/moor.1090.0381
https://doi.org/10.1287/moor.2015.0757
https://doi.org/10.1145/2786.2793

References

[Sto13] A. L. Stolyar. An infinite server system with general packing constraints. Oper. Res.,
61(5):1200–1217, 2013. doi:10.1287/opre.2013.1184.

[SU05] M. Skutella and M. Uetz. Stochastic machine scheduling with precedence constraints.
SIAM J. Comput., 34(4):788–802, 2005. doi:10.1137/S0097539702415007.

[SV16] M. Skutella and J. Verschae. Robust polynomial-time approximation schemes for parallel
machine scheduling with job arrivals and departures. Math. Oper. Res., 41(3):991–1021,
2016. doi:10.1287/moor.2015.0765.

[Tar83] R. E. Tarjan. Updating a balanced search tree in O(1) rotations. Inf. Process. Lett.,
16(5):253–257, 1983. doi:10.1016/0020-0190(83)90099-6.

[Vaz01] V. V. Vazirani. Approximation Algorithms. Springer, 2001. http://www.springer.com/
computer/theoretical+computer+science/book/978-3-540-65367-7.

[Wag59] H. M. Wagner. An integer linear-programming model for machine scheduling. Naval
Research Logistics Quarterly, 6(2):131–140, 1959. doi:10.1002/nav.3800060205.

[Wal88] J. Walrand. An Introduction to Queueing Networks. Prentice Hall, Englewood Cliffs, NJ,
1988.

[Web82] R. R. Weber. Scheduling jobs by stochastic processing requirements on parallel machines
to minimize makespan or flowtime. J. Appl. Probab., 19(1):167–182, 1982. doi:10.2307/
3213926.

[Wei66] H. M. Weingartner. Capital budgeting of interrelated projects: Survey and synthesis.
Manag. Sci., 12(7):485–516, 1966. doi:10.1287/mnsc.12.7.485.

[Wes00] J. R. Westbrook. Load balancing for response time. J. Algorithms, 35(1):1–16, 2000.
doi:10.1006/jagm.2000.1074.

[WS11] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011. http://www.cambridge.org/de/knowledge/isbn/
item5759340/?site_locale=de_DE.

[WVW86] R. Weber, P. Varaiya, and J. Walrand. Scheduling jobs with stochastically ordered pro-
cessing times on parallel machines to minimize expected flowtime. Journal of Applied
Probability, 23:841–847, 1986. doi:10.2307/3214023.

[Yan17] J. Yaniv. Job Scheduling Mechanisms for Cloud Computing. PhD thesis, Technion, Israel,
2017. http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2017/PHD/
PHD-2017-03.pdf.

164

https://doi.org/10.1287/opre.2013.1184
https://doi.org/10.1137/S0097539702415007
https://doi.org/10.1287/moor.2015.0765
https://doi.org/10.1016/0020-0190(83)90099-6
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
https://doi.org/10.1002/nav.3800060205
https://doi.org/10.2307/3213926
https://doi.org/10.2307/3213926
https://doi.org/10.1287/mnsc.12.7.485
https://doi.org/10.1006/jagm.2000.1074
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
https://doi.org/10.2307/3214023
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2017/PHD/PHD-2017-03.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2017/PHD/PHD-2017-03.pdf

Zusammenfassung

Unsicherheit ist allgegenwärtig beim Lösen von praxisbezogenen Optimierungsproblemen und
stellt eine große Herausforderung dar, wenn Resultate der kombinatorischen Optimierung in
Handlungsempfehlungen für reale Anwendungen übersetzt werden sollen, da sich Problempa-
rameter häufig ändern. Dadurch ist es sehr wahrscheinlich, dass die aktuelle Lösung unter den
gegebenen Umständen gut funktioniert. Sobald jedoch die Inputdaten geringfügig geändert
oder neue Informationen bekannt werden, ist dies meist nicht mehr der Fall und neue Ansätze
müssen entwickelt werden.

Diese Arbeit beschäftigt sich mit Algorithmen, die selbst unter Unsicherheit beweisbar gute
Lösungen finden, und konzentriert sich dabei auf zwei fundamentale Gebiete der kombinatori-
schen Optimierung: Packungs- und Schedulingprobleme. Von Packungsproblemen spricht
man im Allgemeinen dann, wenn gewisse Objekte Behältern mit beschränkten Kapazitäten
so zugewiesen werden sollen ohne diese zu überschreiten. Schedulingprobleme beschreiben
die zeitliche Zuordnung von Aufgaben zu knappen Ressourcen oder Maschinen. Wir betrach-
ten drei verschiedene Arten von Unsicherheit und die zugehörigen mathematischen Modelle:
stochastische Informationen, online Modelle und dynamische Probleme.

Liegen Informationen über einen Problemparameter lediglich als stochastische Zufallsvari-
ablen vor, so spricht man von stochastischen Informationen. Diese modellieren die Möglichkeit,
Wissen aus vorherigen, ähnlichen Problemen oder Probleminstanzen zu nutzen, um neue, un-
bekannte Projekte zu realisieren. Dabei werden problemrelevante Parameter, wie die Dauer
einer Aufgabe oder die Größe eines Objekts, als Zufallsvariablen modelliert und zu Beginn
sind lediglich die zugrunde liegenden Wahrscheinlichkeitsverteilungen bekannt. Erst im Laufe
der Zeit erfährt der Planer die Realisierung der Zufallsvariable und kann darauf basierend die
Planung anpassen.

Online Modelle werden verwendet, wenn kaum Wissen über die Probleminstanz bekannt
ist und dieses erst im Laufe der Planung verfügbar wird. Ein Planer muss auf der ihm zur
Verfügung stehenden Datengrundlage gute (und manchmal unwiderrufbare) Entscheidungen
treffen. Das Bekanntwerden von problemrelevanten Informationen kann dabei entweder schritt-
weise oder zu dem Planer unbekannten Zeitpunkten erfolgen.

Dynamische Probleme bilden die sich ständig verändernde Wirklichkeit ab, indem in jeder
Runde die Probleminstanz lokalen Änderungen unterliegt. Solche lokale Änderungen können
das Hinzufügen oder Entfernen von sowohl Objekten oder Aufgaben als auch von Behältern
oder Maschinen sein. Die Schwierigkeit für dynamische Algorithmen liegt darin begründet,
dass sie ihre Lösung zwar den Umständen anpassen können, diese jedoch schnellstmöglich
berechnet werden muss.

In dieser Arbeit betrachten wir ein Schedulingmodell mit stochastischen Informationen, bei
dem der erwartete durchschnittliche Fertigstellungszeitpunkt der Aufgaben minimiert werden
soll. Wir schließen Gütegarantien, die unabhängig von der den stochastischen Informationen
zugrunde liegenden Verteilungen sind, für sogenannte index-basierte Politiken mit Hilfe einer
einfachen Klasse von Instanzen aus. Für etwas allgemeinere Politiken gelingt es uns für diese

References

Klasse von Instanzen eben solche Gütegarantien zu zeigen.
Wir behandeln des Weiteren ein Online-Schedulingmodell, bei dem die Aufgaben schrittweise

nacheinander bekannt werden und lediglich von einigen der gegebenen Maschinen bearbeitet
werden können. Unmittelbar bei Bekanntwerden einer neuen Aufgabe muss diese einer Ma-
schine zugewiesen werden. Das Ziel ist, die Maximallast der Maschinen zu minimieren. Wir
analysieren einen Online-Algorithmus, der Entscheidungen in begrenztem Maße widerrufen
kann und dadurch eine gute Planung ermöglicht.

Zusätzlich untersuchen wir ein online-Schedulingmodell, bei dem die Aufgaben jeweils erst zu
ihren Ankunftszeiten bekannt werden und dann von allen Maschinen bearbeitet werden können.
Das Ziel ist es, die maximale Anzahl an Aufgaben vor ihren jeweiligen Deadlines fertigzustellen.
Wir entwickeln hierfür einen Online-Algorithmus und analysieren seine Gütegarantie. Außer-
dem zeigen wir, dass unser Algorithmus bestmöglich ist. In anderen Worten, kein Algorithmus,
der die Informationen im Laufe der Planung erhält, kann bessere Entscheidungen treffen.

In diesem Modell betrachten wir auch die Auswirkungen von verbindlichen Fertigstellungs-
zusagen des Planers. Genauer gesagt untersuchen wir, wie sich die Gütegarantien von Online-
Algorithmen verhalten, wenn der Planer zu einem bestimmten Zeitpunkt garantieren muss,
dass eine bestimmte Aufgabe pünktlich fertiggestellt wird. Überraschenderweise gelingt es uns
zu zeigen, dass einige moderate Fertigstellungszusagen keine allzu drastischen Auswirkungen
auf die Performance von Online-Algorithmen haben. Wenn die Zusage bei Ankunft der Aufgabe
gegeben werden muss, schließen wir die Existenz von guten Online-Algorithmen aus.

Zuletzt betrachten wir ein dynamisches Packungsproblem, bei dem sowohl die Menge der
Objekte als auch die Behälter lokalen Änderungen unterliegen: In jeder Runde wird entweder
ein neues Objekt oder ein neuer Behälter hinzugefügt oder ein Objekt oder ein Behälter ent-
fernt. Jedes Objekt ist durch seine Größe sowie seinen Wert charakterisiert. Das Ziel ist es
hierbei, Objekte von maximalem Gesamtwert zu packen ohne die Kapazitäten der Behälter
zu überschreiten. In diesem Modell darf sich die Lösung eines Algorithmus‘ den Umständen
anpassen und beliebig verändern, solange die neue Lösung in sublinearer Zeit berechnet werden
kann. Wir beschreiben hierfür einen Algorithmus, der nahezu optimale Lösungen liefert.

166

	Introduction
	Preliminaries
	Basic Notation
	Algorithm Analysis and Complexity
	Scheduling and Packing
	Scheduling Problems
	Packing Problems

	Scheduling and Packing Under Uncertainty
	Stochastic Input
	Online Input
	Dynamically Changing Input

	Stochastic Minsum Scheduling
	Introduction
	Lower Bound for Index Policies
	Upper Bound for Bernoulli-Type Instances
	Further Results on Bernoulli-Type Instances
	Less Stochastic Than Deterministic Jobs
	Many Long Stochastic Jobs in Expectation
	Bounded Processing Times of Stochastic Jobs
	Bounded Makespan of Deterministic Jobs
	At least m-1 Expected Long Stochastic Jobs
	Discussion

	Concluding remarks

	Online Load Balancing with Reassignment
	Introduction
	Online Flows with Rerouting
	Online Load Balancing with Reassignment
	Unit-Size Jobs
	Small Jobs
	Arbitrary Jobs

	Concluding Remarks

	Online Throughput Maximization
	Introduction
	The Threshold Algorithm
	The Threshold Algorithm
	Main Result and Road Map of the Analysis

	Successfully Completing Sufficiently Many Admitted Jobs
	Competitiveness: Admitting Sufficiently Many Jobs
	A Class of Online Algorithms
	Admitting Sufficiently Many Jobs

	Lower Bound on the Competitive Ratio
	Concluding Remarks

	Online Throughput Maximization with Commitment
	Introduction
	The Blocking Algorithm
	Completing All Admitted Jobs on Time
	Competitiveness: Admitting Sufficiently Many Jobs
	Lower Bounds on the Competitive Ratio
	Concluding Remarks

	Dynamic Multiple Knapsacks
	Introduction
	Data Structures and Preliminaries
	Dynamic Linear Grouping
	Algorithm
	Analysis

	Identical Knapsacks
	Algorithm
	Analysis

	Ordinary Knapsacks When Solving Multiple Knapsack
	Algorithm
	Analysis

	Special Knapsacks When Solving Multiple Knapsack
	Algorithm

	Solving Multiple Knapsack
	Algorithm
	Analysis

	Concluding Remarks

	References

