
Technische Universität München

Lehrstuhl für Logistik und Supply Chain Management

Rebalancing in Shared Mobility Systems
Competition, Feature-Based Mode Selection and Technology Choice

Layla Martin, M.Sc.
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Abstract

Shared mobility operators such as carsharing and ride-hailing services commonly face

the problem of unbalanced demand: The number of vehicles rented from a location does

not necessarily equal the number of vehicles returned to this location. To counteract

demand imbalances, operators rebalance their fleet, i.e., move vehicles from locations

with an excess in supply to locations with an excess in demand. We investigate three

extensions of the rebalancing problem: competition, modal selection, and autonomous

vehicles. This thesis provides guidance for operators of shared mobility systems on how

to increase their profitability by optimal rebalancing.

With an increasing competitiveness of the carsharing market, operators must consider

the position where other operators currently have vehicles, as well as how the competi-

tors rebalance their fleets. Existing models have so far ignored the aspect of competition

in the optimization of rebalancing routes. We present a novel model called “Competi-

tive Pickup and Delivery Orienteering Problem” (C-PDOP) that models competition in

rebalancing. We solve the C-PDOP for Nash equilibria using two algorithms, Iterated

Best Response and Potential Function Optimizer. The study reveals that operators can

gain as much as 40% of their profit in a case study settled in Munich, Germany, due to

considering competition. However, operators lose up to 12% of their profit in a Munich

case study due to the presence of competition (compared to a merger).

Vehicles can be rebalanced by loading them onto a truck, or by driving them. In the

latter case, staff must be rebalanced as well, i.e., workers have to give each other lifts,

bike or use public transit to reach the next vehicle. We study which features drive the

choice for either of the modes. Therefore, we build classifiers based on multiple linear

regression, multinomial logistic regression, and decision trees. The accuracy of linear and

logistic regression is very high (above 90%), and in the misclassified instances, operators

incur only little additional cost (less than 10% over all misclassified instances). This

novel approach reveals that the modal choice is driven by wages for workers, and vehicle

costs (car and truck).

The advent of driverless vehicles will directly impact the shared mobility market,
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and operators consider whether to procure driverless vehicles (to completely or partially

replace human-driven vehicles). We study the technology choice and mix problem oper-

ators face, balancing investment costs with operational costs and contribution margins.

The operational rebalancing decision is modeled as a semi-Markov decision problem and

a closed queueing network. This thesis provides profound insights into the optimal fleet

composition, and gains due to progressing automation: In ride-hailing systems (the cus-

tomer is chauffeured), driverless vehicles will quickly replace the entire fleet, and allow

operators to offer their service in new business regions. In carsharing systems (the cus-

tomer drives herself), operators often benefit of mixed fleets, and will not always replace

their entire fleet.
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Chapter 1

Introduction

1.1 Motivation

Shared mobility or vehicle sharing schemes comprise different mobility concepts, in-

cluding, but not limited to, carsharing and ridesharing, mainly with a focus on short

distances in an urban context. These concepts become more important globally, as they

allow to address some of the key challenges our society is currently facing due to in-

creased mobility: congestion and emissions. As a consequence of implementing vehicle

sharing, the total number of vehicles decreases, and oftentimes, carbon dioxide emis-

sions can be reduced due to using newer and alternative fuel vehicles (Bellos et al., 2017;

Firnkorn and Müller, 2011; Shaheen and Cohen, 2013). In the near future, driverless

shared vehicles will further contribute to lowering emissions (Greenblatt and Saxena,

2015; PriceWaterhouseCoopers, 2017). Less parking spaces are required if shared vehi-

cles replace privately owned ones (Boston Consulting Group, 2020). For many users,

sharing vehicles is more cost-efficient than owning them (Baptista et al., 2014), in par-

ticular if vehicle procurement prices decrease over time (Ostrovsky and Schwarz, 2019).

Due to the societal benefits, and the possibility to open a new market segment, new

carsharing and ride-hailing services emerge frequently (Perboli et al., 2018). Thus, the

shared mobility market is increasingly competitive, and everchanging (Kortum et al.,

2016).

As Basciftci et al. (2020), Nair and Miller-Hooks (2014), and Shaheen et al. (2006)

state, demand for carsharing services depends on the availability of the service: Cus-

tomers only rely on the service if the probability of finding a vehicle nearby is high

(similar trends have been reported for other modes of shared mobility, including bike-

sharing (Kabra et al., 2020)). If the availability is low, customers cannot reduce their

expected travel time which is one of the most important drivers for adopting carsharing

1



Chapter 1 Introduction

(Schaefers, 2013). Operators can increase the fleet size to increase the availability of

the service (Boyacı et al., 2015), but larger fleets incur higher fixed costs and can result

in very low utilization levels which partially alleviate the benefits attributed to shared

mobility. Thus, operators of one-way and free-floating shared mobility services have

to rebalance vehicles. In all one-way and free-floating systems, randomness can cause

imbalances in the vehicle distribution. Demand imbalance can be caused by random

differences in supply and demand (Boyacı et al., 2015), by systematic spatial demand

imbalances, e.g. due to integration with other modes (Wagner et al., 2016), and by

spatio-temporal imbalances such as during the rush hour (Ampudia-Renuncio et al.,

2020; Huang et al., 2018; Schmöller et al., 2015). Without interfering, vehicles agglom-

erate in “cold spots” while customers cannot be served in “hot spots” which incurs lost

sales. Thus, carsharing operators either send employees to move vehicles, or incentivize

users to adapt their travel patterns. The former is commonly referred to as “operator-

based” rebalancing, while the latter is called “user-based” rebalancing. Vasconcelos et

al. (2017) report that rebalancing increases the profitability of carsharing systems, and

in many cases is necessary to even reach profitability. Even if user-based rebalancing

is employed, operator-based rebalancing remains necessary: (i) User-based rebalancing

introduces additional uncertainty, (ii) for some remote locations, user-based rebalancing

is more expensive than operator-based rebalancing, and (iii) operator-based rebalanc-

ing can easily be integrated with cleaning and maintenance operations. Analogously,

ridesharing operators either send empty vehicles directly to the destination (if they own

the fleet and employ the drivers), or use dynamic pricing and remuneration schemes (of-

ten referred to as “surge pricing”) to steer supply and demand. However, surge pricing

alone is no sufficient measure to achieve balanced demand. For example, the expected

waiting times for an Uber can be as high as 43 minutes in San Francisco and Manhat-

tan, despite the availability of surge pricing (Chen et al., 2015). Consequentially, surge

pricing alone cannot fully address spatial supply-demand imbalances. If the demand

imbalance is not too high (Guda and Subramanian, 2019) and during off-peak hours

(Ming et al., 2020), paying independent workers bonuses to move to a different location

is beneficial over surge pricing with respect to operator profit and/or social welfare. Fur-

ther, paying bonuses rather than employing surge pricing is risk averse behavior (Jiang

et al., 2020).

In carsharing systems, operators usually pool multiple relocation operations, often

during the course of the night when demand is low (Huang et al., 2018; Weikl and

Bogenberger, 2015). Vehicles that shall be rebalanced are either driven by employees,
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1.2 Contribution and Research Questions

or loaded onto a truck. If vehicles are driven by operators, workers have to continue

to the next vehicle, and use bikes or public transportation, walk, or hitch rides with

colleagues in carsharing vehicles. In ride-hailing systems and Autonomous Mobility-on-

Demand (AMoD) systems, the fleet is rebalanced continuously, since no clear pooling

benefit emerges.

1.2 Contribution and Research Questions

Despite increasing competition in shared mobility markets, this aspect has been mostly

ignored when optimizing a carsharing fleet (with exceptions of Albiński and Minner

(2020) and Balac et al. (2019)). We investigate how a carsharing provider can adapt

her routing and servicing decision to maximize profits if one or more competitors are

present. We answer the following research questions:

RQ 1.1 How much can operators gain from considering the presence of competition

in their rebalancing operations with regards to gross profits? Put differently,

what is the price of ignoring the presence of competition?

RQ 1.2 How much is lost by competing in comparison to jointly optimizing fleet re-

balancing with regard to gross profits, and how do alternative business models

under competition compare to each other?

RQ 1.3 Which features drive the gains from considering competition, and the losses

due to the presence of competition?

Further, we present a novel model formulation for rebalancing carsharing systems that

permits marginally decreasing payoffs, and contribute two algorithms (Iterated Best

Response and Potential Function Optimizer) for finding pure strategy Nash equilibria

in rebalancing problems.

Existing literature on carsharing rebalancing either does not specify a rebalancing

mode, or assumes that only one mode is used (usually bike, hitching rides, or truck).

However, the optimal mode vastly depends on the structure of the city, e.g., in terms of

population density, quality of the road and public transport network, as well as the fleet,

e.g., in terms of size and imbalance, and it might be beneficial to use multiple modes

in the same city, in particular if the structure of city and fleet is not homogeneous. We

answer the following research questions:

RQ 2.1 Can a good mode be selected a-priori based upon features of the fleet and city?

3



Chapter 1 Introduction

RQ 2.2 Which features drive the choice of the optimal rebalancing mode?

To answer these research questions we integrate data analytics methods with operational

(and strategic) decision making. Due to this combination, features driving the modal

choice are readily available from the models.

Carsharing and ride-hailing sharing operators will soon face the decision of whether or

not to offer driverless vehicles, and how many vehicles of each type they shall procure.

Driverless vehicles are beneficial from an operational standpoint, making rebalancing

easier, but they are also more expensive to procure. We study a technology choice

problem called “fleet sizing and composition” that balances operational profits and pro-

curement costs, and find which aspects of a fleet drive the usage of driverless vehicles

and which factors deter operators from using them.

RQ 3.1 Should shared mobility operators use fleets with only one vehicle type, or mix

among driverless and human-driven vehicles?

RQ 3.2 Under which circumstances can shared mobility operators benefit from intro-

ducing driverless vehicles in their fleet?

RQ 3.3 How much can operators gain with respect to total profits from using mixed

fleets comprised of driverless vehicles?

This thesis contributes a bound-and-enumerate algorithm for solving the technology

choice problem. The optimal rebalancing policy is derived using Semi-Markov Decision

Processes (SMDPs) or a fluid approximation.
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1.3 Outline

1.3 Outline

Chapter 2 reviews related literature, focusing on rebalancing in shared mobility systems

(both in the static/deterministic and dynamic/stochastic case, with and without com-

petition) and fleet sizing and composition in shared mobility systems, as well as on the

broader literature on technology choice.

The three main chapters of this thesis are based on three working papers.

Chapter 3 investigates the impact of competition on the routing and servicing deci-

sion. We find that competition severely impacts the profitability of carsharing opera-

tors, and ignoring competition in the rebalancing and servicing decision can frequently

be worse than no rebalancing at all. Thus, operators who face competition should take

the current position of the competitors’ fleets as well as their rebalancing activities into

consideration. We further observe that market segmentation (two or more operators

who consider competition) is substantially less profitable than a single operator, since

rebalancing operations cannot be pooled as easily. Chapter 3 is based on Martin et al.

(2020b).

In Chapter 4, we study in-depth which modes are necessary in a solution. We build

classifiers that – given properties of the fleet and the city the fleet is deployed in –

estimate individual costs for each mode using a linear regression classifier and the prob-

ability that a mode is cost-minimizing using logistic regression, and also predict the best

mode using decision trees. We compare different setups of these classifiers, and find that

they perform well with respect to cost of misclassification and accuracy. The classifiers

help to establish the most important features in the modal choice. Chapter 4 is based

on Martin and Minner (2020).

Chapter 5 focuses on the optimal fleet size and composition of a shared mobility

operator (e.g., carsharing or ridesharing). When driverless vehicles are first introduced

in the fleet mix, they provide substantial operational benefits (lower rebalancing and

operational costs), but usually impose a significantly higher investment cost upfront. We

model this problem as a two-stage problem with first fixing fleet size and composition,

and subsequently the routing and rebalancing decision. In this chapter, the rebalancing

differs from the previous chapters, since rather than considering rebalancing during the

night, we focus on dynamic rebalancing during the day. Chapter 5 is based on Martin

et al. (2020a).

Chapter 6 concludes this thesis.
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Chapter 2

Related Literature

This literature review focuses on optimal operations of shared mobility (see Banerjee and

Johari (2019), He et al. (2019), and Laporte et al. (2015, 2018) for other recent reviews).

We restrict ourselves to car-based shared mobility, i.e., carsharing and ride-hailing, and

omit bikesharing (see Freund et al. (2019) for a recent review). More specifically, we

restrict ourselves to literature on rebalancing operations in the deterministic static case

(related to Chapters 3 and 4) and stochastic dynamic case (related to Chapter 5), as well

as competitive extensions (related to Chapter 3), the underlying routing models (related

to Chapter 4), and the strategic decision on the optimal fleet size and composition

(related to Chapter 5).

2.1 Rebalancing in Shared Mobility

This thesis is closely related to literature on rebalancing in shared mobility. In this

field, Illgen and Höck (2019) provide a recent overview. Rebalancing literature can be

classified by different features: (i) static and deterministic vs. dynamic and stochastic

(usually pooled rebalancing operations during the night or individual rebalancing op-

erations during the day), (ii) the planning horizon (tactical planning of the number of

vehicles in a district or at a station vs. operational planning of the tours necessary to

rebalance the fleet) (iii) user-based vs. operator-based, (iv) the objective (maximization

of operational profits, minimization of costs, maximization of a service level), and (v)

by type of system (e.g., carsharing, bikesharing, ridesharing; e.g., station-based one-

way, station-based round-trip, one-way free-floating). Most existing literature (e.g., He

et al. (2020), Kek et al. (2009), and Nair and Miller-Hooks (2011)) studies the tactical

problem of setting proper inventory levels, as opposed to this thesis which investigates

the routing and servicing aspects of the rebalancing decision. This thesis focuses on
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operator-based rebalancing. There is a growing body of literature on user-based reloca-

tion via incentive mechanisms (e.g. Pfrommer et al. (2014) and Ströhle et al. (2019)),

as well as regulation of the spatio-temporal distribution of supply by dynamic pricing

(e.g., Afeche et al. (2018), Banerjee et al. (2017), Bimpikis et al. (2019), and Guda

and Subramanian (2019)). However, regardless of how “good” incentives are set, they

cannot completely replace operator-based rebalancing, since operator-based rebalancing

can tackle larger imbalances, and can be integrated with cleaning and maintenance op-

erations (Weikl and Bogenberger, 2013). Even if vehicles can move autonomously (and

can therefore pickup customers from further away), proactive rebalancing is necessary:

Yang et al. (2020) find that the matching radius (i.e., the maximum distance between a

customer and the vehicle she is matched with) should not be too large. Most literature

on the operational rebalancing decision focuses on bikesharing (e.g., Bruck et al. (2019)

and Datner et al. (2019)). The bikesharing relocation problem, however, differs from

the rebalancing problem in carsharing systems in the capacity of a relocation truck as

well as the average costs of a relocation operation. Thus, detailed insights generated for

bikesharing cannot be directly applied to carsharing, but we obviously expect similar

results in the sense that relocation improves the profitability of operations.

2.1.1 Static Rebalancing Considering Vehicle and Staff Movements

In carsharing, one must not only consider how vehicles are rebalanced, but also how

rebalancing workers continue to the next vehicle. Nourinejad et al. (2015) explicitly

address this joint vehicle- and staff-rebalancing problem, but during the day rather than

pooled relocation operations when demand is low. They show that if demand increases,

fleets grow faster than the rebalancing activities. Table 2.1 contains related literature on

static vehicle and staff rebalancing. We list the rebalancing mode, as well as if the models

specifically address electric vehicles, and the objective. Bruglieri et al. (2014a) study the

Electric Vehicle Relocation Problem as a variant of the 1-skip relocation problem and

the rollon-rolloff problem. Workers drive the vehicles, and then use bikes to continue to

the next vehicle. For their Milan case study, they report that two workers are sufficient

to fulfill on average 86% of 30 relocation requests. When maximizing the profit rather

than a service level, they observe that a “fixed revenue component” (future revenue of

satisfied customers) per served customer must be at least 15N to ensure that enough

rebalancing occurs to serve most of the customers (Bruglieri et al., 2017). Bruglieri et al.

(2018) extend the above model to study the interplay of the different objectives that

are minimizing the number of workers, maximizing the number of satisfied requests, and
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Bruglieri et al. (2014a) 7 3 7 7 7 3 service level
Bruglieri et al. (2017) 7 3 7 7 7 3 profit
Bruglieri et al. (2018) 7 3 7 7 7 3 multiple
Gambella et al. (2018) 3 7 7 7 7 3 battery depletion
Kypriadis et al. (2018) 7 7 7 7 3 7 walking distance
Dror et al. (1998) 7 7 7 3 7 7 costs
Fink and Reiners (2006) 7 7 7 3 7 7 costs
You and Hsieh (2014) 7 7 7 3 7 7 profit

Table 2.1: Comparison of Literature on Static Fleet Balancing

minimizing the maximum tour length of each worker. Gambella et al. (2018) find that

an electric carsharing fleet can benefit from rebalancing, even if the demand on average

is balanced. Their static routing model assumes that workers give each other lifts to the

next vehicle (without explicitly mentioning this rebalancing mode).

Kypriadis et al. (2018) model carsharing rebalancing with walking from the delivery

location to the pickup location as a staff-rebalancing mode. The primary objective is

to minimize walking distance, minimizing the overall tour length is only a secondary

objective. They apply their model to carsharing services in two Italian cities, and state

that the walking distance remains substantial, even when explicitly minimizing it. How-

ever, they do not compare the walking distance or total relocation time/costs to current

operations, other modes or other objectives (e.g., minimization of overall tour duration

as primary objective).

Carsharing and traditional car rental share some similarities with respect to optimal

operations (Oliveira et al., 2017), we therefore also consider closely related problems

in this field. Dror et al. (1998) use a truck that has less capacity than the largest

stations to rebalance a station-based carsharing system. They are the first to simply

split stations into “cliques” consisting of single vehicles (and thus have unit demand).

The cost between two nodes in the same clique is 0, and the cost between two nodes

of different cliques is equal to the cost between those two cliques. The focus of their

paper is model formulations rather than managerial implications. They therefore do not

provide an assessment of the benefits of using trucks, or even relocating at all. Fink

and Reiners (2006) consider the problem of rebalancing a car rental fleet consisting of

different vehicles. Their problem considers traditional car rental rather than carsharing,
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Chapter 2 Related Literature

but the modelling of both business models is similar. For this fleet, they model the

rebalancing decision as a rolling-horizon problem over a period of one week, and vehicles

can be relocated daily using trucks. They report that up to 20% of the fleet size can

be saved whilst maintaining a very high service level due to optimal fleet balancing.

Krumke et al. (2013) study the k-convoy pickup and delivery problem, in which vehicles

are relocated by k drivers. They study the problem in both a static and a dynamic

setting and present approximation algorithms for both cases.

2.1.2 Dynamic Rebalancing

Once vehicles can move autonomously, they can also be rebalanced during the course of

the day without substantial excess cost. For other types of vehicles, dynamic rebalancing

is also possible, but more expensive (however, some literature focuses on these aspects,

e.g., Schuijbroek et al. (2017) and Shu et al. (2013) for bikesharing as well as Smith et al.

(2013) and Zhang et al. (2018) for non-autonomous mobility on demand integrated with

a taxi service).

In this literature review, we restrict ourselves to those papers with a model formula-

tion that can be applied to (partially) driverless vehicle sharing systems with the key

characteristics of stochastic demand and on-demand operator-based rebalancing during

operating hours rather than pooled rebalancing operations at night, or papers in which

multiple vehicle types are explicitly considered. Those problems can be classified along

several axes (in addition to the classification by sources of uncertainty, see Tang et al.

(2020)): We focus on papers which model rebalancing using Markov chains/decision

processes or (closed) queueing networks (and omit data-driven, robust and stochastic

programming approaches such as Freund et al. (2020), He et al. (2020), and Tang et

al. (2020)), and that can be used to model driverless fleets or fleets of driverless and

human-driven vehicles. Table 2.2 gives an overview over related rebalancing problems,

and lists if they consider a Markovian approach or a queueing-based approach, if op-

erators can react at any point in time, if vehicles are driverless/driven by employees

of the operator, or if fleets are mixed, if customers leave the system immediately (“no

waiting”), if the operator has full control over all vehicles (i.e., can force vehicles/drivers

to move to a different location) as well as the objective. Repoux et al. (2019) consider

a system in which both the number of parking lots and the fleet size are restricted,

and customers announce their destination. They use a Markovian model to estimate

the probability and associated cost of outages at each location (either no vehicle or no

parking spot), and heuristically rebalance vehicles from origin to destination such that
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Repoux et al. (2019) (3) 7 7 3 7 (3) 3 served demand
Benjaafar et al. (2018) 3 7 7 (3) 7 3 3 cost
Braverman et al. (2019) 7 3 3 3 7 3 3 served demand
Zhang and Pavone (2016) 7 3 3 3 7 7 3 waiting time
Zhang et al. (2018) 7 3 3 7 3 7 3 waiting time
Smith et al. (2013) 7 3 3 7 3 7 3 # of rebalancing vehicles

& # of drivers
Wei et al. (2020) 7 (3) 7 3 3 (3) 7 profit

Table 2.2: Comparison of Literature on Fleet Balancing

cost reduction over rebalancing costs are minimized. They find that dynamic relocations

have a clear positive impact on profitability, and the effect of additional relocation opera-

tions is marginally decreasing. Benjaafar et al. (2018) consider a product rental network

which they apply to DVD rental and free-floating carsharing. They use a Markov deci-

sion process (MDP) to set optimal rebalancing amounts between different branch offices

minimizing total costs (rebalancing and lost sales). Provably, the optimal rebalancing

policy in all decision epochs is to rebalance as little vehicles as possible to reach a con-

vex subset of the state-space called “no-rebalancing region”. The disadvantage of both

Markovian approaches is that decisions can only be taken after fixed time intervals.

Braverman et al. (2019) use a BCMP network queueing model to find the asymptot-

ically revenue-maximizing/service-level-maximizing routing decision for empty vehicles

assuming that customers leave the system if no vehicle is available. They prove that their

policy is asympotically optimal for infinite fleet sizes. Zhang and Pavone (2016) model

the required relocation operations in an Autonomous Mobility-on-Demand (AMoD) sys-

tem by introducing optimal virtual customer streams in a Jackson network model. Their

case study that reveals that roughly 70% of the current taxi fleet were sufficient if all

taxis were replaced by driverless vehicles.

The literature on rebalancing with multiple vehicle types (e.g., driverless and human-

driven vehicles) is limited. Zhang et al. (2018) extend the model of Zhang and Pavone

(2016) to independently track driverless and human-driven vehicles, assuming that only

driverless vehicles can be rebalanced. Smith et al. (2013) use a similar approach in

which vehicles and drivers are tracked independently, and vehicles can only be rebal-
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anced if there is a driver (in a figurative manner, the presence of drivers makes vehicles

autonomous). Smith et al. (2013) and Zhang et al. (2018) show that most vehicles

(2/3-3/4 of the fleet) in their New York City case studies can be driven only by cus-

tomers, and only 1/4-1/3 of the fleet shall be driverless, or driven by an employee. Wei

et al. (2020) extend the model of Bimpikis et al. (2019) to spatial pricing in presence of

driverless vehicles (owned or rented by the operator) and human-driven vehicles (owned

by independent drivers who join the platform if the expected revenue exceeds some

threshold).

2.1.3 Competitive Routing and Rebalancing Models

Only few studies take a competitive view on rebalancing carsharing operations, and

those take a tactical rather than an operational point of view or consider pricing instead

of routing. Albiński and Minner (2020) calculate the number of vehicles that are to be

relocated to reach an equilibrium under demand uncertainty (tactical inventory trans-

shipment problem). However, they do not focus on the actual routes of workers who

relocate the vehicles (operational routing problem). Balac et al. (2019) use an agent-

based model to derive optimal prices for two carsharing operators and other options such

as walking or public transport. They provide insights into whether or not it is advisable

to additionally rebalance vehicles during the course of the day. They observe that charg-

ing the same (comparably high) price is most profitable for both operators. However,

high prices are unstable as operators benefit from offering lower prices than their com-

petitors. They state that relocations during the course of the day are unprofitable, and

further observe that relocation in presence of competition primarily benefits the com-

petitor who does not rebalance. The origin of this “free-rider” phenomenon, however,

is demand during the relocation operations and the selection of a simple policy-based

heuristic for relocation. Both simplifications do not apply in our model. Both aforemen-

tioned papers are restricted to the two-operator case. For the ridesharing sector with

a variable number of operators, Pandey et al. (2019) argue that competition decreases

the efficiency as well as the quality of service, and show that even little cooperation can

substantially increase the service quality. Their main focus, however, is not on rebal-

ancing during the night, but on assigning customers to routes and the subsequent online

re-routing of vehicles.

Also for the ridesharing sector (with competition between traditional taxis and rideshar-

ing services such as DiDi), Yu et al. (2020) study optimal regulations of the ridesharing

service. They observe that the ridesharing sector has the potential to drive taxis out
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of service by under-cutting prices, and later raise prices, and suggest that regulations

can circumvent this. Lanzetti et al. (2020) study the competition between a ridesharing

operator and public transportation authorities. They find that these different services

are in fact competing, and that the extent of cannibalization depends on local environ-

ment. Bernstein et al. (2020) find that ride-hailing drivers operating on two different

platforms (“multihome”) improves their payoff individually, but the system reaches a

prisoners’ dilemma if all drivers multihome. Thus, Bernstein et al. (2020) call for incen-

tive mechanisms that make it individually rational to offer one’s service on only a single

platform.

2.2 Fleet Composition and Technology Choice

While the literature on fleet rebalancing has grown significantly in the last decade, the

literature on strategic fleet sizing and composition problems, an application of technology

choice, has only recently gained currency.

George and Xia (2011) study the fleet sizing problem in vehicle sharing systems. They

use a queueing-theoretical model to calculate the cost-minimal fleet procurement strat-

egy to satisfy all customer demand, assuming that the flows in the system are balanced.

Several papers integrate the fleet sizing decision with station location (Freund et al.,

2018; Nair and Miller-Hooks, 2014), service region design (He et al., 2017), procure-

ment of parking permits (Lu et al., 2018), or pricing (Al-Kanj et al., 2020). The fleet

composition problem has been studied less frequently. Bellos et al. (2017) find that

highly fuel-efficient vehicles in a carsharing fleet can help original equipment manufac-

turers to meet environmental regulations. Dandl and Bogenberger (2018) and Feng et al.

(2020) compare fleet sizes between carsharing with human-driven vehicles and driverless

ride-hailing, and street-hailing and ride-hailing, respectively. Dandl and Bogenberger

(2018) find that ability to pick up customers (associated with waiting) allows operators

to reduce the fleet size. Feng et al. (2020) state that full knowledge about the spatial

distribution of current customer demand (given by reservations through an app) allows

operators to reduce the fleet size. For peer-to-peer vehicle sharing, Baron et al. (2018)

find that society may benefit from full, null or partial automation, depending on the

extent of additional traffic and the improvements in travel flow.

Technology choice has frequently been studied in the production context, in which

decision makers either choose a flexible technology that can produce multiple products,

or dedicated machines for each product. Flexible machines allow to hedge against un-
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certainty in the demand (Fine and Freund, 1990; Van Mieghem, 1998), unless demands

are perfectly correlated and no cost differentials can be exploited. Mixing flexible and

dedicated technology can further improve technology choice (Jordan and Graves, 1995).

The technology choice problem we consider differs from the traditional technology choice

in one key aspect: Demand for both technologies is indistinguishable, but flexibility by

mixing technologies is beneficial due to lower operational costs and higher contribution

margins. Power producers often face similar tradeoffs: While renewable energy sources

are beneficial, their yield is uncertain and intermittent. Thus, power producers also in-

vest in other (flexible or inflexible) power plants. For a Texas, USA, case study, Kök et

al. (2020) find that it is in fact beneficial to mix inflexible (high constant yield, medium

production cost), renewable (intermittent yield, neglible production cost) and flexible

(variable yield, high production cost) energy sources, balancing investment cost and

operational flexibility. Moccia and Laporte (2016) study a technology choice problem

for mass transit: While buses can only increase frequency, operators can also dispatch

additional carriages for light rail. Then, the more expensive mode light rail is preferred

if demand is sufficiently large for some origin-destination pair, and both modes may be

mixed in the network.
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Chapter 3

The Competitive Pickup and Delivery

Orienteering Problem for Balancing

Carsharing Systems

Competition between one-way carsharing operators is currently increasing. Fleet relocation

as a means to compensate demand imbalances constitutes a major cost factor in a business

with low profit margins. Existing decision support models have so far ignored the aspect of a

competitor when the fleet is rebalanced for better availability. We present mixed-integer lin-

ear programming formulations for a Pickup and Delivery Orienteering Problem under different

business models with multiple (competing) operators. Structural solution properties, including

existence of equilibria and bounds on losses due to competition, of the Competitive Pickup

and Delivery Problem under the restrictions of unit-demand stations, homogeneous payoffs

and indifferent customers based on results for congestion games are derived. Two algorithms

to find a Nash equilibrium for real-life instances are proposed. One can find equilibria in the

most general case, the other can only be applied if the game can be represented as a conges-

tion game, that is under the restrictions of homogeneous payoffs, unit-demand stations, and

indifferent customers. In a numerical study, we compare different business models for carshar-

ing operations, including a merger between operators and outsourcing relocation operations

to a common service provider (coopetition). Gross profit improvements achieved by explicitly

incorporating competitor decisions are substantial; and the presence of competition decreases

gross profits for all operators (compared to a merger). Using a Munich, Germany, case study,

we quantify the gross profit gains due to considering competition as approx. 35% (over assum-

ing absence of competition) and 12% (over assuming omnipresence of competition), and the

losses due to presence of competition to be approx. 10%.
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Chapter 3 Competitive Pickup and Delivery Orienteering Problem

3.1 Introduction

Carsharing is an economically and environmentally sustainable alternative to private

car ownership and a supplement to public transportation (Bellos et al., 2017). With

a larger number of carsharing offers around the world, competition increases. In sev-

eral cities, more than one carsharing operator offers its service to customers (Kortum

et al., 2016), and Mobility-as-a-Service apps allow customers to book the closest vehicle,

regardless of the operator. Some operators are starting to merge their companies and

fleets, most recently Car2Go and DriveNow (now called “ShareNow”) (BMW Group,

2018). Soon after, the former DriveNow shareholder Sixt launched a carsharing service

“Sixt Share” that competes with ShareNow (Sixt SE, 2019). Perboli et al. (2018) report

frequent changes in the Turin market, with BlueTurino entering the market and com-

peting with Car2Go and Enjoy, while IoGuido withdrew service. Although the body of

literature on the optimization of carsharing operations is growing, it mostly has ignored

the choice of business and operational models under competition so far (with exceptions

of Albiński and Minner (2020) and Balac et al. (2019)). In addition to the merger (and,

thus, a monopoly) as currently pursued by DriveNow and Car2Go, and direct compe-

tition such as between Sixt Share and ShareNow, operators can cooperate in parts of

their operations. For example, they can hire a third-party that relocates vehicles for

them, or both operators relocate vehicles such that the overall gross profit is maximized

(but still use different workers for rebalancing). We call these modes “coopetition” and

“welfare-maximization”. Ghosh et al. (2017) report outsourced relocation operations in

bikesharing. Brook (2004) reports a collaboration between different carsharing opera-

tors concerning other aspects such as billing. In practice, operators frequently ignore

competition with respect to relocation. Mostly, they do not even consider the current

location of vehicles of the competitor which can be accessed using webscraping tech-

niques, or accessing publicly available application programming interfaces (Kortum et

al., 2016; Trentini and Losacco, 2017), let alone foresee how the competitor rebalances

those vehicles (which could be derived from historic data). Incorporating the reaction

of a competitor on one’s own routing and servicing decision is paramount for profitable

operations, in particular if fleets are small and margins are low. Operators may service

the same customer, thereby reducing the individual payoff, but still incurring relocation

costs.

A particular focus of this work is rebalancing which shows significant potential for cost

reduction in carsharing systems (Jorge and Correia, 2013). One-way carsharing comes
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at the cost of unevenly distributed fleets, as some locations (such as shopping malls) are

more frequently the point of origin of a carsharing trip than of its destination (or vice

versa). To cause as little customer dissatisfaction as possible and, thus, as few lost sales

as possible, vehicles are relocated (predominantly by pooling multiple rebalancing oper-

ations during the night Weikl and Bogenberger (2015)). Vasconcelos et al. (2017) report

a positive impact of relocation on the profitability of a carsharing service. They state

that a carsharing service is only profitable if relocations are performed. Consequently,

non-optimal carsharing relocations (or relocations that do not consider competition),

can easily result in negative profits.

We answer three research questions and contribute algorithmically to solution methods

for carsharing relocation under competition.

RQ 1 How much can operators gain from considering the presence of competition in

their rebalancing operations with regards to gross profits? Put differently, what

is the price of ignoring the presence of competition?

RQ 2 How much is lost by competing in comparison to jointly optimizing fleet rebal-

ancing with regard to gross profits, and how do alternative business models under

competition compare to each other?

RQ 3 Which features drive the gains from considering competition, and the losses due

to the presence of competition?

We address the research questions analytically under some technical assumptions, and

study the full generality of the model in an extensive numerical study.

Methodologically, we present models and solution algorithms to tackle the aforemen-

tioned research questions. We give complexity as well as average case algorithmic per-

formance results. Advantages and drawbacks that the solution algorithms and model

formulations entail are studied. We devise a simplified model for carsharing relocation

that incorporates the movements of vehicles, as well as the movements of the workers who

relocate them. This model is called Pickup and Delivery Orienteering Problem (PDOP).

A feasible solution to the PDOP takes two decisions simultaneously: First, it determines

which vehicles will be moved and which stations will be serviced with how many vehicles

(customer demand is given in a previous step, e.g., by using a demand prediction model

as reviewed in Vosooghi et al. (2017)). Second, it specifies which route relocation workers

take to perform those relocations. We then create variations of this model to facilitate

the special features of different business models under competition: Operators can either
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compete directly (Competitive Pickup and Delivery Orienteering Problem (C-PDOP)),

jointly optimize their rebalancing (Welfare-Maximizing Pickup and Delivery Orienteer-

ing Problem (W-PDOP)), merge their fleets completely (Monopoly Pickup and Delivery

Orienteering Problem (M-PDOP)), or outsource their relocation operations to a third

party (Coopetitive Pickup and Delivery Orienteering Problem (Coop-PDOP)).

We choose pure strategy Nash equilibria as the solution concept (as opposed to mixed

strategy Nash equilibria where players randomize over a set of strategies) which is a single

routing and servicing choice rather than a combination of multiple choices. Mixed strat-

egy Nash equilibria provably exist in the C-PDOP since the number of pure strategies is

finite (Nash, 1951). Pure strategy Nash equilibria represent a more intuitive, easier to im-

plement solution for the carsharing operators. They represent less controversial concept

of competition, and are more likely to be adopted by carsharing operators. Pure strategy

Nash equilibria provably exist subject to three assumptions: player-homogeneous pay-

offs, unit-demand stations, and indifferent customer choice. For the C-PDOP with the

above assumptions, we present structural properties and performance guarantees (algo-

rithmic and w.r.t. profitability), and show average case performances in a numerical

study. The numerical study also considers the influence of relaxing the assumptions.

To solve the C-PDOP, we present two different algorithms: Iterated Best Response

(IBR) and Potential Function Optimizer (PFO). While IBR is faster on most instances

and can be used even for the general model where pure strategy Nash equilibria are

not guaranteed to exist, PFO returns higher-profit Nash equilibria on average and has

a higher degree of fairness with respect to how profits are distributed between opera-

tors. Both algorithms draw upon the fact that the C-PDOP with player-homogeneous

payoffs, unit-demand stations, and indifferent customer choice belongs to the class of

congestion games/potential games, introduced in Monderer and Shapley (1996) and

Rosenthal (1973).

The remainder of this Chapter is structured as follows. Section 3.2 presents the

model for the PDOP and extensions for the various business models. It also investigates

properties of these models. In Section 3.3, we present the IBR and the PFO to find

a pure strategy Nash equilibrium of the C-PDOP if it exists. In Section 3.4, we test

the aforementioned algorithms on several different, artificially generated instances and a

Munich, Germany, case study, before concluding the Chapter in Section 3.5. All proofs

can be found in the Appendix 3.A.
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3.2 Model

In the following, we first present a master model for carsharing relocation. We then in-

stantiate this model to a competitive variant (C-PDOP), a monopoly variant (M-PDOP)

and a coopetition variant (Coop-PDOP), and discuss properties of these problems.

3.2.1 Pickup and Delivery Orienteering Problem

In our carsharing model, each of N operators knows her current fleet distribution and

wants to rebalance it, assuming that no customers will be requesting vehicles during the

process. We use index n = 1, 2, . . . , N to refer to each of the operators. In carsharing

systems, such relocations are usually performed periodically during each night, and op-

erators can “block” vehicles from being reserved by customers (Weikl and Bogenberger,

2015). To rebalance her fleet, operator n sends workers who drive the vehicles from

their current location to another location where they are expected to incur a higher

payoff. The overall goal of an operator is to maximize her gross profit (profit of a given

fleet), defined as payoffs minus operational costs. The payoffs depend on the presence

of competition. While the strategy of the competitors need not be known, all operators

must be able to establish the payoff functions of all competitors, and assume that their

competitors act rationally and payoff-maximizing.

Stations, Locations and Payoffs

Each operator has a set of stations, Dn, where she can place vehicles. The sets of

stations of two different operators are not necessarily disjoint, as operators may place

stations very close to each other (e.g., at public transit stops, or the trade fair). Each

station is then addressed as ι ∈ D,D =
⋃
n

Dn. We assume that the operators employ

forecasting models and, thus, estimate the expected customer demand in each station,

allowing them to predict if vehicles shall be moved to or removed from this station (but

not both simultaneously). Each operator n chooses, for each station ι, the number qιn

of vehicles to place there. For every station ι, operator n has an estimate of the payoff

function πιn (qι) where qι = (qι1, q
ι
2, . . . , q

ι
N) is the vector that describes the number of

vehicles placed by each operator n at station ι. The quantity πιn (qι) captures the direct

(expected) revenue from setting a vehicle at this location, minus the direct (expected)

costs such as fuel and wear; but it does not include rebalancing costs which will be

modeled using a different term.
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We use the standard game-theoretic notation of qι−n to denote the vector of the deci-

sions of the players other than n, so that we can write qι = (qιn,q
ι
−n). The model allows

for a very generic formulation and choice of these payoff functions which adhere to the

following:

� keeping the values qι−n of the operators other than n fixed, the function πιn
(
qιn,q

ι
−n
)

is concave, non-decreasing in qn; the monotonicity suggests that we can only in-

crease revenue by placing more vehicles at the same station, whereas concavity

suggests that the marginal payoff (by placing one extra vehicle) decreases with the

number of vehicles placed in the station;

� for m 6= n, keeping fixed the values qι−m of the operators other than m, the function

πnι
(
qιm,q

ι
−m
)

is non-increasing in qm; this suggests that the revenue of an operator

can only decrease if competing operators place more vehicles into that station.

We deliberately do not restrict πιn (qι) further. This allows us to formulate different

types of customer choice. For example, consider a station ι where a single customer

is expected who strictly prefers operator 1 (but would take operator 2 if operator 1

is unavailable). This could be modelled by πι1 (1, 1) = πι1 (1, 0) = πι2 (0, 1) > 0 and

πι2 (1, 1) = 0. For another example, consider a station ι where a single customer is

expected who is indifferent between operators 1 and 2. This could be modeled by

πι1 (1, 1) = πι2 (1, 1) = 0.5πι1 (1, 0) = 0.5πι2 (0, 1).

We further assume that there is a maximum number of vehicles that can be moved

to a station profitably; i.e. qιn is upper-bounded by some constant q̂ιn that represents

the maximum demand at station ι. In practice, operators usually employ some “filter-

ing” upfront (Weikl and Bogenberger, 2015), resulting in a reasonably small number of

vehicles that can be profitably placed in a station.

In this section we optimize for an operator n, considering that the other operators are

“frozen” in their strategies. Thus, the payoff values πιn
(
qιn,q

ι
−n
)

vary in qιn only. We

formulate the problem as an integer program, and as such, “break” the nonlinearity of

the payoff functions πιn into a linear objective function. The simplest way to do so is to

split a station ι into a set Z ι of locations labeled i = 1, . . . , q̂ιn. Each station ι can be split

into at most q̂ιn locations. We separate the station-based payoff function into a sum of

location-based payoff values, assigning to the i-th location the marginal gain of placing

the i-th vehicle. These marginal gains can be computed by consecutive differences, that

is, πin = πιn
(
i,qι−n

)
− πιn

(
i− 1,qι−n

)
. From our assumption of concavity, the marginal

gains are non-increasing, which results in an intrinsic ordering of locations, i.e., without
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loss of generality an operator would choose to visit the i-th location associated to a

station ι only after visiting all lower-indexed locations 1, . . . , i− 1.

Locations are represented as nodes in a rebalancing graph. We denote the full set of

nodes available to operator n as Zn. The operator already has vehicles present at some

locations but not others; we refer to locations that do not have a vehicle as delivery

locations (Z−n ) and to those with a vehicle present as pickup locations (Z+
n ). Thus, we

can write Zn = Z+
n ∪ Z−n . Finally, we also include a depot node which is modeled as

both a pickup and delivery location.

In analogy to Bruglieri et al. (2017), we formulate the problem as a variant of a

TSP with profits where not all locations need to be visited (similar to prize-collecting

TSPs). This allows the integration of two decisions: the decision on which locations

to service, and the actual routing decision. Additionally, one can specify subsets of

locations S−n ⊆ Z−n , S+
n ⊆ Z+

n that must be visited. In this way, we cater for mandatory

customers (e.g., to fulfill a contract), and also enforce that vehicles that are parked

illegally are picked up.

Importantly, we assume that nearby stations do not influence each other. This is

arguably a simplifying assumption as users might walk to the next available vehicle in a

nearby station, even if this increases the walking distance. This assumption is common

in the literature on carsharing rebalancing (Bruglieri et al. (2018) for example randomly

assigns customers who belong to the catchment area of multiple stations). Considering

interdependent demand processes would significantly increase the problem complexity

and is beyond the scope of this Chapter.

Arcs and Costs

For each pair of locations i ∈ Z−n , j ∈ Z+
n , we associate costs c〈ij〉, c〈ji〉 and travel times

τ〈ij〉, τ〈ji〉 between these locations. The costs serve as an estimate for the costs of the

amount of fuel, as well as the payment for the time it takes to move between the locations

(either proportionate wages or payments to a service provider). Note that the costs and

travel times are not necessarily symmetric, and are always equal for pairs of locations

from the same station (e.g., cij = ckl if i and k are locations for the same station ι1 and

j and l are locations for the same station ι2). Operators drive from pickup to delivery

locations, but the travel from a delivery to a pickup location may be done in a lot of

different ways, such as using a foldable bike, walking, public transit, or using a second

car driven by a colleague (“double-driving”). We can then describe the problem in terms

of its underlying network, or directed bipartite graph G, whose nodes correspond to the
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locations Zn, and with arcs An between each pickup location and each delivery location,

in either direction.

Workers and Tours

Operator n employs Wn workers who relocate vehicles by starting at a depot, visiting

pickup and delivery locations in alternating order, and returning to the depot at the end

of their shift of at most T units of time. A worker can only relocate one vehicle at a

time. As already mentioned, we assume that there is a central depot where workers can

collect and return equipment, cleaning supplies, and lost items. Although assuming this

rebalancing mode poses a simplified model, we will later show that the game theoretical

formulation can be extended to more complex cost models, such as rebalancing using

a truck (that can relocate multiple vehicles), or assistance using a minibus (that can

transport multiple workers).

Our problem is thus specified by the bipartite graph G (i.e. the set of locations

Zn = Z+
n ∪ Z−n including two copies of the depot dn ∈ Z−n , pn ∈ Z+

n and the set of arcs

An); for each location i (associated to a station ι), an expected revenue πin (corresponding

to the marginal gains of placing an i-th vehicle in the corresponding station); for each

arc e, a travel cost ce and travel time τe; sets of enforced visits S+
n ⊆ Z+

n , S−n ⊆ Z−n ; a

number of workers Wn; and a maximum shift time T . We set up an integer programming

formulation to search for a profit-maximizing tour. The decision variables are:

� for each location i, ani denotes whether operator n has a vehicle at location i after

rebalancing; in other words, ani = 1 iff: either i is a pickup location where n chooses

not to remove the vehicle, or i is a delivery location where n chooses to serve with

a vehicle;

� for each arc e, xne denotes whether operator n chooses arc e on one of her routes;

� for each location i, ti denotes the point in time at which location i is visited.

max Πn =
∑

i∈Zn\{dn,pn}

πni a
n
i −

∑
e∈An

cex
n
e (3.1a)

s.t. ani =
∑
j∈Z+

n

xn〈ij〉 =
∑
j∈Z+

n

xn〈ji〉 ∀i ∈ Z−n \ {dn} (3.1b)

1− ani =
∑
j∈Z−n

xn〈ij〉 =
∑
j∈Z−n

xn〈ji〉 ∀i ∈ Z+
n \ {pn} (3.1c)
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∑
i∈Z+

n \{pn}

xn〈dni〉 ≤ Wn (3.1d)

∑
i∈Z−n \{dn}

xn〈ipn〉 ≤ Wn (3.1e)

ti + xij (τij + T )≤ tj + T ∀〈i, j〉 ∈ An (3.1f)∑
e∈A(C)

xne≤ |C| − 1 ∀C ⊆ Zn \ {dn, pn} (3.1g)

ani = 1 ∀i ∈ S−n (3.1h)

ani = 0 ∀i ∈ S+
n (3.1i)

xne , a
n
i ∈ {0, 1} ∀e ∈ An, i ∈ Zn (3.1j)

0≤ ti ≤ T ∀i ∈ Zn (3.1k)

The above model is an alternative notation of a multi-vehicle profitable tour problem

on a bipartite graph and differs from the 2-index notation of the VRP in three key

components: First, the operator maximizes her gross profit; second, visiting a location is

not mandatory – instead there are only incoming and outgoing arcs if a location is visited;

and third, the graph G is bipartite, which restricts the routing options and necessitates

a split depot. The model can also be interpreted as a pickup and delivery problem

or as a dial-a-ride problem with unit capacity (see Parragh et al. (2008) for reviews

on these problem classes). (3.1a) maximizes the gross profit given by payoffs minus

costs (assuming fleet procurement costs are sunk). (3.1b) and (3.1c) are assignment

constraints that link availability and visits of locations, ensuring that each location has

the same number of incoming and outgoing arcs (flow conservation), at most one of

each. (3.1d) and (3.1e) guarantee that no more than Wn workers leave the depot and

return there (either one would be sufficient and directly imply the other). Constraints

(3.1f) ensure that all workers return to the depot within the shift length T . Constraints

(3.1g) are used for subtour elimination; although formally they are redundant because

of constraints (3.1f), including these constraints helps improve the runtime in practice.

(3.1h) and (3.1i) specify that all locations in the sets S−n and S+
n must be visited, that

is, a vehicle must either be left there or removed from there.

3.2.2 Competitive Pickup and Delivery Orienteering Problem

In the PDOP model, each operator implicitly assumes that the number of vehicles at a

station is known. However, competitors will also react on how many vehicles this oper-
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ator deploys at some station. With the rise of Mobility-as-a-Service (MaaS) solutions,

the number of customers who are registered with multiple operators will grow which

increases the relevance of considering competition in the optimization models.

We define competitive stations as those that can be accessed by multiple players. For

example, if shared customers are expected at station ι, and if before relocation two or

more operators have a vehicle there, it can be beneficial for one of them to pick up the

car and service another station. In the Competitive Pickup and Delivery Problem (C-

PDOP), each operator relocates her fleet with the goal of maximizing the gross profit,

while considering that the other operators are relocating their fleets and strategizing

accordingly. Thus, we consider Nash equilibria as the desired solution concept; i.e. we

search for a strategy profile where no operator can benefit from unilateral deviation. A

strategy defines the number of vehicles operator n has at a station ι after rebalancing,

i.e. the vector qn. We refer to qn as a compact strategy, as it is sufficient to represent the

entire solution. In other words, the routing decisions follow directly from the availability

at the locations of player n by calculating an optimal solution to (3.1a)-(3.1k).

The model in equations (3.1a)-(3.1k) is further extended by introducing the competi-

tive profit functions Πn, for each player n. Let q = (q1, . . . ,qN) denote the joint profile

of (compact) strategies; q−n denotes the joint profile of all players except n. From q−n

and for a given player n, the competitive profit is defined as the difference between

station-separable payoff and costs, Πn(q) = Rn(q)−Cn(q). The cost term can be writ-

ten as Cn(q) = Cn(qn) =
∑

e∈An cex
n
e , where xne is an optimal (i.e. cost-minimizing)

choice of routing decisions. Notice that the cost terms depend only on the strategy of

operator n; henceforth, we shall write Cn(qn) instead.

The competitive profit functions can be written as

Πn (q) = Rn (q)− Cn (qn) =
∑
ι∈Dn

πιn
(
qι−n

)
− Cn (qn) . (3.2)

Given the definition of the strategies and the associated gross profits, a strategy profile

q forms a Nash equilibrium if and only if, for every player n,

Πn (q) = max
q′n

Πn (q′n,q−n) (3.3)

that is, the Nash equilibrium strategies maximize the gross profit of the players, given

the other operators’ strategies as input. Thus, no player can profit from deviating

unilaterally.
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We should state here that our model allows for different profit functions πιn, and

as a consequence, such games may in general not have pure strategy Nash equilibria

(we provide an example in this section). From a theoretical perspective, we can study

conditions under which pure strategy Nash equilibria are guaranteed to exist.

Unit-demand Stations

By this we mean that at most one customer is expected at station ι, and accordingly,

each operator places at most one vehicle there. Under this assumption, our notation

can be simplified, since the notions of stations and locations become equivalent, and

in particular we have qιn = ain ∈ {0, 1}, where i is the unique location associated with

station ι. Also under this assumption, we consider competitive locations rather than

competitive stations; we let Z = ∪nZn denote the set of all locations and ZC denote

the set of competitive locations.

Indifferent Customer Choice

That is, customers do not have a preference among different operators, and thus select

vehicles at random and with equal probability. In particular, under this assumption,

all customers are indifferent between all operators they are subscribed to (although

different customers may still have different subscriptions). This assumption is realistic

if customers with multiple memberships choose the closest vehicle regardless of the

operator. Note that, if we assume both unit-demand stations as well as indifferent

customer choice, the payoff function πin(qi) can be described rather succinctly: if π̄in =

πin(1, 0−n) is the payoff that player n could extract by being the only operator at location

i, and m = |{n′ 6= n : qin′ = 1}| is the number of operators at location i (excluding n

herself), then

πin(si) =
π̄in

m+ 1
.

In such a situation, we can efficiently specify the payoff functions with a single parameter

π̄in for each (location, operator) pair.

Player-Homogeneous Payoffs

We assume that πιn = πι does not depend on n, for all stations ι, if n offers her service

at location ι. This assumption is justified by evidence that margins are driven by very

similar revenues (see Balac et al. (2019)). When combined with the first two assumptions,
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this further restricts the dimensionality of the problem: we only need to specify, for each

location i, a value πi for the payoff that any player could extract by being the sole

operator at i.

Most of our theoretical results will be proven under the combination of all three as-

sumptions. From now on, we use the terminology of restricted C-PDOP model whenever

we refer to an instance satisfying all three assumptions (unit-demand stations, indifferent

customer choice, and player-homogeneous payoffs). The restricted C-PDOP model has

theoretical advantages: it allows for a congestion game formulation (see Lemma 3.1);

thus, we can guarantee the existence of at least one pure strategy Nash equilibrium,

and that such equilibria can be reached via best-response dynamics (see Corollary 3.1).

If the above assumptions do not hold, cases without pure strategy Nash equilibria can

exist, meaning that stability is not guaranteed. In Section 3.4 we will indeed experiment

with the generality of the model, since the assumptions above can be very restrictive for

some carsharing systems.

3.2.3 Examples of Games without Nash Equilibria

Dropping either of the three assumptions (even while keeping the other two), we can

construct games without a pure strategy Nash equilibrium.

Multi-Demand Stations

In the example of Figure 3.1, we assume indifferent customer choice and player-homoge-

neous payoffs, but allow for multi-demand stations. If a total of q vehicles are placed

at a station ι, then a total revenue of πι(q) is extracted from this station. The revenue

is split in proportion to the amount of vehicles by each player; thus, if player 1 and 2

put q1 and q2 vehicles respectively (so that q = q1 + q2), then they receive payoffs of
q1
q
πι(q) and q2

q
πι(q), respectively. Player 1 routes on the left half of the graph, and has

essentially two undominated strategies: put two vehicles in each of the stations A and

B, or put two vehicles in each of the stations C and D. Similarly, player 2 routes on the

right half of the graph, and has essentially two undominated strategies: put a vehicle

in each of the stations A and C, or put a vehicle in each of the stations B and D. For

simplicity, we assume that the routing costs of each of these strategies is normalized to

0, so we only need to worry about the way payoffs are split.

Finally, we choose the station payoffs as in Figure 3.1. For illustration purposes, let

us compute the gross profits if player 1 takes the ‘AABB’ tour, while player 2 takes the
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d1+1 d2 +2

A

B

C

D

+1

+1

+1

+1

+1

+1

+2

+2

q 1 2 3

πA(q) 4 6 7

πB(q) 4 7 8

πC(q) 4 7 8

πD(q) 4 6 7

0 AC DB

0 0, 0 0, 243 0, 243

AABB 39
3 , 0

35
3 ,

19
3

34
3 ,

20
3

DDCC 39
3 , 0

34
3 ,

20
3

35
3 ,

19
3

Figure 3.1: Example of a C-PDOP instance with no pure Nash equilibria; there are four
delivery districts, labeled A, B, C, D; each player has a depot (d1 or d2) and
vehicles at distinct pickup locations (+1 and +2 respectively) with zero payoff;
player 1 can put at most two vehicles in a district, and has essentially three
strategies (‘null’, ‘AABB’ tour and ‘DDCC’ tour); player 2 can put at most two
vehicles in a district, and has essentially three strategies (‘null’, ‘AC’ tour and
‘DB’ tour); the concave payoffs are player-homogeneous and follow indifferent
customer choice. For a specific choice of location payoffs (center), and payoff
matrix (right), no Nash equilibrium exists.

‘AC’ tour. In this situation, player 1 extracts two-thirds of the revenue from station A

and full revenue from station B, while player 2 extracts one-third of the revenue from

station A and full revenue from station C. We thus have

Π1 =
2

3
πA(3) + πB(2) =

14

3
+ 7 =

35

3
;

Π2 =
1

3
πB(3) + πC(1) =

7

3
+ 4 =

19

3
.

Note that player 2 would rather deviate to the ‘DB’ tour and increase her gross profit.

By doing these calculations for all possible pairs of strategies, we see that no Nash

equilibrium exists; in particular, any sequence of iterated best responses gets stuck in the

loop (AABB,AC)→ (AABB,DB)→ (DDCC,DB)→ (DDCC,AC)→ (AABB,AC).

Differentiated Customer Choices

In the example of Figure 3.2, we assume unit-demand stations and player-homogeneous

payoffs, but allow for differentiated customer choice. Our example is built with two

players. Each station ι has an associated unit revenue πι = 1 that can be extracted. If

both operators serve this station, the revenue is split unequally among the operators.

In stations A and C, the revenue is split 75 − 25 in favor of player 1, but in stations
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B and D the revenue is split 75 − 25 in favor of player 2. Thus, if for example both

players service station A, then they receive payoffs of 3/4 and 1/4 respectively. Player

1 routes on the left half of the graph, and has essentially two undominated strategies:

service stations A and B, or service stations C and D. Similarly, player 2 routes on the

right half of the graph, and has essentially two undominated strategies: service stations

A and C, or service stations B and D. For simplicity, we assume that the routing costs

of each of these strategies is normalized to 0, so we only need to worry about the way

payoffs are split.

d1+1 d2 +2

A

B

C

D

+1

+1

+2

+2

Split 1 2

A 3/4 1/4

B 1/4 3/4

C 1/4 3/4

D 3/4 1/4

0 AC DB

0 0, 0 0, 2 0, 2

AB 2, 0 7
4
, 5
4

5
4
, 7
4

DC 2, 0 5
4
, 7
4

7
4
, 5
4

Figure 3.2: Example of a C-PDOP instance with no pure Nash equilibria; there are four
delivery unit-capacity districts, labeled A, B, C, D; each player has a depot (d1
or d2) and vehicles at distinct pickup locations (+1 and +2 respectively) with
zero payoff; player 1 has essentially three strategies (‘null’, ‘AB’ tour and ‘DC’
tour); player 2 has essentially three strategies (‘null’, ‘AC’ tour and ‘DB’ tour);
the payoffs are player-homogeneous with differentiated customer choice (center).
Looking at the payoff matrix (right), we can see that no Nash equilibrium exists.

For illustration purposes, let us compute the gross profits if player 1 takes the ‘AB’

tour, while player 2 takes the ‘AC’ tour. In this situation, player 1 extracts 75% of the

revenue from station A and full revenue from station B, while player 2 extracts 25% of

the revenue from station A and full revenue from station C. We thus have

Π1 =
3

4
+ 1 =

7

4
;

Π2 =
1

4
+ 1 =

5

4
.

Note that player 2 would rather deviate to the ‘DB’ tour and increase her gross profit.

By doing these calculations for all possible pairs of strategies, we see that no Nash

equilibrium exists; in particular, any sequence of iterated best responses gets stuck in

the loop (AB,AC)→ (AB,DB)→ (DC,DB)→ (DC,AC)→ (AB,AC).
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Player-Heterogenous Payoffs

In the example of Figure 3.3, we assume unit-demand stations, indifferent customer

choice, but not player-homogeneous payoffs. There are two players and five competitive

delivery stations; each of the two players has five vehicles at pickup stations. All arcs

that appear in the network have equal travel cost of 2. The arcs that do not appear in the

network have a travel cost given by the induced directed graph metric (so, for example,

the distance from d1 to location 3 equals 12, since there is a 6-arc path from d1 to 3 in the

original graph). Thus, the problem instance even satisfies the triangular inequality. Note

that player 1 routes on the left half of the graph, and has essentially three strategies: do

nothing, service locations (1,2,3), or service locations (1,4,5). Similarly, player 2 routes

on the right half of the graph, and has essentially three strategies: do nothing, service

locations (5,4,3), or service locations (5,2,1). By our choice of arc costs, each of the

non-trivial strategies has a travel cost of 14.

d1 d2

1

2

3

4

5

+1

+1

+1

+1

+1

+2

+2

+2

+2

+2

i 1 2 3 4 5

π1i 13 2 7 3 9

π2i 9 5 7 4 11

0 S L

0 0, 0 0, 8 0, 11

S 8, 0 4.5, 4.5 0.5, 4

L 11, 0 5, 0.5 0, 1

Figure 3.3: Example of a C-PDOP instance with no pure Nash equilibria; there are five
delivery locations, labeled 1 to 5, which are all competitive; each player has
a depot (d1 or d2) and five vehicles at distinct pickup locations (+1 and +2

respectively) with zero payoff; each player has essentially three strategies (‘null’,
‘short’ tour and ‘long’ tour); for a specific choice of location payoffs (center), and
payoff matrix (right), no Nash equilibrium exists.

Finally, we choose the station payoffs as in Figure 3.3. Since we assume indifferent

customer choice, this means that the payoff from a player at a station is halved if the

other player also places a vehicle there. For illustration purposes, let us compute the

gross profit if player 1 takes the “short” tour, servicing (1,2,3) and player 2 takes the

“long” tour, servicing (5,2,1). In this situation, player 1 extracts full revenue from

station 3; player 2 extracts full revenue from station 5; and both players extract half

revenue from station 1 and 2 each. We thus have

Π1 =
13

2
+

2

2
+ 9− 14 =

1

2
;
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Π2 =
9

2
+

5

2
+ 11− 14 = 4.

Note that player 2 would rather deviate to the “short” tour and increase her gross

profit. By doing these calculations for all possible pairs of strategies, we see that no

Nash equilibrium exists; in particular, any sequence of iterated best responses gets stuck

in the loop (S, S)→ (L, S)→ (L,L)→ (S, L)→ (S, S).

The counter-examples presented here are handcrafted to show that pure strategy Nash

equilibria may not exist. For these examples, the structure of competitive locations

and tours exhibits many symmetries, and revenues vary vastly between the operators

and between different locations. We could argue that this situation is in some sense

“atypical” and would not arise in “realistic” networks. From a practical perspective, we

will observe in Sections 3.4.5–3.4.7 that pure strategy Nash equilibria can be found in

most instances.

3.2.4 Properties of the Competitive Pickup and Delivery

Orienteering Problem

We first observe the computational hardness of solving the PDOP (and, thus, calculating

optimal routes of the C-PDOP):

Theorem 3.1 (NP-Hardness). The following problems are all NP-hard, even for the

special case of two players.

1. Given a PDOP instance, compute a tour that maximizes the gross profit.

2. Given a C-PDOP instance, a (compact) joint strategy q, and a player n, compute

Πn(q).

3. Given a C-PDOP instance, a player n, and a joint strategy q−n of the remaining

players, compute an optimal response for player n, i.e. a strategy qn maximizing

Πn(qn,q−n).

4. Given a C-PDOP instance and a joint strategy q, determine whether q is a Nash

equilibrium.

In the following, we will focus on Nash equilibria, i.e., we want to establish whether

they exist and if they can be reached via “simple” dynamics. Since the restricted C-

PDOP is a congestion game (Lemma 3.1), the existence of pure strategy Nash equilibria
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can be guaranteed. Congestion games are formally described by: a set of players (in our

model, the different operators); and a set of resources (in our restricted model, a resource

for each location and a resource for each cost-minimizing tour). Each resource has an

associated payoff function which depends only on the number of players accessing it (in

our restricted model, the payoff achieved at a given location decreases with the number

of players servicing it). Finally, each player has a set of feasible strategies, or subsets

of resources (in our model, this corresponds to the set of feasible tours) and the payoff

incurred by a player at a joint strategy is just the sum of the payoffs of the strategies

she is using.

Lemma 3.1 (Congestion Game). Any restricted C-PDOP instance can be transformed

into a congestion game. This transformation induces a one-to-one correspondence be-

tween (compact) strategies in the C-PDOP instance and strategies in the congestion

game, that preserves improving deviations and hence the structure of Nash equilibria.

Due to the generality of the above definition of the congestion game and the proof (see

Appendix 3.A.2), this construction of the congestion game is valid for many different

routing problems, as long as the cost term Cn(qn) depends only on the strategy of

operator n. In particular, our construction can be adapted to integrate maintenance

and refueling/recharging operations, or to address other rebalancing modes, such as

using a truck or minibus. From this congestion game formulation, the existence of pure

strategy Nash equilibria follows directly (due to Rosenthal (1973) and Monderer and

Shapley (1996)):

Corollary 3.1 (Existence of Pure Strategy Nash Equilibria). Any restricted C-PDOP

instance has at least one pure strategy Nash equilibrium. Moreover, for any starting

strategy q(0), any sequence q(0) → q(1) → . . . obtained by improving deviations (i.e.

where q(i+1) is obtained from q(i) by an improving deviation of any one player) must

eventually terminate at a Nash equilibrium.

We can prove not only the existence of pure strategy Nash equilibria, but also the

convergence of best-response dynamics to Nash equilibria. We leverage this property

in the Iterated Best Response algorithm in Section 3.3. The Nash equilibrium is not

necessarily unique; examples are discussed in Section 3.4.

3.2.5 Models for Comparison

To measure the impact of considering competition in the servicing and routing decision,

we compare the optimal gross profit of the C-PDOP instance to problem variations in
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which (i) competitors collaborate to maximize the overall gross profit, but still only

serve their own customers (W-PDOP), (ii) operators merge (M-PDOP) or cooperate in

their fleet relocation operations (e.g. by outsourcing to the same third party provider;

Coop-PDOP), (iii) competitors ignore each other (Optimistic Quasi-Monopolistic Pickup

and Delivery Orienteering Problem (QMO); Pessimistic Quasi-Monopolistic Pickup and

Delivery Orienteering Problem (QMP)).

Welfare-Maximizing PDOP

We can measure the losses in gross profit due to competition by comparing the results

of the C-PDOP to the system optimum, that is, the welfare-maximizing strategy. In-

tuitively, this corresponds to a situation in which the operators relocate their fleets by

themselves, but only the operator who benefits most from a competitive location serves

it. We merge all constraints of model (3.1a)–(3.1k) and add up the objective functions

of each player:

max Π(q) =
∑
n

Πn(q) (3.4)

Regarding the gross profits, we observe:

Corollary 3.2 (Monotonicity of Profits (Welfare-Maximizing Solution)). The optimal

gross profit of the welfare-maximizing solution is never less than the joint gross profit of

the competitive solution.

The welfare-maximizizing gross profit can therefore – similar to the costs in the shared

customer collaboration vehicle routing problem (Fernández et al., 2018) – serve as an

upper bound for the gross profit attainable in a Nash equilibrium.

For the restricted C-PDOP model, we can analytically quantify the loss of efficiency,

interpreted in terms of the price of anarchy (Koutsoupias and Papadimitriou, 1999;

Roughgarden and Tardos, 2002), and price of stability (Anshelevich et al., 2008; Schulz

and Stier Moses, 2003), which is defined as the worst-case bound on the ratio between

the worst (resp. best) joint gross profit of a pure strategy Nash equilibrium and the

joint gross profit of a welfare-maximizing solution.

Lemma 3.2 (Price of Anarchy and Price of Stability). The Price of Anarchy and Price

of Stability of the C-PDOP can be arbitrarily large. For the restricted C-PDOP model

with two players, we have the following results.
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1. If (q1,q2) is a pure strategy Nash equilibrium and (q′1,q
′
2) is any strategy, then

Π(q′1,q
′
2) ≤ Π(q1,q2) + 1

2

∑
i∈ZC π

i.

2. The absolute difference in welfare between any two Nash equilibria is at most
1
2

∑
i∈ZC π

i.

3. The absolute difference in welfare between any Nash equilibrium and any welfare-

maximizing strategy is at most 1
2

∑
i∈ZC π

i.

Moreover, all bounds in 1, 2, 3 are tight; and if πi = π ∀i ∈ ZC, then all bounds in 1,

2, 3 can be replaced by 1
2
π|ZC |.

The proof of points 1-3 in the above Lemma relies on a simple expression for the player

gross profits in the restricted C-PDOP model; as such, it cannot trivially be extended

to the more general model.

Monopoly PDOP and Coopetition PDOP

In the PDOP master model, we assume that only one operator is present, whereas in

the competitive C-PDOP model, each operator relocates her fleet separately, while tak-

ing into account the strategy of the other operators. We now consider two alternative

business models: the Monopoly Pickup and Delivery Orienteering Problem (M-PDOP)

in which the competitors merge their fleets with the objective of reducing travel costs

and gross profit losses due to competition; and the Coopetition Pickup and Delivery

Orienteering Problem (Coop-PDOP) in which the competitors combine their relocation

efforts. In order to avoid the combinatorial explosion associated with all possible merge

combinations between operators, in this section we focus exclusively on the C-PDOP

model with unit-demand stations, indifferent customer choice (but not necessarily ho-

mogeneous payoffs), and two operators which consider merging/cooperating.

In the M-PDOP model, vehicles become indistinguishable. To construct an M-PDOP

instance from a C-PDOP instance, we merge all locations for all operators in a station ι,

and devise a joint payoff function πι under the assumption that every customer returns

the highest payoff over all operators (πι (q) = maxq′ (
∑

n π
ι
n (q′) |∑n q

ι
n =

∑
n q

ι′
n)). In

the case of unit-demand stations, servicing a location i contributes a payoff of πi =

max (π1
i , π

2
i ) in a monopoly. In general, the monopolist can keep both depots. In the

numerical experiment, however, we assume that the depots are at the same geographical

location and can, therefore, be merged.
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In the Coop-PDOP, operators can collaboratively relocate their fleets (entering coope-

tition). This may be considered an alternative model when merging the fleets is not an

option (due to strategic considerations or cartel law). One of the companies or a third

party relocates the vehicles of both fleets, thereby maximizing the sum over both profit

functions (with the assumption that a cost or profit sharing mechanism is implemented

at a later stage). The two key differences between this and the monopoly solution are

that the payoff achieved in a competitive station depends on which operator(s) serve

it, and non-competitive delivery locations can only be reached from pickup locations

of the same player (so, for example, one cannot generate revenue by moving a vehicle

of player 1 to a location where only a customer of player 2 is expected). Similarly to

the M-PDOP, we model the Coop-PDOP by devising a joint payoff function πι, which

returns the sum of payoffs achievable in this station, given the number of vehicles each

operator places there (πι (q) =
∑

n π
ι
n (q)). We also exclude arcs that connect a pickup

location of one player with a delivery location of another player.

Note that it is possible (in both Coop-PDOP and M-PDOP models) that a vehicle

of operator 1 is moved to some competitive station ι, and at the same time a vehicle of

operator 2 is removed from there. This can occur both due to inhomogeneous payoffs

(the location is more attractive to player 1 than player 2), and due to a highly profitable

station of player 2 elsewhere.

In practice, the number of workers in the monopoly, WM , or in coopetition, WO,

often equals the number of workers under competition, but we do not restrict the model

as such. As the M-PDOP and Coop-PDOP contain the PDOP as special cases, we

immediately have the following results concerning their computational hardness.

Corollary 3.3 (NP-hardness of M-PDOP and Coop-PDOP). The following problems

are NP-hard.

1. Given an M-PDOP instance, compute a tour that maximizes gross profit.

2. Given a Coop-PDOP instance, compute a tour that maximizes gross profit.

Intuitively, one would assume that the gross profits of monopoly and coopetition solu-

tions consistently exceed the gross profit of Nash solutions. Although this is not always

true (for example, if the players serve distant operating areas with disjoint depots), we

provide some assumptions which guarantee the validity of this intuition.

Lemma 3.3 (Monotonicity of Profits (Monopoly or Coopetition Solution)). The fol-

lowing are true for the C-PDOP model, and its monopoly and coopetition variants.
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1. The optimal gross profit of a monopoly solution is not less than the optimal gross

profit of the coopetition solution.

2. If the number of workers is at least the sum of people working for the first and

second operator (WM ,WO ≥ W1 + W2), the optimal gross profit of the monopoly

or coopetition solution is not less than the optimal gross profit attainable in any

pair of strategies (which includes all pure strategy Nash equilibria as well as the

welfare-maximizing solution).

Thus, in realistic settings, competing is inferior to cooperation with respect to (short-

term operational) gross profits.

Quasi-Monopolistic PDOP

We identify two slightly different strategies which model that either competition or the

rationality of the competitor is ignored: First, we solve the PDOP assuming that the

other operators have no vehicles available in any station and does not rebalance to these

locations either (optimize against qn = 〈0, . . . , 0〉 for each competitor n). We call this

model the “optimistic quasi-monopolistic strategy” (QMO). Second, we solve the PDOP

assuming that the other operator has vehicles available at all locations after rebalanc-

ing (optimize against qn = 〈q̂1n, . . . , q̂|Dn|n 〉 for each competitor n, where q̂ιn denotes the

maximum number of vehicles that operator n can move to station ι ∈ Dn). This model

is called the “pessimistic quasi-monopolistic strategy” (QMP). While both QMO and

QMP seem to be good candidates for serving as lower bounds on the gross profit of

either player as well as on the total gross profit, it is possible to generate instances in

which these problems can result in higher payoffs.

3.3 Algorithms for the Nash Equilibrium Calculation

The most basic approach for finding pure strategy Nash equilibria is Full Enumeration

(FE): iterate through all strategy profiles, that is combinations of strategies of all op-

erators, and test if no player has incentive to unilaterally deviate. If this is true, the

strategy profile constitutes a Nash equilibrium. Although this approach obviously finds

the best pure strategy Nash equilibrium (with respect to social welfare or any other

metric) whenever an equilibrium exists, it takes exponentially long in the number of

competitive locations. We, therefore, consider alternative approaches: Iterated Best
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Response (IBR) and Potential Function Optimizer (PFO). The two algorithms repre-

sent two approaches for finding a Nash equilibrium in congestion games: utilizing the

improvement dynamics of alternately improving players to find a local optimum of the

potential (IBR) or (centrally) finding the global optimum of the potential (PFO). Both

algorithms find a Nash equilibrium in congestion games, but they do not necessarily find

a welfare-maximizing Nash equilibrium. If the congestion game property is violated, the

potential is undefined, but IBR might still be able to find pure strategy Nash equilibria

if they exist.

3.3.1 Iterated Best Response Algorithm

Using the IBR, we locally search for a pure strategy Nash equilibrium. We first cal-

culate the optimal strategy for one of the players (say, player 1) against a pre-defined

strategy for her competitors, e.g. assuming the competitors play the empty strategy

qn = 〈0, . . . , 0〉 (and hence, do not have any vehicles at any competitive location). We

then use the strategy of player 1 as input for calculating the optimal strategy of player 2,

then player 3 . . . . We continue with our calculations of best responses until the strate-

gies no longer change. Although the best response iterations cannot be implemented in

the field, we assume that operators would calculate the Nash equilibrium theoretically,

and implement their equilibrium strategy.

Even if the IBR terminates, it may not necessarily return the best Nash equilibrium

for one of the players or a welfare-maximizing Nash equilibrium. Yet, due to Lemma

3.2 we know that any two Nash equilibria do not differ by more than 1
2

∑
i∈ZC π

i for

the restricted C-PDOP model with two players. Thus, implementing the IBR does

not result in arbitrarily bad Nash solutions in such cases. Though operators do not

necessarily find the “best” Nash equilibrium, we guarantee that, for two operators,

the Nash equilibrium found using IBR is at least as good (for either player) than the

optimistic quasi-monopolistic strategy.

Theorem 3.2 (Monotonicity of Profits (IBR vs. QMO)). For the restricted C-PDOP

model with two players, the gross profit of each player at the Nash equilibrium reached

by IBR, starting from the 〈0, . . . , 0〉 strategy, is at least as high as her gross profit at the

optimistic quasi-monopolistic strategy.

Thus, operators who currently calculate their routes using the optimistic quasi-monopo-

listic strategy can only benefit from calculating the Nash equilibrium. Conversely, how-
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ever, we can generate instances in which the pessimistic quasi-monopolistic strategy

beats the IBR solution.

Since the restricted C-PDOP is a congestion game, IBR terminates in a finite number

of iterations. If one aims at implementing the IBR in practice, the number of itera-

tions required to reach an equilibrium is critical. General congestion games with an

arbitrary number of players belong to the class of PLS-hard games. Thus, even if there

exists a polynomial time algorithm for finding pure strategy Nash equilibria, the solu-

tion cannot in general be found in polynomial time by myopic players (Ackermann et al.,

2008; Fabrikant et al., 2004). The C-PDOP, however, differs from general congestion

games: the number of players is low. By presenting an upper bound on the number

of iterations, we show that, assuming homogeneous payoffs, unit-demand stations and

indifferent customer choice, the IBR for the C-PDOP does not require full enumeration

of all strategies.

Theorem 3.3 (Termination of the Iterated Best Response Algorithm). For the two-

player restricted C-PDOP model, the IBR terminates after one player played at most

half of her strategies (thus, the maximum number of required recalculations is |S| + 2

instead of the |S|2 we have in the FE algorithm).

However, the upper bound on the runtime remains substantial, as the number of

strategies is exponential in the number of competitive stations, and obviously, no bound

can be given in the general model, since pure strategy Nash equilibria might not exist.

The above results all require exact responses, that is, finding an optimal solution to

the PDOP, rather than a near-optimal feasible solution. However, some results also will

still hold when we relax the notion of optimality.

Theorem 3.4 (Iterated Best Response Algorithm for Approximate Nash Equilibria).

Let sn = (an,xn) denote a full strategy of player n, i.e., describing the servicing and

routing decisions for all arcs and locations. For any ε > 0, consider the following version

of ε-approximate Iterated Best Response (ε-IBR): Given a player n and a full strategy

s−n of the other players, player n can compute a full strategy sn with the property that

(1 + ε)Πn(sn, s−n) ≥ max
s′n

Πn(s′n, s−n);

note that this amounts to finding an approximate solution of the PDOP problem in

equations (3.1a)-(3.1k). Player n can then choose to deviate to sn if this improves her

gross profit.
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For the restricted C-PDOP model, ε-IBR always terminates after a finite number of

iterations, and the final joint strategy s is an ε-Nash equilibrium, in the sense that for

any player n,

(1 + ε) Πn (sn, s−n) ≥ max
s′n

Πn(s′n, s−n).

Though no polynomial-time approximation of the PDOP is known, we can use this

result to get a-posteriori bounds on the quality of approximate equilibria. For example, if

a commercial solver that implements branch-and-cut procedures obtains a solution with

a provable optimality gap of (1 + ε), this will immediately imply an (1 + ε) guarantee

on the quality of the equilibrium.

3.3.2 Potential Function Optimizer

Another approach towards finding a Nash equilibrium in congestion games is optimizing

the potential function which can be optimized using a standard solver. This is a global

function that captures the local incentives for players to change their strategies, and

therefore a useful tool for analyzing equilibria. In particular, if a game admits a potential

function, the Nash equilibria of the game coincide with the local optima of the potential

function.

Since, in the general C-PDOP model, Nash equilibria are not guaranteed to exist, a

potential function cannot be defined. However, for the restricted C-PDOP, it is possible

to define the potential Φ as the sum

Φ(q) =
∑
i∈Z

Hyiπ
i −
∑
n

Cn(qn), (3.5)

where yi is the number of operators servicing location i, πi is the revenue that can be

extracted from location i, and Hk = 1 + 1/2 + · · · + 1/k is the k-th harmonic number.

Notice that the potential is not the same as the social welfare (3.4): The potential

function associates a payoff of Hyiπ
i with a competitive locations where yi players are

available, while the social welfare more realistically assumes that only one of them will

be able to service the customer. Intuitively, this means that the PFO tends to select

equilibria in which multiple operators have a vehicle available at competitive locations.

Although a global optimum of the potential function is always a pure strategy Nash

equilibrium, it is not necessarily a welfare-maximizing one. However, we can characterize

instances in which both coincide.
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Lemma 3.4 (Optimality of the Potential Function Optimizer). For the restricted C-

PDOP model (which has a well-defined potential function Φ),

1. Any potential function maximizer maxs Φ (q) is a Nash equilibrium.

2. If the PFO returns a Nash equilibrium in which at most one operator has a vehicle

available at any competitive location (
∑

n q
i
n ≤ 1 ∀i ∈ ZC), this Nash equilibrium

is welfare-maximizing.

Thus, the PFO is likely to return the welfare-maximizing Nash equilibrium if revenues

are low, costs are high, and margins are tight, as Nash equilibria mostly do not to contain

locations where both operators are present.

3.4 Computational Study

In the following, we quantify the average-case gross profit gains and losses, not only

for the restricted C-PDOP, but also for the generality of the model. Unless stated

otherwise, we focus on player-homogeneous payoffs, unit-demand stations, indifferent

customer choice, and two operators. Further, we conduct a sensitivity analysis if the

number of operators increases, if payoffs are not player-homogeneous, if stations are

multi-demand with decreasing marginal returns, and if customers are not strictly indif-

ferent between operators. To quantify gains and losses, we present a case study featuring

the competition between two major carsharing operators in Munich, Germany.

3.4.1 Experimental Design

We conduct our experiments on a Windows 10 computer restricted to a single 2.60GHz

core of an Intel Xeon E7-4860 CPU with 4GB of RAM. We implement both algorithms in

Java 10, using CPLEX 12.8 for solving the PDOPs. We start IBR against two different

strategies: Assuming that the competitors are absent (IBR-0), or starting against the

welfare-maximizing strategy (IBR-WP).

To study the effects of competition and the various business models, we randomly

generate 100 data sets for different combinations of the parameters mentioned in Table

3.1. When studying multiplayer settings, inhomogeneous payoffs, multi-demand stations

with marginal returns, various different customer choice models, some of the parameters

have to be defined slightly different. These changes are introduced at a later stage. The

parameter levels are motivated by the Munich carsharing market. For each instance,
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we randomly sample locations on a square with an edge length of 15km, and use Eu-

clidean symmetric costs with a weight of 0.62 (25km/h traffic speed, 12,5N/h worker

wages (Wittenbrink, 2014), 0.12N/km for fuel). Substitution refers to the share of com-

Parameter Level 1 Level 2

Substitution F Full Subst. P Partial Subst. (25%)

Margin H π = 8 L π = 4

Density H |V+n | = 12 L |V+n | = 8

Table 3.1: Parameters for the Experimental Design in the Base Case

petitive locations, that is if all delivery locations are shared (F), or if shared locations

are randomly sampled (P). Albiński and Minner (2020) report that approx. 25% of

all customers in Munich have multiple memberships; in the P level, we set 25% of all

delivery locations as shared.

To quantify the impact of changes in the payoff/cost structure, we thus vary the payoff.

In the high-margin scenario, we set the margin of all delivery and competitive pickup

locations to π = 8 (1 otherwise), and in the low-margin scenario, we set the margin

to π = 4 (0.5 otherwise). The payoffs that can be collected at delivery locations if no

vehicle is available constitute the baseline profit all relative improvements are measured

towards. Pickup locations are associated with a small (but positive) payoff, due to a low

(but non-zero) probability that a customer will rent a car from these locations.

The customer density refers to the number of locations which enter the model (possibly

contingent to prior filtering). We generate instances with a high density (|V+
n | = |V−n | =

12) and instances with a low density (|V+
n | = |V−n | = 8). The customer density can vary

between the operators. In all instances, we use one worker. Further, we assume that all

locations are optional, i.e., S1
n = S0

n = ∅.

3.4.2 Profit Increase due to Considering the Presence of

Competition

Table 3.2 lists relative gross profits (towards the baseline, i.e. no rebalancing) for opera-

tor 1 and operator 2 for all parameter combinations if margins of both operators coincide,

i.e., are either high or low for both operators. More extensive results can be found in

the Appendix in Table 3.9. There, instances are addressed by four consecutive letters

referring to substitution, margin (same for both operators), and the density of the first
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and second operator. For example, F H L L refers to full substitution, high margins,

and low densities for either operator. In particular, this allows us to study if the larger or

smaller operator benefits more. Averaging over all full competition instances, operators

Operator 1 Operator 2
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avg (full comp.) 83.6 72.4 71.2 -2.77 40.0 52.2 67.9 69.8 -2.11 39.7

min (full comp.) 5.51 4.88 4.88 -63.2 1.04 3.66 3.93 4.62 -61.7 1.15

max (full comp.) 225 204 206 85.9 180 191 207 215 103 199

avg (part. comp.) 111 110 109 88.3 101 109 111 113 92.2 104

min (part. comp.) 6.74 6.74 6.46 3.45 4.89 8.28 8.28 8.92 4.49 5.54

max (part. comp.) 243 243 240 210 231 246 246 251 226 243

Table 3.2: Average, Minimum and Maximum Percentage Profit Increase towards Baseline
(No rebalancing) under Various Models and Algorithms as well as Different Ex-
perimental Settings for Either Operator (Operator 1 in Left Block, Operator 2 in
Right Block)

are even better off not to rebalance at all than to ignore the competitor (QMO). QMO

even generates losses in 5 of 8 instances per operator with full competition, while all

other approaches result in non-negative gross profit gains (in all instances in which the

other does not have lower margins). Thus, it makes sense to incorporate competition

in the routing and servicing decision. However, Nash solutions outperform both quasi-

monopolistic solutions. As to be expected, the improvement over QMO/QMP increases

in the level of competition, since more locations are shared. The maximum attainable

gross profit gain is 251% under partial competition and if the second operator is larger

than the first mover (vs. no rebalancing operations). These very high relative values

stem from the fact that the baseline and all absolute values are rather low, and that (in

particular under full competition) quasi-monopolistic solutions often involve losses. As

visible from Table 3.3, the player with more competitive locations can generate higher

gross profit gains, when operators have different numbers of vehicles to relocate. This

is since the larger operator has more non-shared locations (and can thus build a more

efficient route). This effect partially alleviates the disadvantage of the second mover.

The smaller operator, however, has the larger benefit of considering competition. This is

41



Chapter 3 Competitive Pickup and Delivery Orienteering Problem

Operator 1 Operator 2
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H H 113 105 103 47.6 81.1 89.5 103 103 48.4 79.9

H L 130 125 125 84.6 109 49.9 55.3 59.8 13.9 40.5

L H 65.6 61.3 60.7 15.3 44.3 121 126 130 91.8 117

L L 80.8 73 71.7 23.6 47.7 60.9 73.9 73.6 25.9 51.1

Table 3.3: Average Percentage Profit Increase towards Baseline (No Rebalancing) under Var-
ious Models and Algorithms if Operators have Different Sizes (Operator 1 in Left
Block, Operator 2 in Right Block)

since the larger operator serves most competitive locations, and the small operator ben-

efits from moving her vehicles to the few remaining locations. It also becomes apparent

that even though gross profits compared to the baseline increase if the network becomes

more dense, the relative benefit of considering competition declines as QMO becomes

more profitable. Averaging over all settings with two large operators, gross profit gains

over the baseline increase from 79.9% (QMP) to 103% (IBR-WP/PFO) for operator 2

(28.9% increase), whilst for two small operators, the gross profit gain increases from

51.1% to 73.9% (44.6% increase). These high relative values are due to low absolute

values, for example, the gross profit gain for operator 1 increases from 0.26 (QMP)

to 0.43 (IBR-0) over the baseline in the setting with low density and low margins for

both operators. In absolute numbers, however, the benefit of considering competition

continues to increase.

We observe that IBR-0 privileges operator 1 over operator 2, while the other algorithms

(IBR-WP, PFO, QMO, QMP) do not give a clear advantage to either player. This makes

IBR-0 the best algorithm for player 1. For the second player, IBR-0 is outperformed

by IBR-WP and PFO in almost all instances. IBR-WP tends to return higher gross

profits than PFO for player 2 if both operators have the same size, while PFO tends to

return higher gross profits if one player is larger than the other. A similar pattern can

be observed with respect to welfare (sum over gross profits of both players). In most

instances, QMO returns lower gross profits than QMP, but exceptions exist if the gross

profit is low.
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3.4.3 Profit Loss due to Presence of Competition

Table 3.4 lists the gross profits of the best found Nash equilibrium (profit-maximizing

among IBR-0, IBR-WP and PFO) compared to the welfare-maximizing solution, the

coopetition solution, and the monopoly solution. Extended results can be found in

Appendix 3.B in Table 3.10. There, the substitution level is addressed in the column

header, and every row refers to margin (same for both operators), density of operator

1 and density of operator 2. In general, obviously, all instances follow similar tenden-
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avg. 75.6 82.7 107 110 114 115 171 199

min. 6.89 6.89 11.2 11.2 10.1 10.1 37.7 59.6

max. 155 169 204 209 237 240 304 331

Table 3.4: Average, Minimum and Maximum Percentage Profit Increase towards Baseline
(No Rebalancing) for Different Experimental Settings for either Player (Full Sub-
stitution in Left Block, Partial Substitution in Right Block)

cies: gross profits increase in the number of vehicles that shall be rebalanced (either

due to an increasing customer demand or increasing demand imbalance) and with in-

creasing margins, but decrease if competition increases. While joint fleet management

(monopoly or coopetition) results in a substantial gross profit increase, the benefit of

welfare-maximization is little (consistently less than 2% under partial competition), and

does not justify the additional coordination requirement. We observe a tendency towards

the closing of the percentage gap between the Nash solution and the other approaches

with increasing instance sizes while absolute gaps continue to grow. This effect is less

pronounced in the full competition case, since pooling effects do not improve as much

as in the partial competition case. This is mainly driven by better routing decisions

due to larger pooling effects in the Nash solution. For Coop-PDOP and M-PDOP, we

observe that full competition results in a lower improvement than partial competition.

This might seem counter-intuitive at first, but can be explained as follows: In the par-

tial competition case, the benefits of pooling increase as the total number of vehicles

is higher. Thus, Coop-PDOP and M-PDOP are more efficient with respect to routing.
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In some cases, the routes of the M-PDOP/Coop-PDOP and the Nash equilibrium even

coincide. High margins decrease the relative gross profit loss from competing, since

many customers are served in the competitive solution, and profit differences must thus

be attributed to improved routing (and improved pooling does not contribute as much

gross profit as serving additional customers).

3.4.4 Impact of an Increasing Number of Players

All previous experiments consider only two operators. While this is sufficient to model

competition in some cities, there are markets with more carsharing operators.

Following the numerical design outlined in Table 3.1, we report average gross profit
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F H H 12 118 -2 61 77 -127 1 57 -171 3 48 -178 2

F H L 8 92 -34 34 67 -166 0 43 -212 0 44 -245 0

F L H 6 12 -2 2 19 -53 1 19 -81 0 11 -84 0

F L L 4 13 -3 5 5 -5 0 4 -1 0 5 -2 0

P1 H H 12 216 164 203 237 191 221 237 211 231 232 196 221

P1 H L 8 144 110 135 174 130 161 168 140 158 158 120 150

P1 L H 6 17 11 12 23 9 19 32 28 30 20 16 13

P1 L L 4 8 5 4 7 1 5 7 7 5 9 7 6

P2 H H 12 225 173 213 217 155 205 218 151 208 201 137 195

P2 H L 8 159 114 147 144 89 137 131 73 121 145 89 135

P2 L H 6 28 13 19 18 2 12 20 -2 13 21 4 13

P2 L L 4 10 10 7 5 5 4 6 0 3 4 0 2

Table 3.5: Average Percentage Profit Increase over all Operators towards Baseline (No Re-
balancing) for an Increasing Number of Operators

increases over all players for IBR-0, QMO and QMP for an increasing number of oper-

ators (column title in Table 3.5), different levels of substitution, different densities, and

different margins (all operators have the same density and margin to ensure compara-

bility across different numbers of operators). We observe that effects studied for the

44



3.4 Computational Study

two-operator case get more pronounced, as the number of operators increases, but ten-

dencies remain the same. The gross profit increase towards the baseline under all three

models decreases if the number of operators increases and competition is either full, or

locations are shared among a subset of operators. This is to be expected since each of

the operators services less customers on average. If the number of operators increases,

it becomes even more critical to consider competition, as ignoring competition results

in significant losses (up to 245% for full competition and 5 operators), and assuming

that the competitors service all locations results in refraining from any rebalancing if

the number of operators increases. When considering the gain towards assuming that

all competitive locations are serviced by the competitors, the improvement of consid-

ering competition slightly decreases if the number of operators increases, but remains

substantial in all instances.

3.4.5 Impact of Inhomogeneous Payoffs

If payoffs for players are inhomogeneous, i.e., differ between players and locations, pure

strategy Nash equilibria do not provably exist. However, in many instances, equilibria

appear nonetheless, and can be found using IBR. For two players, we consider full and

partial substitution, and either player can have high or low location density, following

the numerical design outlined in Table 3.1. We alter the definition of margins, since the

case π1
i = k · π2

i is a special case of homogeneous payoffs with provable existence of pure

strategy Nash equilibria. Instead, margins for either player are randomly drawn from a

high (π ∈ [6, 10]) or low (π ∈ [2, 6]) interval. With 100 repetitions of 32 instances, Nash

equilibria existed in all cases, which is partially due to the full graph with Euclidean costs.

The most central results for inhomogeneous payoffs are depicted in Table 3.6, and all

results for 32 different instances are reported in Table 3.11 of Appendix 3.B. Compared to

the case of homogeneous payoffs, trends become more pronounced: Gross profit increases

over the quasi-monopolistic solutions become larger for full competition (on average, the

improvement over the baseline is twice as high for the Nash equilibrium than for QMP),

whilst under partial competition, considering competition never improves the solution

(compared to very small improvements in the homogeneous payoffs case). The operator

with lower contribution margins benefits even more from considering competition, as

she can circumvent or at least partially counteract gross profit losses.
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avg. (full comp.) 167 111 -41 -44 88 83

min. (full comp.) -26 -47 -237 -239 -77 -66

max. (full comp.) 404 371 236 226 358 365

avg. (part. comp.) 311 289 311 289 311 289

min. (part. comp.) 157 122 157 122 157 122

max. (part. comp.) 434 433 434 433 434 433

Table 3.6: Average Profit Increase towards Baseline (No Rebalancing) Considering Inhomo-
geneous Payoffs

3.4.6 Impact of Stations with Diminishing Marginal Payoffs

To study the impact of diminishing payoffs in larger stations, we fix the density at a

high value (12), and assign the vehicles to stations with varying size ω ∈ [1, 2, 3], where

1 is the case without diminishing payoffs. We consider full and partial substitution, and

assume that every station is either competitive or non-competitive, but there are no

stations with some competitive and some non-competitive locations. In absence of any

competition, margins are given by

πι (0, qιn) =

qιn∑
i=1

π?ι · λ(i−1)

and the average margin over all locations in a station is 8 (high, H) or 4 (low, L), which

results in a maximum margin of π?ι = π
ω

∑ω
i=1 λ

(i−1) where π is the average margin. If

multiple operators have vehicles at station ι, gross profits are split fairly depending on

the number of vehicles either operator has at this station. λ ∈ {0.5, 0.7, 0.9} is the

deterioration rate. Instances are then addressed by substitution (full or partial), margin

(high or low), deterioration rate, and station size. For example F H 0.7 3 refers to the

instance with full substitution, high margins, medium deterioration rate (0.7), and 3

locations per station. In Table 3.12 (in Appendix 3.B), the number of locations per

station is moved to the column head. In total, no Nash equilibrium was found in two

cases (out of 100 repetitions of 36 different instances). Both affected instances have 3

locations per station and high margins, but different levels of substitution and deteriora-

tion rates. With an increasing number of locations per station, the benefit of considering
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competition decreases slightly, as the improvement over the baseline decreases for the

Nash equilibrium, but increases for the quasi-monopolistic solutions. The former can be

explained by moving not too many vehicles to the same station to achieve high payoffs

per location, and the latter occurs, since operators gain some payoff from stations, even

if the other operator is also having vehicles there. This effect is not very strong except

that QMO does not result in a negative gross profit increase over the baseline if the

number of locations exceeds 1. Interestingly, the gap between the two operators’ gross

profits closes with an increasing number of of locations per station (under full competi-

tion it decreases from a factor of two difference to approx. 10% difference), under partial

competition and a 3 locations per station, operator 2 can even achieve a higher gross

profit than operator 1. This is mostly due to the second operator no longer omitting

high payoff stations, and correlates with a higher number of iterations of the IBR.

3.4.7 Impact of Other Customer Choice Behaviors

To establish how much gross profit can be gained if customers do not strictly choose

vehicles at random and with equal probability, we generate instances with varying com-

petition, margins, and densities for either operator, and address them in analogy to Sec-

tion 3.4.2. If both operators are available at a competitive location i, a customer chooses

operator 1 with probability α ∈ {0.5, 0.75, 1} where α = 0.5 is strict availability-based

substitution. 36 different instances are repeated 100 times, and pure strategy Nash

equilibria are found in all cases, even though they do not provably exist. In Table 3.13,

instances are addressed by substitution (in the column header), margin (same for both),

density operator 1, density operator 2, and α. For example, H L H 0.75 in the column

F refers to the instance with full substitution, high margins, small operator 1, large

operator 2, and customers preferring operator 1 over 2 (selecting it in 3 out of 4 cases).

Table 3.7 gives high-level insights into the trends for other customer choice behaviors.

Unsurprisingly, the higher the preference for operator 1, the more will the gross profits of

the two operators diverge. If customers have a strict preference for operator 1 (α = 1),

IBR-0 and QMO coincide for operator 1, and operator 2 always collects at least as high

payoffs in the equilibrium as in any of the quasi-monopolistic solutions (she might be

able to collect additional revenue at locations, that “do not fit” into operator 1’s tour).

For operator 1 (the “preferred” operator), the benefit of considering competition, thus,

decreases if α increases, whilst for operator 2, the benefit of considering competition

increases.
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avg. (α = 0.5) 102 58 33 85 57 36

min (α = 0.5) 6 -52 0 5 -53 0

max (α = 0.5) 254 254 121 260 260 136

avg. (α = 0.75) 117 89 105 71 27 1

min (α = 0.75) 5 2 0 3 -174 0

max (α = 0.75) 262 262 252 255 255 3

avg. (α = 1) 119 119 119 70 -3 0

min (α = 1) 6 6 6 1 -302 0

max (α = 1) 258 258 258 257 257 0

Table 3.7: Average Profit Increase towards Baseline (No Rebalancing) Considering Different
Customer Choice

3.4.8 Case Study for Munich Carsharing

To quantify profit gains and losses, we consider a Munich, Germany, case study. We

use publicly available data from two Munich carsharing providers containing start and

end locations and times for carsharing trips, collected in August 2019. Since the data

set does not contain any data about the customers, we assume that all customers have

both memberships, and have no preference for one operator over the other. Having

both memberships is realistic for frequent users, and thus most trips. The carsharing

operators have large fleets of ≈ 500 and ≈ 700 vehicles, respectively. We aggregate trips

by assigning them to a start and end district. Districts are hexagons with a radius of

≈ 500m which is commonly assumed to be a reasonable walking distance and provides

sufficient flexibility to operators (Ströhle et al., 2019). Districts are approximated by

stations at the center of the district. We focus on 21 stations with the highest demand

during the observation period (16 days (Mon-Thu) during August 2019). The average

demand of operator 1 is 185 trips, and the average demand of operator 2 is 153 trips.

First, we count the number of trips starting and ending in every station. The differences

between arrivals and departures (“demand imbalance”) can be described by a cumulative

arrival probability P
(
î ≥ k

)
, i.e., the probability that the kth vehicle moved to station

ι is used. P
(
î ≥ k

)
is derived from the available data. During this interval, external
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influences on demand and supply are sufficiently little, and all remaining differences

in demand can be attributed to randomness. P
(
î ≥ k

)
is independent of n since all

customers are shared and have no preference for one operator over the other. We define

a (joint) payoff function

πnι (qι1, q
ι
2) =

qιn
qι1 + qι2

qι1+q
ι
2∑

k=1

P
(
î ≥ k

)
· π

where π is the contribution margin associated with serving additional customers due to

rebalancing a vehicle. We set π = 15 to account not only for direct revenues of the first

customer, but also all future users of that car until it must be rebalanced again, as well

as the benefit of preventing customer dissatisfaction (due to a low level of service). We

chose this value since the data suggests that vehicles are rebalanced after approx. 10

trips, and customers pay approx. 0.35N per minute (minus direct costs) and trips often

take at least 15 minutes.

The rebalancing costs are calculated by the travel time between the stations (given

a velocity of 20km/h), and 5 minutes for additional tasks (e.g., loading/unloading the

foldable bike, searching for a parking spot), at an hourly wage of 10N/h; and vehicle

cost of 0.3N/km. Thus, the minimum rebalancing cost is ≈ 3.4N (moving back and

forth between two stations). We use this minimum rebalancing cost as a bound on

the maximum number of vehicles that can be profitably moved to a location. Then,

there are 28 delivery locations in 9 stations (with 1-5 locations per station). Of the 26

pickup locations distributed across 10 stations, 13 belong to operator 1 and 13 belong

to operator 2. The remaining two stations inherently have balanced demand.

Table 3.8 reports the gross profits of either operator when using IBR, QMO, QMP

and M-PDOP to find routes. Since M-PDOP and Coop-PDOP coincide if all delivery

IBR QMO QMP M-PDOP IBR
QMO

IBR
QMP

IBR
M−PDOP

Operator 1 35.61 25.39 31.43 1.40 1.13

Operator 2 35.28 26.96 31.59 1.31 1.12

Operators 1 & 2 70.89 52.35 63.02 79.18 1.35 1.12 0.90

Table 3.8: Results for the Munich Case Study (Absolute Profits in the Left Block, Relative
Gaps in the Right Block)

locations are competitive, we do not report this additionally. The gross profit gains

due to considering competition range between 31% and 40% (35% on average over both
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operators), compared to assuming that the competitor does not move any vehicles to

locations with demand for additional vehicles. The high gains stem from the fact that

both operators move their vehicles to the same locations, leaving a demand imbalance of

8 vehicles, even though almost all demand could be served (in equilibrium, no vehicle is

moved to three potential customers). However, operators can also reach high profits by

assuming their competitor serves all locations of all stations. On average, the operators

improve their profits by 12% by considering competition compared to assuming that

their competitor is omnipresent. Due to the large fleet and the large stations/districts,

the benefit of merging or outsourcing the rebalancing operations is small (≈10%). In

conclusion, the price of ignoring competition is very high with 35%, while the price of

ignoring the rationality of the competitor is lower with 12% (most likely, operators cur-

rently assume some strategy between these two extrema, and the gain due to considering

competition will most likely be closer to 12% than to 35%). The price of competition is

not too high with 10%.

3.4.9 Algorithmic Performance Results

With respect to performance of the algorithms, we now focus on the following aspects:

How large are the instances for carsharing relocation that we can solve, in reasonable

time, under the various business models; in particular, can IBR and PFO solve the C-

PDOP on real-life-sized instances? How large are the differences in gross profits between

Nash equilibria found by the different algorithms?

Size of Solvable Instances

All rebalancing problems under consideration are NP-hard problems (Theorem 3.1).

However, we can solve medium-sized instances with up to 50 vehicles that shall be

rebalanced. Weikl and Bogenberger (2015) record 36 relocations in Munich during one

night for one operator. Munich’s one-way, free-floating carsharing fleet is among the

largest in the world, thus, the size of solvable instances is most likely sufficient in other

cities as well. Further, operators are now reducing the number of necessary relocations by

offering incentives for user-based relocation (e.g. Ströhle et al. (2019)), and by increasing

the fleet size (e.g. George and Xia (2011)).

In Figure 3.4, we show the average runtimes of 10 instances of increasing size on a

logarithmic scale for full and partial substitution (the latter with different substitution

rates). The instances are solved with the IBR-0 and the PFO. As the relocation problem
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Figure 3.4: Runtime (in seconds) on a Logarithmic Scale for Full Substitution, Partial Sub-
stitution (25%), and Partial Substitution (10%)

in carsharing is an operational problem repeated every night, it should not run for more

than 30 minutes in the average case (or 10 minutes per iteration in the IBR, since IBR

solves most instances in 3-4 iterations). This is possible for instances with up to 50

locations with both algorithms if there is only little substitution. For the IBR, it is still

computationally feasible to solve instances with 50 pickup and delivery locations per

operator under realistic substitution (25%), but in these instances, we already observe

the computational advantage of the IBR-0 over PFO. Under full substitution, both

algorithms perform substantially worse, but the IBR-0 can solve instances that are

roughly twice as large. Thus, with respect to runtime, the Iterated Best Response

is the method of choice, with both algorithms performing roughly the same for low

substitution (10%).

Both algorithms only find exact equilibria reliably on comparably small instances.

Leveraging Theorem 3.4, we know that provable optimality of the PDOP is not necessary

to reach a “sufficiently stable” solution. Thus, Figure 3.5 reports the fraction of instances
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Figure 3.5: Fraction of Instances which Solved to Provable/1%/5% Optimality for Full Sub-
stitution and Partial Substitution (25%) using IBR-0 and PFO

of given size which solve (i) to optimality, (ii) to 1% optimality, or (iii) to 5% optimality

using IBR-0 and PFO within a time limit of 10 minutes per iteration (IBR-0) or 30
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minutes in total (PFO). Similar to the results from Figure 3.4, we observe that IBR-0 and
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Figure 3.6: Average Optimality Gap for Full and Partial Substitution (25%) using IBR-0 and
PFO (if incumbent is found for at least 50% of instances)

PFO solve a similar percentage of small and medium-sized instances. Surprisingly, PFO

solves 80% of the instances with 100 customers and vehicles, and partial competition to

1% optimality whilst IBR-0 fails to solve almost any instances with 100 customers and

vehicles to 1% optimality (even though the average runtime to optimality is higher for

PFO than for IBR). A similar effect can be observed for full competition. The reason

for this is that with IBR, terminating with a high optimality gap in any iteration results

in a weak approximation guarantee. This is also observable from Figure 3.6, which

reports the average gap for PFO, and the average over the worst gap of all iterations

using IBR-0 which gets as high as 9.7% for full substitution and 60 locations (only if

at least 50% of all instances provided a feasible solution). Also, a deeper look into the

branch-and-bound behavior for partial competition reveals that already the first found

integer solution often provides a reasonably good bound. Thus, if any feasible solution

is found, it frequently already provides a reasonably tight approximation guarantee.

Trade-off due to Equilibrium Selection

Both of the algorithms we presented for the C-PDOP come at a price: Neither of the

algorithms provably returns the best Nash equilibrium. In Figure 3.7, we denote the

actual gaps between different Nash equilibria. If the number of Nash equilibria increases

(derived using full enumeration), we empirically observe the following ordering for the

welfare (sum over all gross profits): the average Nash equilibrium (derived using FE)

results in lower gross profits than IBR-0, which in turn has lower gross profits than

PFO. The profit of PFO is exceeded by IBR-WP, which has a lower gross profit than

the best Nash equilibrium (derived using FE). This ordering is inverse to the ordering
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Figure 3.7: Quality of Nash Equilibria (for operators 1, 2 and with respect to welfare respec-
tively)

by runtime. Further, we can see that player 1 (the operator who moves first) profits

more from IBR-0 than player 2 (which makes it the second-best and worst algorithm

respectively). Thus, there is a tradeoff between solution quality and runtime. If the

number of expected Nash equilibria is low, if computation time is a scarce resource, or

if any stable solution rather than the best solution is sufficient, IBR-0 is the preferred

method, while PFO and IBR-WP (or even FE) are preferred, if margins are low and if

solution quality is paramount.

3.5 Conclusion

In this Chapter we study the profitability of the relocation operations under competition

in a station-based carsharing system. We present a mathematical model for the reloca-

tion problem that arises in carsharing which we call Pickup and Delivery Orienteering

Problem (PDOP). We, further, present variations of the PDOP which capture different

business models under competition: The C-PDOP models direct competition, while the

M-PDOP and the Coop-PDOP model merger/monopoly and coopetition/outsourcing

relocation operations, respectively. In the C-PDOP, we introduce competitor who also

optimize their fleet and then solve the problem for Nash equilibria, i.e. stable states of

the system. The C-PDOP assumes that each operator plans their tour before executing

any relocations. In a future line of research, one could investigate a dynamic setting,

or multi-stage game, in which operators can change their decision during relocation, as

they observe the competitors’ moves.

We present two algorithms to find pure strategy Nash equilibria, namely Iterated Best

Response (IBR) and Profit Function Optimizer (PFO), both of which are considerably

faster than out-of-the-box and brute-force algorithms. Pure strategy Nash equilibria
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provably exist if both operators receive the same revenue from servicing a customer

(“player-homogeneous payoffs”), stations hold at most one vehicle or customer and de-

mand processes are independent (“unit-demand stations”), and if customers choose a

vehicle at random if multiple operators have a vehicle available (“indifferent customer

choice”). Even if these assumptions do not hold, we find that equilibria do exist and are

reached by IBR in most settings.

We use those model variations to quantify the profitability of the associated business

models in competitive carsharing markets. We give two minor conditions which ensure

the intuition that monopoly and coopetition result in higher gross profits than direct

competition, and show numerically that this gain is substantial. In a Munich, Germany,

case study, operators can improve by 10% by merging, or outsourcing to the same third-

party service provider. This value is lower than the maximum improvements in the

numerical experiments with artificial data, but still substantial. The benefit stems from

pooling benefits and the associated improved routing, and indirectly affects the number

of serviced customers. Thus, these business models are also preferential with respect to

society, due to a lowered environmental impact and increased service levels.

Though there are examples in which considering competition is worse than ignoring

the presence of competition for some operators, we show numerically that profitability

for all operators increases in realistic settings. If margins are low, this improvement

(or vice versa, the cost of ignorance) can be up to several orders of magnitude. The

main drivers for a high cost of ignorance or benefit of considering competition are fierce

competition, a high number of operators, inhomogeneous payoffs, not too large stations,

and customer preferences for one operator. In a case study, the gross profit improvement

due to considering competition is 35% over assuming that no competition exists, and

12% over assuming that competition is omnipresent.

The more candidate locations there are, the more important relocation becomes, as

routes become more efficient. The more of these locations are shared, the more impor-

tant it becomes to consider competition. We observe that operators might be worse off

by ignoring the presence of competition in their routing decision than not relocating any

vehicles, and might even lose money, in particular if competition is fierce. For each of

the three assumptions (player-homogeneous payoffs, unit-demand stations, and indiffer-

ent customer choice), we show that lifting the assumption results in similar tendencies

if equilibria exist. Equilibria exist in many realistic instances. Though the studied al-

gorithms do not necessarily find the best equilibrium, we show numerically that they

still yield higher gross profits than solutions which do not consider competition. Hence,
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operators have an incentive to adopt and implement game-theoretic strategies in their

relocation decisions.

This model can also be applied to free-floating systems if multiple nearby locations are

clustered into a district, and demand prediction is performed for these districts. For the

model to be applicable as is, distances, and thus travel time and cost, must be measured

between these districts. That is only realistic if districts are sufficiently small.
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Appendix 3.A Proofs

3.A.1 Proof of Theorem 3.1 (NP-Hardness)

We shall prove hardness even for the restricted C-PDOP model, which implies hardness

for the general model as well. To prove point 1, we reduce from the traveling salesman

problem (TSP), which is well-known to be NP-hard (Karp, 1972). The NP-hardness of

TSP on bipartite instances follows from Krishnamoorthy, 1975, whereas the NP-hardness

of the prize collecting TSP (on general graphs) follows from Feillet et al., 2005. Since

our setting combines both modifications, we provide for completeness an NP-hardness

proof, adapting the reduction techniques in those papers as well as in Volgenant and

Jonker, 1987.

Given an instance of TSP comprised of a complete graph Kn with vertices labeled

1, . . . , n, and arc routing costs ce for e ∈ En, construct a PDOP instance G with 4n+ 2

locations, one worker, and S0 = S1 = ∅ (all locations are optional) as follows. For each

node i ∈ Kn we include four copies i0, i1, i2, i3 in G, such that i0, i2 ∈ Z− and i1, i3 ∈ Z+

(if the costs are known to satisfy the triangular inequality, for example in the Euclidean

TSP, then the TSP remains NP-hard, and a somewhat simpler reduction can be used

where only two copies i, i′ of each node are required.). We further include additional

depot nodes d and p. Fix a node 1 ∈ Kn; then arc 〈dj3〉 has cost c〈1j〉 for each j 6= 1;

further, arc 〈10p〉 has cost 0. For each arc 〈ij〉 ∈ A, the corresponding arc 〈i0j3〉 has

cost c〈ij〉. For each node i ∈ Kn, the arcs 〈i0i1〉, 〈i2i1〉 and 〈i2i3〉 have cost 0. Any other

arc has cost Cn where C = maxe∈En ce. As far as profits go, for each node i ∈ Kn,

the corresponding node i2 has profit Cn. Any other node has profit 0. Finally, set all

travel times to be 0 and an arbitrary positive time window T , so that we can drop the

restrictions on the travel time of the worker.

To finish the proof of the reduction, simply observe that a tour (i1i2 . . . ini1) in Kn

having cost L, with i1 = 1, can be lifted into a d-p-path (d [i2] . . . [in] [i1] p) in G, where

[i] denotes the sequence i3i2i1i0. This path has profit Cn2 − L ∈ [Cn(n− 1), Cn2].

Moreover, any d-p-path not of this form has profit at most Cn(n− 1). Thus Kn admits

a tour of cost at most L if and only if G admits a d-p-path of profit at least Cn2 − L.

To prove point 2, we observe that a PDOP instance (for one player) is a special case of

a C-PDOP instance (with two players) in which the other player routes on a trivial graph

and ZC = ∅. To prove points 3 and 4, we observe that a PDOP instance is a special

case of a C-PDOP instance in which all locations are competitive but the distances from

depot nodes d2, p2 to the rest of the graph are prohibitively large (so that player 2’s best

56



Appendix 3.A Proofs

strategy is to play the empty strategy 〈0, . . . , 0〉 and the Nash equilibria correspond to

player 1’s best responses to this strategy).

3.A.2 Proof of Lemma 3.1 (Congestion Game)

Given a restricted C-PDOP instance with c locations (and n players), we construct a

congestion game with at most c+n2c resources (and also with n players). The congestion

game is described by the following components: a set of common resources R; a payoff

function pr for each resource r ∈ R; and a set of valid strategies ξn for each player, where

each strategy in ξn is a subset of R.

Recall that, from the discussion on Section 3.2.2, we can specify the payoff function

at each location i by a single value πi that represents the payoff that any player could

extract by being the sole operator at i. For each location i ∈ Z we include a resource,

also denoted i ∈ R, with payoff function

pi(y
i) =

πi

yi
,

where yi is the number of players having a vehicle available at location i. Moreover,

for each player n and each (compact) strategy q of that player in the original C-PDOP

instance, our congestion game includes a resource, which is denoted (q, n) ∈ R, with

constant, negative payoff function

p(q,n) = −Cn(q);

these can be in theory obtained by solving the PDOP instance described in equations

(3.1a)-(3.1k), while setting fixed the variables corresponding to locations.

A valid strategy of player n consists of exactly one resource of the second type, (q, n),

and all associated locations i such that qi = 1; that is, the set ξn of valid strategies is

given by

ξn = {{(q, n)} ∪ {i : qi = 1} : q is a compact strategy of playern}.

In this way, we obtain a valid formulation of a congestion game, as laid out by Rosen-

thal, 1973. The profit of a player n playing strategy xn = {(qn, n)} ∪ {i : qin = 1} is

defined as
∑

r∈{(qn,n)}∪{i:qin=1}

pr(y
r), where yr is the number of players accessing resource

r. There are however two key differences from the usual formulation: players are maxi-
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mizing payoffs instead of minimizing costs; and payoffs may assume positive or negative

values. These differences are without loss of generality since the standard potential

argument can still be applied, as we shall show in the proof of Corollary 3.1.

The (compact) strategies q in the standard C-PDOP instance are in one-to-one corre-

spondence to the valid strategies x in the congestion game, where xn = {(qn, n)} ∪ {i :

qin = 1}. This correspondence preserves profits; if Pn is the profit function of player n

in the congestion game, then

Pn(x) =
∑

r∈{(qn,n)}∪{i:qin=1}

pr(y
r) =

∑
i:qin=1

πi

yi
+ π(qn,n)

=
∑
i:qin=1

πi(qi)− Cn(qn) = Rn(q)− Cn(q) = Πn(q).

Thus, a deviation is improving in the C-PDOP instance if and only if it is improving in

the congestion game. It follows that q is a Nash equilibrium for the C-PDOP instance if

and only if the corresponding strategy x is a Nash equilibrium for the congestion game.

3.A.3 Proof of Corollary 3.1 (Existence of Pure Strategy Nash

Equilibria)

We apply Rosenthal, 1973’s potential argument. For a given strategy profile q, let

yi = yi(q) denote the number of operators placing a vehicle at location i. Define the

potential function

Φ(s) =
∑
i∈Z

yi∑
q=1

pi(q)−
∑
n

Cn(qn) =
∑
i∈Z

Hyiπ
i −
∑
n

Cn(qn),

where Hyi = 1 + 1
2

+ · · ·+ 1
yi

denotes the harmonic number of order yi.

Next observe that the potential function keeps track of the changes in profit when a

player deviates. For example, suppose player n deviates from strategy qn to q̃n while the

other players keep to strategy q−n, and let ỹi denote the number of vehicles at location

i in the strategy profile (q̃n,q−n). We will prove that the change in potential equals the

change in the profit of player n:

Φ(q̃n,q−n)− Φ(qn,q−n)
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=
∑
i∈Z

ỹi∑
q=1

pi(q)− Cn(q̃n)−
∑
n′ 6=n

Cn′(qn′)−

∑
i∈Z

yi∑
q=1

pi(q)− Cn(qn)−
∑
n′ 6=n

Cn′(qn′)


=

∑
i:qin=0,q̃in=0

 ỹi∑
q=1

pi(q)−
yi∑
q=1

pi(q)

+
∑

i:qin=1,q̃in=1

 ỹi∑
q=1

pi(q)−
yi∑
q=1

pi(q)


+

∑
i:qin=0,q̃in=1

 ỹi∑
q=1

pi(q)−
yi∑
q=1

pi(q)

+
∑

i:qin=1,q̃in=0

 ỹi∑
q=1

pi(q)−
yi∑
q=1

pi(q)


− Cn(q̃n) + Cn(qn)

=
∑

i:qin=1,q̃in=1

pi(ỹ
i)−

∑
i:qin=1,q̃in=1

pi(y
i) +

∑
i:qin=0,q̃in=1

pi(ỹ
i)−

∑
i:qin=1,q̃in=0

pi(y
i)

− Cn(q̃n) + Cn(qn)

=
∑
i:q̃in=1

pi(ỹ
i)− Cn(q̃n)−

∑
i:qin=1

pi(y
i)− Cn(qn)


= Πn(q̃n,q−n)− Πn(qn,q−n).

In the second equality, we split the sums over i ∈ Z into four cases, depending on

whether each of qin, q̃in is 0 or 1. In the third equality, we observe that

� if qin = 0, q̃in = 0, then ỹi = yi and
∑ỹi

q=1 pi(q)−
∑yi

q=1 pi(q) = 0;

� if qin = 1, q̃in = 1, then ỹi = yi and
∑ỹi

q=1 pi(q)−
∑yi

q=1 pi(q) = 0 = pi(ỹ
i)− pi(yi);

� if qin = 0, q̃in = 1, then ỹi = yi + 1 and
∑ỹi

q=1 pi(q)−
∑yi

q=1 pi(q) = pi(ỹ
i);

� if qin = 1, q̃in = 0, then ỹi = yi − 1 and
∑ỹi

q=1 pi(q)−
∑yi

q=1 pi(q) = −pi(yi).

We conclude that a deviation by any player is improving if and only if the potential

increases. Since there are finitely many strategies, Φ possesses a global maximum. The

corresponding strategy must be a Nash equilibrium since no player’s deviation would

increase the value of the potential function and thus not increase her profit. Moreover,

if q(0) → q(1) → . . . is a sequence where q(n+1) is obtained from q(n) by an improving

deviation from one of the players, then the potential must strictly increase through the

sequence. Such a sequence must then terminate at a local maximum, which is a Nash

equilibrium.
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3.A.4 Proof of Corollary 3.2 (Monotonicity of Profits (vs.

Welfare-Maximizing Solution))

By definition, the welfare-maximizing solution is the solution to the PDOP with two

competing operators in which the joint profit is maximal. Thus, no other solution,

including any Nash equilibrium solution, can be better.

3.A.5 Proof of Lemma 3.2 (Price of Anarchy and Price of Stability)

Consider an instance of the restricted C-PDOP model with two players. We first derive

an useful relation between the profits of a player when the other player changes her

strategy. Let q1 be any strategy for player 1 and q2,q
′
2 be any two strategies for player

2. By definition of the profit function we have

Π1(q1,q2) =
∑

i:qi1=1,qi2=0

πi +
∑

i:qi1=1,qi2=1

πi

2
− C1(q1);

Π1(q1,q
′
2) =

∑
i:qi1=1,q′i2 =0

πi +
∑

i:qi1=1,q′i2 =1

πi

2
− C1(q1);

putting these two equations together we see that

Π1(q1,q2)− Π1(q1,q
′
2) =

1

2

∑
i:qi1=1,q′i2 =1,qi2=0

πi −
1

2

∑
i:qi1=1,q′i2 =0,qi2=1

πi. (3.6)

To prove point 1, let (q1,q2) be any Nash equilibrium and (q′1,q
′
2) be any strategy.

Applying equation (3.6) and the definition of Nash equilibrium,

Π1(q
′
1,q

′
2) = Π1(q

′
1,q2) +

1

2

∑
i:q′i1 =1,qi2=1,q′i2 =0

πi −
1

2

∑
i:q′i1 =1,qi2=0,q′i2 =1

πi

≤ Π1(q1,q2) +
1

2

∑
i:q′i1 =1,qi2=1,q′i2 =0

πi −
1

2

∑
i:q′i1 =1,qi2=0,q′i2 =1

πi

Similarly for player 2, we have

Π2(q
′
1,q

′
2) ≤ Π2(q1,q2) +

1

2

∑
i:q′i2 =1,qi1=1,q′i1 =0

πi −
1

2

∑
i:q′i2 =1,qi1=0,q′i1 =1

πi;

Adding both equations, and observing that the two sets {i : q′i1 = 1, qi2 = 1, q′i2 = 0} and
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{i : q′i2 = 1, qi1 = 1, q′i1 = 0} are disjoint subsets of ZC , as well as that πi ≥ 0, we obtain

Π(q′1,q
′
2) = Π1(q

′
1,q

′
2) + Π2(q

′
1,q

′
2)

≤ Π1(q1,q2) + Π2(q1,q2) +
1

2

∑
i∈ZC

πi = Π(q1,q2) +
1

2

∑
i∈ZC

πi.

Since (q′1,q
′
2) was taken to be any strategy, the above equation implies that the

difference in welfare between any two Nash equilibria is at most 1
2

∑
i∈ZC πi, which proves

point 2. Now let (q1,q2) be any Nash equilibrium and (q∗1,q
∗
2) be a welfare maximizing

strategy. We get that

Π(q1,q2) ≤ Π(q∗1,q
∗
2) ≤ Π(q1,q2) +

1

2

∑
i∈ZC

πi,

thus the difference between any Nash equilibrium and any welfare maximizing strategy

is at most 1
2

∑
i∈Z πi, proving point 3.
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Figure 3.8: Example of a C-PDOP instance (left); there is only one delivery location, labeled
1, which is competitive; each player has a depot (d1 or d2) and one vehicle at
a separate location (i1 or i2) with null payoff; the corresponding payoff matrix
(center) and the special case ε = 0 (right).

To prove that the Price of Anarchy and the Price of Stability can be arbitrarily high,

consider the game depicted in Figure 3.8. There is only one competitive location with

payoff π = 1 + ε for both players, for some small positive ε. Either player incurs a

traveling cost of c = 1/2 to relocate a vehicle to the competitive location and return to

the depot. Thus each player has only two strategies (1 for ‘move’ or 0 for ‘don’t move’).

Looking at the payoff matrix, we see that the only Nash equilibrium occurs when both

players decide to service the location, for a welfare of ε, whereas the maximum possible

welfare is 1
2

+ ε, occuring when only one player services the location. Thus both the

Price of Anarchy and the Price of Stability equal 1/2+ε
ε

= 1+ 1
2ε

which is arbitrarily large

as ε can be arbitrarily small. Since the C-PDOP generalizes the restricted C-PDOP, the
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above result also carries over to the C-PDOP.

To show the bounds obtained in points 1, 2, and 3 are tight, consider the same game

as before, but take ε = 0. Now both strategies (q1, q2) = (1, 0) or (0, 1) are welfare-

maximizing as well as Nash equilibria, achieving welfare 1
2

= 1
2

∑
i∈ZC πi. Moreover,

(q1, q2) = (1, 1) is still a Nash equilibrium with welfare exactly equal to 0. Thus the

absolute difference between the welfare-maximizing strategy and the worst Nash equi-

librium, as well as between best and worst Nash equilibria, is exactly 1
2

∑
i∈ZC πi.

3.A.6 Proof of Corollary 3.3 (NP-hardness of M-PDOP and

Coop-PDOP)

A PDOP instance is a special case of a Coop-PDOP (resp. M-PDOP) instance (derived

from two players) in which the second player routes on a trivial graph and ZC = ∅.
Thus, both problems remain NP-hard.

3.A.7 Proof of Lemma 3.3 (Monotonicity of Profits (vs. Monopoly

or Coopetition Solution))

To prove points 1 and 2, simply observe that the space of feasible solutions increases as

we move from C-PDOP to Coop-PDOP to M-PDOP. In other words, a feasible strategy

(x1, a1, x2, a2) with W1,W2 workers in the C-PDOP model can be merged into a feasible

strategy (x̄, ā) with W1 +W2 workers in the Coop-PDOP model; and a feasible strategy

(x, a) with WO workers in the Coop-PDOP model is also a feasible strategy (with the

same number of workers) in the M-PDOP model. Moreover, the payoffs associated to

competitive locations only increase as we move from C-PDOP to Coop-PDOP to M-

PDOP. To see this, let ι be a station and qι represent the vehicles of each operator at

station ι. The joint payoff at location ι is the same for the C-PDOP and Coop-PDOP

models, and equals
∑

n π
ι
n(qι). This, in turn, is less or equal than the joint payoff for the

M-PDOP model, which is defined as maxq′ (
∑

n π
ι
n (q′) |∑n q

ι
n =

∑
n q

ι′
n). Therefore, the

optimal profit does not decrease as we move from C-PDOP to Coop-PDOP to M-PDOP

(as long as the number of workers is consistent, i.e. WM ≥ WO ≥ W1 +W2).
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3.A.8 Proof of Theorem 3.2 (Monotonicity of Profits (IBR vs.

QMO))

We begin by deriving the following relation between the potential and payoff functions,

valid for the restricted C-PDOP with two players:

Φ(q1,q2) =
∑
i∈Z

Hyiπ
i − C1(q1)− C2(q2)

=
∑

i:qi1=1,qi2=0

πi +
∑

i:qi1=0,qi2=1

πi +
∑

i:qi1=1,qi2=1

3

2
πi − C1(q1)− C2(q2)

=

 ∑
i:qi1=1,qi2=0

πi +
∑

i:qi1=1,qi2=1

πi

2
− C1(q1)

+

∑
i:qi2=1

πi − C2(q2)


= Π1(q1,q2) + Π2(〈0, . . . , 0〉,q2); (3.7)

similarly, one has Φ(q1,q2) = Π1(q1, 〈0, . . . , 0〉) + Π2(q1,q2).

Consider a sequence of iterated best responses starting from the 〈0, . . . , 0〉 strategy

and ending at a Nash equilibrium, with player 1 moving first into an optimistic strategy:

(〈0, . . . , 0〉, 〈0, . . . , 0〉) 1→ (qO1 , 〈0, . . . , 0〉)
2→ (qO1 ,q

(1)
2 )→ · · · → (qN1 ,q

N
2 ).

Since q
(1)
2 is a best response to player 1 playing qO1 , the following is also a sequence

of iterated best responses:

(qO1 ,q
O
2 )

2→ (qO1 ,q
(1)
2 )→ · · · → (qN1 ,q

N
2 ).

In particular, this implies that the potential value at the Nash equilibrium retrieved

through IBR is at least the potential value at the optimistic quasi-monopolistic strategy,

that is,

Φ(qN1 ,q
N
2 ) ≥ Φ(qO1 ,q

O
2 ).

Note that the optimistic strategy maximizes a player’s profit with respect to the

other player playing the empty strategy; in particular, we have Π1(q
O
1 , 〈0, . . . , 0〉) ≥

Π1(q
N
1 , 〈0, . . . , 0〉) and Π2(〈0, . . . , 0〉,qO2 ) ≥ Π2(〈0, . . . , 0〉,qN2 ). Using (3.7), we get

Π1(q
N
1 ,q

N
2 ) = Φ(qN1 ,q

N
2 )− Π2(〈0, . . . , 0〉,qN2 )

≥ Φ(qO1 ,q
O
2 )− Π2(〈0, . . . , 0〉,qO2 )
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= Π1(q
O
1 ,q

O
2 ).

Using a similar reasoning for player 2, we get that Π2(q
N
1 ,q

N
2 ) ≥ Π2(q

O
1 ,q

O
2 ). Thus

both players are better off if they agree on a Nash equilibrium obtained by iterated best

responses from the empty strategy.

3.A.9 Proof of Theorem 3.3 (Termination of the Iterated Best

Reponse Algorithm)

We first define the inverse ¬q of a strategy q as the strategy in which a vehicle is

available at precisely the competitive locations where q does not have a vehicle available

(formally, for every i ∈ ZC we have that ¬qi = 1− qi). To prove this theorem we need

the following key auxiliary result: for any strategies q1 and q2, if q1 is a best response to

q2, then q1 is also a best response to its inverse ¬q1. To see this, let q′1 be an arbitrary

strategy for player 1; applying Equation (3.6) twice,

Π1(q
′
1,¬q1) =Π1(q

′
1,q2) +

1

2

∑
i:q′i1 =1,qi2=1,¬qi1=0

πi −
1

2

∑
i:q′i1 =1,¬qi1=1,qi2=0

πi

≤Π1(q1,q2) +
1

2

∑
i:q′i1 =1,qi2=1,qi1=1

πi −
1

2

∑
i:q′i1 =1,qi1=0,qi2=0

πi

=Π1(q1,¬q1) +
1

2

∑
i:qi1=1,qi1=0,qi2=0

πi −
1

2

∑
i:qi1=1,qi2=1,qi1=1

πi

+
1

2

∑
i:q′i1 =1,qi2=1,qi1=1

πi −
1

2

∑
i:q′i1 =1,qi1=0,qi2=0

πi

=Π1(q1,¬q1)−
1

2

∑
i:qi1=1,qi2=1,q′i1 =0

πi −
1

2

∑
i:q′i1 =1,qi1=0,qi2=0

πi ≤ Π1(q1,¬q1).

Next, let us consider a sequence of iterated best responses,

(q0
1,q

0
2)

1→ (q1
1,q

0
2)

2→ (q1
1,q

1
2)

1→ . . .
2→ (qN1 ,q

N
2 )

1→ (qN+1
1 ,qN2 ),

starting with player 1 and ending at a Nash equilibrium after 2N + 1 iterations. For

ease of exposition we only consider the case that the sequence ends with a movement of

player 1. For a fixed 0 < i ≤ N , there are two possibilities:

� if qi+1
1 = ¬qi2 then we have reached a Nash equilibrium: since qi2 is a best response
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to qi1, it must be a best response to its inverse ¬qi2 = qi+1
1 ; note that this would

imply i = N ;

� if qi+1
1 6= ¬qi2, then player 1 will never play ¬qi2 on subsequent iterations: assume

otherwise that qj+1
1 = ¬qi2 for some j > i. Then ¬qi2 would be an (equally) best

response to qi2 for player 1, so that (¬qi2,qi2) would be a Nash equilibrium as above.

In particular, qi2 would be a best response to qj+1
1 = ¬qi2 for player 2. Putting all

these together, we get a contradiction, as

Φ(qi+1
1 ,qi2) = Φ(¬qi2,qi2) ≥ Φ(¬qi2,qj2) = Φ(qj+1

1 ,qjl ) > Φ(qi+1
1 ,qi2).

By similar principles, we have: if 0 ≤ i < j ≤ N , then qi2 6= qj2 (i.e. 2 will not repeat

strategies); if 0 < i < j ≤ N , then qi1 6= qj1 (i.e. 1 will not repeat strategies except

possibly for q0
1); if 0 < i ≤ j ≤ N , then qj2 6= ¬qi1; and if 0 < i < j ≤ N , then qj1 6= ¬qi2.

In other words, we conclude that the strategies q1
1,¬q1

2,q
2
1,¬q2

2, . . . ,q
N
1 ,¬qN2 must be

all different. As there are only |S| possible strategies, it follows that 2N ≤ |S|; in other

words, player 2 can play at most |S|/2 different strategies, player 1 can play at most

|S|/2 + 1 different strategies, and the total number of iterations is at most |S| + 1 (for

a maximum number of |S|+ 2 recalculations).

3.A.10 Proof of Theorem 3.4 (Iterated Best Response Algorithm

for Approximate Nash Equilibria)

We start by presenting a different conversion from C-PDOP to a congestion game that

can handle the description of full strategies. We construct a congestion game having

a resource for each location and for each arc in the network. To each arc e ∈ A we

associate a constant negative profit pe = −ce. Similarly to the proof of Lemma 3.1, for

each location i ∈ Z we include a resource with profit function

pi(y
i) =

πi

yi
,

where yi is the number of players having a vehicle available at location i.

The valid strategies for each player correspond to feasible tours that only visit lo-

cations/arcs associated with that player, i.e. satisfying constraints (3.1b)-(3.1k) from

the PDOP model. In other words, for each valid strategy sn = (an,xn) of player n,

we associate a corresponding strategy in the congestion game consisting on those arcs
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e ∈ A and locations i ∈ Z for which ane , x
n
i = 1. As in the proof of Lemma 3.1, this

defines a valid congestion game, albeit in a profit-maximizing instead of cost-minimizing

formulation; and where resources may assume positive or negative values. The standard

potential argument as in the proof of Corollary 3.1 can then be applied to conclude that

any sequence of improving deviations must eventually reach a Nash equilibrium.

Next we consider the ε-IBR as described in the statement of the theorem. By def-

inition, a player only deviates if the ε-approximately optimal routing found is a strict

improvement to that player’s profit. Therefore, the ε-IBR dynamics still yield a sequence

of improving deviations and must terminate after a finite number of iterations. All is left

is to prove the quality guarantee of the final strategy, i.e. that s is an ε-Nash equilibrium.

Let s′n be the ε-approximate best response to s−n found by player n. Since player n opts

to not deviate from sn, it follows that

(1 + ε)Πn(sn, s−n) ≥ (1 + ε)Πn(s′n, s−n) ≥ max
s′n

Πn(s′n, s−n);

as this relation holds for every player n, the final strategy is an ε-Nash equilibrium.

3.A.11 Proof of Lemma 3.4 (Optimality of the Potential Function

Optimizer)

Point 1 follows directly from Lemma 3.1, as the maxima of the potential function cor-

respond directly to Nash equilibria of the congestion game. To prove point 2, let q be

a maximum potential Nash equilibrium in which each location is visited by at most one

player (
∑

n q
i
n ≤ 1 ∀i ∈ Z). Note that this implies, for each location i, that

Hyiπ
i = yiπi =

∑
n

πi(s)qin,

and as such Φ(q) = Π(q). Now, if q̃ is any other solution, we have

Π (q̃) =
∑
i∈Z

∑
n

πi(q̃)q̃in −
∑
n

Cn(q̃n)

≤
∑
i∈Z

Hỹiπ
i −
∑
n

Cn(q̃n)

= Φ (q̃) ≤ Φ(q) = Π(q).
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We conclude that q is also a welfare-maximizing strategy and thus there cannot be a

better Nash equilibrium.

Appendix 3.B Tables

In the following, we give detailed results for Subsections 3.4.2–3.4.7. Table 3.9 shows

the percentage increase towards a baseline under different algorithms for either operator

for all combinations of parameters.

Operator 1 Operator 2

Setting B
as

el
in

e

IB
R

-0

IB
R

-W
P

P
F

O

Q
M

O

Q
M

P

B
as

el
in

e

IB
R

-0

IB
R

-W
P

P
F

O

Q
M

O

Q
M

P

F H H H 12 160 139 130 -5.46 77.8 12 86.2 125 123 -13.1 66.8

F H H L 12 225 204 206 85.9 180 8 38.5 59.6 67 -61.7 10.1

F H L H 8 79.5 63.6 64.9 -63.2 19.6 12 191 207 215 103 199

F H L L 8 136 110 106 -42.9 30.5 8 59 98.9 97.6 -44.9 32.4

F L H H 6 24.9 21.4 21.4 -12.5 1.9 6 11.1 17.2 17.2 -14.9 1.26

F L H L 6 28.5 28.6 28.7 21.1 8.05 4 3.66 3.93 4.62 -4.4 1.15

F L L H 4 9.59 8.03 7.82 -6.67 1.04 6 21.1 22.9 24.7 13.8 4.25

F L L L 4 5.51 4.88 4.88 1.57 1.07 4 7.04 8.9 8.9 5.31 2.49

P H H H 12 238 234 234 190 223 12 231 240 239 199 228

P H H L 12 243 243 240 210 231 8 149 149 159 117 143

P H L H 8 167 167 164 128 152 12 246 246 251 226 243

P H L L 8 171 166 165 129 152 8 168 178 178 137 164

P L H H 6 28.4 27.4 27.4 18.3 21.2 6 30 32.3 32.3 23.1 23.4

P L H L 6 24.5 24.5 24.2 21.3 17.7 4 8.28 8.28 8.92 4.49 7.25

P L L H 4 6.74 6.74 6.46 3.45 4.89 6 27 27 27.5 24.6 20.9

P L L L 4 10.8 10.6 10.6 6.44 6.66 4 9.29 9.61 9.61 6.04 5.54

Table 3.9: Percentage Profit Increase towards Baseline (Operator 1 in Left Block, Operator
2 in Right Block) under Various Models and Algorithms as well as Different Ex-
perimental Settings with Substitution Rates, Margins, and Densities for Either
Operator
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Analogously, Table 3.10 lists detailed results for the total profit (sum over both op-

erators) towards the baseline, and shows that the profit decreases in all instances when

competition is present.

Full Substitution Partial Substitution

Setting b
as

el
in

e

N
E

W
P

C
o
op

-P
D

O
P

M
-P

D
O

P

b
a
se

li
n

e

N
E

W
P

C
o
op

-P
D

O
P

M
-P

D
O

P

H H H H 24 132 156 184 184 24 237 240 304 331

H H H L 20 151 160 198 204 20 207 209 276 305

H H L H 20 155 169 204 209 20 216 218 287 316

H H L L 16 104 113 143 143 16 172 175 249 277

L L H H 12 19.3 19.4 42.4 42.5 12 29.9 29.9 91.5 121

L L H L 10 19.1 19.3 38.1 44.6 10 18.1 18.2 57.8 88.7

L L L H 10 17.9 17.9 36.7 41.8 10 19.1 19.1 65.9 93.8

L L L L 8 6.89 6.89 11.2 11.2 8 10.1 10.1 37.7 59.6

Table 3.10: Percentage Profit Increase towards Baseline (Full Substitution in Left Block,
Partial Substitution in Right Block) for Different Experimental Settings with
Substitution Rates, Margins, and Densities for either Player

Table 3.11 presents detailed information about attainable profit increases if the as-

sumption of homogeneous payoffs does not hold.

Table 3.12 outlines profit increases if more than one vehicle is in demand in a district.

Table 3.13 outlines profit increases if customers do not choose vehicles completely at

random, if both operators have a vehicle available at this location.
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Full Substitution Partial Substitution

Operator 1 Operator 2 Operator 1 Operator 2

Setting B
as

el
in

e

IB
R

-0

Q
M

O

Q
M

P

B
as

el
in

e

IB
R

-0

Q
M

O

Q
M

P

B
a
se

li
n

e

IB
R

-0

Q
M

O

Q
M

P

B
a
se

li
n

e

IB
R

-0

Q
M

O

Q
M

P

H H H H 12 142 -3 100 12 118 -1 98 12 434 434 434 12 430 430 430

H H H L 12 279 143 251 8 82 -62 46 12 424 424 424 8 355 355 355

H H L H 8 98 -85 35 12 260 141 258 8 358 358 358 12 433 433 433

H H L L 8 152 -59 84 8 71 -72 52 8 354 354 354 8 349 349 349

H L H H 12 321 55 274 6 1 -163 -37 12 423 423 423 6 257 257 257

H L H L 12 404 236 358 4 -46 -215 -61 12 425 425 425 4 147 147 147

H L L H 8 212 -21 108 6 113 -23 96 8 362 362 362 6 244 244 244

H L L L 8 316 39 194 4 -47 -239 -66 8 358 358 358 4 122 122 122

L H H H 6 20 -170 -38 12 273 70 279 6 295 295 295 12 416 416 416

L H H L 6 145 -18 92 8 140 -15 96 6 292 292 292 8 336 336 336

L H L H 4 -26 -237 -77 12 371 226 365 4 169 169 169 12 427 427 427

L H L L 4 0 -222 -67 8 211 39 154 4 170 170 170 8 336 336 336

L L H H 6 162 -110 35 6 57 -117 8 6 294 294 294 6 254 254 254

L L H L 6 257 63 169 4 -17 -187 -65 6 277 277 277 4 133 133 133

L L L H 4 62 -166 -54 6 174 48 155 4 182 182 182 6 245 245 245

L L L L 4 130 -105 -49 4 8 -135 -56 4 157 157 157 4 141 141 141

Table 3.11: Percentage Profit Increase towards Baseline with Inhomogeneous Payoffs (Full
Substitution in Left Block, Partial Substitution in Right Block) for Different
Experimental Settings with Substitution Rates, Margins, and Densities for either
Player
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Full Substitution Partial Substitution

Operator 1 Operator 2 Operator 1 Operator 2

Setting B
as

el
in

e

IB
R

-0

Q
M

O

Q
M

P

B
as

el
in

e

IB
R

-0

Q
M

O

Q
M

P

B
a
se
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n

e

IB
R

-0

Q
M

O

Q
M

P

B
a
se

li
n

e

IB
R

-0

Q
M

O

Q
M

P

H H H 0.5 12 145 -2 65 12 106 3 79 12 254 254 121 12 251 251 125

H H H 0.75 12 248 125 242 12 15 -139 0 12 254 254 242 12 253 253 2

H H H 1 12 254 254 254 12 14 -266 0 12 258 258 258 12 257 257 0

H H L 0.5 12 229 96 113 8 48 -53 19 12 250 250 116 8 179 179 42

H H L 0.75 12 251 176 242 8 13 -174 0 12 262 262 252 8 185 185 3

H H L 1 12 251 251 251 8 7 -302 0 12 253 253 253 8 194 194 0

H L H 0.5 8 93 -52 18 12 173 88 113 8 182 182 33 12 260 260 136

H L H 0.75 8 165 67 157 12 111 18 1 8 191 191 171 12 255 255 3

H L H 1 8 188 188 188 12 103 -63 0 8 189 189 189 12 249 249 0

H L L 0.5 8 149 -43 28 8 48 -49 26 8 186 186 21 8 182 182 33

H L L 0.75 8 187 76 169 8 14 -159 0 8 178 178 158 8 182 182 2

H L L 1 8 186 186 186 8 7 -271 0 8 182 182 182 8 180 180 0

L H H 0.5 6 27 -25 3 6 10 -28 0 6 24 24 1 6 26 26 0

L H H 0.75 6 26 2 7 6 6 -51 0 6 24 24 9 6 28 28 0

L H H 1 6 24 24 24 6 10 -68 0 6 29 29 29 6 23 23 0

L H L 0.5 6 26 10 1 4 5 -15 1 6 33 33 3 4 9 9 1

L H L 0.75 6 25 21 10 4 3 -13 0 6 27 27 8 4 4 4 0

L H L 1 6 33 33 33 4 1 -28 0 6 34 34 34 4 7 7 0

L L H 0.5 4 6 -7 1 6 19 13 2 4 10 10 1 6 30 30 2

L L H 0.75 4 10 3 5 6 21 13 0 4 7 7 3 6 26 26 1

L L H 1 4 6 6 6 6 19 3 0 4 8 8 8 6 25 25 0

L L L 0.5 4 6 0 1 4 6 1 1 4 6 6 0 4 9 9 1

L L L 0.75 4 5 2 0 4 5 -1 0 4 10 10 6 4 11 11 0

L L L 1 4 6 6 6 4 7 -4 0 4 8 8 8 4 10 10 0

Table 3.13: Percentage Profit Increase towards Baseline with Other Customer Choice Be-
haviors (Full Substitution in Left Block, Partial Substitution in Right Block) for
Different Experimental Settings with Substitution Rates, Margins (Equal), and
Densities for either Player, and Variable Customer Preferences
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Chapter 4

Feature-Based Selection of Carsharing

Relocation Modes

One-way and free-floating carsharing systems must be rebalanced to achieve a high service

level, and thus generate benefits for users and society. In practice, vehicles can be relocated

with multiple modes (e.g., by truck or by driving them), but a single mode is sufficient in

many instances. Obviously, a single mode is preferred from a computational standpoint: The

routing problems are less complex since less synchronization is necessary, and thus solve much

faster. It remains an open question which features drive the decision on the best mode, and

if operators can decide a-priori whether hybridization of several modes is beneficial/necessary,

and which modes one should hybridize among. We build a classifier based on linear regression

which predicts the costs for all individual modes. The advantage of this approach is that

cost estimates (i) can be used as a feature in other approaches, and (ii) allow operators to

estimate the necessary budget upfront. However, cost estimates cannot be used directly to

determine key drivers for modal choice. We, thus, use logistic regression and decision trees

for determining the best mode. These approaches are better at determining relevant features

that explain which mode is preferred in an instance. We find that the most important features

to decide between modes are vehicle and truck costs per kilometer as well as their velocities,

and the average number of vehicles that shall be relocated per day (that is, the imbalance

of the system). In most instances, the decision is between driving vehicles to rebalance them

and rebalance staff by biking, or loading vehicles onto a truck. Hybridization proves useful

in ≈20% of all instances, and a simple rule-based classifier is able to predict correctly that

hybridization is necessary in most instances.
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4.1 Introduction

Free-floating carsharing can provide benefits to users and society. One carsharing vehi-

cle can replace multiple private vehicles (Shaheen and Cohen, 2013). Since vehicles in

carsharing systems are often more efficient than privately owned vehicles, emissions can

be reduced (Bellos et al., 2017; Firnkorn and Müller, 2011). Baptista et al. (2014) report

that carsharing can even provide mobility to communities with previously little access to

mobility. However, operating such a system profitably is challenging: If users frequently

take one-directional trips, e.g. to cover the last mile (Liang et al., 2016), fleets become

unbalanced, and vehicles have to be relocated. Only by relocating vehicles, operators

can achieve sufficiently high service levels. Rebalancing also circumvents accumulating

vehicles in some regions, increasing the availability of parking spaces, and may allow for

smaller fleet sizes. Obviously, these rebalancing movements pose a substantial cost factor

ranging in the same order of magnitude as vehicle procurement costs (Vasconcelos et al.,

2017). Rebalancing adds mileage and increases congestion, counteracting environmental

and societal benefits. Thus, rebalancing must be optimized to reduce impacts. To that

end, rebalancing operations are typically pooled during the night (Almeida Correia and

Antunes, 2012), and operators employ different “relocation modes”, including bike, pub-

lic transportation, car, and truck (Weikl and Bogenberger, 2015). The real-world case

studies for European and North American free-floating carsharing services by Bruglieri

et al. (2014b) and Nourinejad et al. (2015) indicate that operators frequently use (fold-

able or shared) bike as a relocation mode. In more theoretical contributions, truck, car

and public transit are suggested as rebalancing modes (e.g., Gambella et al. (2018) and

Herbawi et al. (2016) for rebalancing modes that are similar to “car”, Dror et al. (1998)

and Krumke et al. (2013) for rebalancing by truck, and Huang et al. (2020) and Santos

and Almeida Correia (2019) for public transit). Bikes are beneficial from an environ-

mental standpoint, since not all segments of the rebalancing route result in emissions.

Further, bikes are flexible and can often use a more direct (and thus faster) route between

any two locations. Public transportation is similarily beneficial from an environmental

standpoint, but highly dependent on a dense network with frequently running trains.

Since carsharing providers have large fleets of vehicles that they can also use for staff

rebalancing, implementing the rebalancing mode “car” is simpler than the other modes.

On the other hand, the necessary number of workers increases significantly, making this

mode usually more expensive. Rebalancing vehicles using a truck is beneficial if demand

is clustered, e.g. if multiple vehicles must be transported from the airport to the trade
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fair. However, trucks are highly inflexible and result in low velocities in narrow city

centers if they are even permitted to enter. Truck drivers might have to park the truck

at some location and walk to retrieve a car. Weikl and Bogenberger (2015) report that

modes are mixed in their case study.

The operator’s routing problem can be formulated as a Vehicle Routing Problem

(VRP)/Pickup and Delivery Problem (PDP) with multiple modes and the consequential

synchronization constraints. The synchronization constraints obviously result in long

running times, or suboptimal solutions within a reasonable runtime for an operational

planning problem. The mode selection problem has tactical and strategic implications:

for example, trucks must be bought or rented, employees hired. Thus, operators have

an incentive to use the same (subset of) modes for an extended period of time, even if

on some days due to the random realization of the demand imbalance, using a different

or additional mode would reduce costs slightly.

We focus on the problem of selecting the cost-minimizing mode(s) for rebalancing a

carsharing system. As stated before, there are features that hinder or support the adop-

tion of modes. While it is often logical how a feature impacts the total rebalancing costs

(e.g., if additional vehicles are to be rebalanced, costs increase), the magnitude of their

influence on the costs and their influence on the modal choice, remain unknown. Using

different classifiers, we establish the relevance of said features for the modal choice. We

predict the costs of each mode individually using linear regression, the probability of each

mode using logistic regression, and the best mode using a decision tree (the latter may

use the cost estimates as additional features). Using linear regression as an intermediate

step is advantageous for two main reasons: (i) cost estimates (and differences between

them) are a valuable feature for deciding whether or not to include a mode; and (ii)

it allows operators to allocate sufficient budgets a-priori. We establish the decrease of

excess cost and increase of accuracy due to cost estimates as features. Linear regression

and decision trees have in common that they are easy to understand for decision mak-

ers: The cost contribution of each feature is directly visible (in linear regression), and

cutoff points between different modes are obvious (decision trees). Logistic regression is

particularily well-suited to determine the relevance of the features, since the odds ratio

allows one to directly read off the relevance of a feature.

The contribution of this Chapter is two-fold: (i) We investigate which features drive

the modal choice, and how strongly they impact the choice. As such, we support car-

sharing operators in their decision on which modes to use to rebalance their fleet. An

operator has to set the feature values for her operating area, and can obtain the optimal
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mode or modal combination. Since the decision tool provides intermediate information

(cost estimates for the individual modes), she can also easily adapt the decision rule to

include more modes, or be more strict. (ii) We contribute to the literature on integrating

methods from operational research and analytics. Our approach is applicable in many

different domains in which insights of a operational decision impact strategic decisions,

and results should carry over between different environments. The feature-based se-

lection algorithms only require information that can be known to carsharing providers

prior to starting their service. On a side note, we show that in most of the instances,

the optimal rebalancing mode is either bike or truck, whereas other modes hardly ever

become relevant. Further, the intermediate results can also be used to steer tactical

decisions such as setting the shift length.

Section 4.2 introduces the available modes for rebalancing carsharing systems, and

shows how they can be integrated. In Section 4.3, we present feature-based selection

algorithms and apply them on synthetic data. Section 4.4 concludes this Chapter.

4.2 Rebalancing Modes and Problem Formulations

We first introduce the individual modes, and subsequently introduce the model formu-

lation for the Multi-Mode Carsharing Relocation Problem (M-CRP). The single-mode

Carsharing Relocation Problems (CRPs) can be instantiated from the M-CRP by re-

stricting usage of other modes.

Locations with an excess in vehicles are called “pickup locations”, and locations with

a demand for additional vehicles are called “delivery locations”. Pickup and delivery

locations have unit-demand which does not restrict the problem, since locations can

be split as explained by Dror et al. (1998). All pickup and delivery demand must be

satisfied.

4.2.1 Relocation Problem with Car

A group of workers relocate vehicles by driving them. To get to the next vehicle, workers

give each other lifts. We consider two versions of the Carsharing Relocation Problem with

Car (CRP-C): In the Carsharing Relocation Problem with Car and Dedicated Helpers

(CRP-CD), a dedicated second worker (“helper”) follows the first worker (“relocator”),

and gives her lifts from each delivery to the next pickup location. In the Carsharing Re-

location Problem with Car and Shared Helpers (CRP-CS), all workers can be “helpers”
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and “relocators”, and roles may switch during the shift. Figure 4.1 depicts an example

0

1

2

3

4

Figure 4.1: Example Routing CRP-C: Three workers leave the depot in two vehicles, jointly
relocate the vehicles (from 1 to 2 and from 3 to 4), and return to the depot in
two vehicles. The grouping of workers into relocator-helper pairs changes during
the route.

route for the CRP-CS.

Using cars to rebalance a carsharing fleet poses a very natural choice, since a large

number of vehicles is available to operators. As such, rebalancing by car can always

work as a default option if none of the other modes can be used. Also, using cars for

rebalancing can easily be integrated with rebalancing by public transportation. However,

the number of employees needed for this mode is often higher than with the other

modes, since arcs are traversed by two workers. If helpers are “shared”, synchronization

becomes necessary which impacts the computation time for an optimal tour as well as

the tour itself. Sharing helpers is only preferential if the number of vehicles that shall

be rebalanced is sufficiently high (the number of vehicles indirectly drives the number of

workers, and multiple workers are necessary to make sharing of helpers more profitable

than dedicated helpers).

The CRP-CD is modeled as a VRP with maximum tour duration on a bipartite graph

(with symmetric travel times but asymmetric routing costs). The CRP-CS is modeled

as a VRP with synchronization constraints and a maximum tour duration. Obviously,

any solution to the CRP-CD is also feasible for the CRP-CS. Another special case of the

CRP-CS is relocation by van. There, only some vehicles can be used for staff rebalancing,

and these vehicles may have a larger capacity. We omit this mode, since the number

of workers in most instances does not substantially exceed the vehicle capacity, and the
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vehicle capacity is almost never utilized.

4.2.2 Relocation Problem with Bike

As an alternative to hitching rides with other relocators for trips from delivery to pickup

location, operators can use a (foldable) bike that fits into the trunk of the carsharing

car (or use bikesharing if it is reliably available). In urban areas, the advantage of

the mode bike is clear: Bike lanes are less congested and often more direct than roads

for motorized travel, resulting in similar travel times at lower costs (vehicle costs and

salaries). However, bike usage may be restricted by weather (e.g., in the Scandinavian

winters) or road conditions (e.g., in North American cities without proper bike lanes).

This either results in lower velocities or higher costs to include the possibility that the

mode must be switched. Obviously, the worker and her bike must travel the same route,

reducing the possibility for integrating relocating by bike with other modes.

The Carsharing Relocation Problem with Bike (CRP-B) is modeled as a VRP with

maximum tour duration on a bipartite graph, and both travel times and routing costs

are asymmetric. Figure 4.2 depicts an example route for the CRP-B.
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Figure 4.2: Example Routing CRP-B: One worker leaves the depot riding a bike. When
relocating vehicles from 4 to 3, and from 1 to 2, she stores the bike in the trunk,
to be able to use the bike for riding from 3 to 1 and for returning to the depot.

4.2.3 Relocation Problem with Public Transit

Workers can also use public transit to reach the next pickup location. This implies

walking to the next location, using one or more lines (incurring waiting time at every
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changeover), and walking to the destination. This mode is cheap (costs for public trans-

portation day passes are negligible compared to vehicle costs or wages), and can be very

fast if carsharing vehicles are parked in close proximity to public transportation sta-

tions, but can be much slower than other modes if walking distances and waiting times

increase. If public transportation is unavailable in parts of the operating area, this mode

can become infeasible due to the low walking speed (violating shift length restrictions).

The Carsharing Relocation Problem with Public Transit (CRP-P) is also modeled as a

VRP with maximum tour duration on a bipartite graph. Figure 4.3 depicts an example

route for the CRP-P. The travel times and routing costs for the route segment from
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Figure 4.3: Example Routing CRP-P: The routing decision is restricted by the availability
of public transportation. One worker leaves the depot using public transport
(walking to station a on the horizontal line, transferring at b to the vertical line
to get to e). She also uses public transport from 2 to 4 (using the vertical line),
and to return to the depot (using the horizontal line).

delivery to pickup location are derived from a shortest-path problem on an auxiliary

graph containing expected travel and waiting times. Thus, we must assume that the

service frequency is constant during the rebalancing period. While this restricts the

applicability of the rebalancing problem in the late evening (when public transit phases

down), it is realistic during the night after the public transit system operates on its night

schedule.

4.2.4 Relocation Problem with Truck

In particular for longer route segments, it can be beneficial to pool multiple relocation

operations by loading vehicles onto a truck rather than driving each vehicle individually.
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Inaccessibility poses a challenge for truck routing in city centers with narrow roads:

It can be necessary to park the truck at a nearby location (or one of multiple access

points), and walk to the pickup location to retrieve the vehicle. Rebalancing by truck is

beneficial if the increased capacity can be utilized, i.e., if pickup and delivery demands

are clustered. This mode is clearly dominated if walking distances are large, or if trucks

face severe issues maneuvering in the city, resulting in low average velocities.

The Carsharing Relocation Problem with Truck (CRP-T) is modeled as VRP with

simultaneous pickup and delivery, multiple pickup options, capacity limit and maximum

tour duration. Figure 4.4 depicts an example route for the CRP-T.
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Figure 4.4: Example Routing CRP-T: The truck (driven by one worker) leaves the depot
empty. Two vehicles are loaded onto the truck consecutively. The vehicle at 1
is not directly accessible, forcing the truck driver to retrieve the vehicle by foot.
Both vehicles are delivered consecutively, before the truck returns to the depot.

4.2.5 Multi-Modal Carsharing Relocation Problem

Obviously, operators can benefit from integrating the above modes (all or a subset of

them). Then, a pickup or delivery demand is satisfied if a worker using any of the

permitted modes visits this demand node. Workers are no longer restricted to one

mode, but might hitch a ride for parts of their tour and use public transit for another

route segment.

The M-CRP is modeled as a VRP with multiple synchronization constraints on load,

service and timing, as well as constraints particular to the modes.
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Notation

The set of all locations N is comprised of pickup locations (N+), delivery locations (N−)

with unit capacity, entry points for pickup locations Ei, i ∈ N+ that are inaccessible by

truck, and the depot (D). If excess supply or demand at some geographical location is

higher than 1, this location is split into multiple co-located nodes (similar to Dror et al.

(1998)). If a pickup node i is directly accessible, we create a copy i′ that represents the

access point to i (i′ ∈ Ei). There is exactly one vehicle available for relocation at every

pickup location. If multiple vehicles are present at the same geographic location, multiple

nodes are created (similar, if multiple vehicles are required at the same location). The

depot is 0 and n+1 where 0 marks the start of all tours and n+1 the end (D = {0, n+1}).
W workers and X trucks leave the depot 0 and return to the duplicate depot n + 1.

Workers can hitch rides with colleagues, use a bike or public transport. The maximum

number of workers riding bikes is Y ≤ W . The number of vehicles leaving the depot is

limited to V . The capacity of a carsharing vehicle is set to θ workers, and the capacity

of a truck is denoted by κ cars.

As previously stated, every node is visited by at most two vehicles. This implies

that each arc (i, j) between two locations i ∈ N and j ∈ N is used by at most two

vehicles. We use the variables vaij, w
a
ij, xij, y

a
ij, zij to denote the routing of carsharing

vehicles (vaij), workers in those vehicles (waij), trucks (xij), bike workers (yaij), and public

transport workers (zij), respectively. Here, i refers to the start of an arc, j to its end,

and a ∈ A = {1, 2} to one of the two parallel arcs. vaij, xij and xij are binary variables

as every arc can be used by at most one vehicle, truck, or public transportation worker,

whilst waij and yaij are Integer, referring to the number of workers on an arc. As variable

yaij does not distinguish between bike workers riding their bike and bike workers traveling

by car, we introduce an auxiliary variable ya′ij which tracks bike workers traveling by car

(thus, yaij − ya′ij refers to bike workers traveling by bike). uij tracks if a truck collects

a vehicle at j through entry point i. si is the timing variable and tracks when a node

i ∈ N is visited. qi represents the load on the truck when the truck leaves node i.

The costs are comprised of routing costs for each type of transport: cvij for vehicles, cwij

for workers in those vehicles, cxij for trucks, cyij for workers riding bikes, and czij for workers

using public transport. We denote the travel time as tvij, t
w
ij, t

x
ij, t

y
ij, t

z
ij, respectively. The

cost for loading a vehicle onto a truck and the associated time are denoted as tuik, c
u
ik

where k is the pickup location and i is the entry point.
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Model Formulation

We minimize the total routing cost for the entire fleet:

min
∑
a∈A

∑
i,j∈N

(
cvijv

a
ij + cwij

(
waij + ya′ij

)
+ cyij

(
yaij − ya′ij

))
+
∑
i,j∈N

(
cxijxij + czijzij

)
+
∑
i,j∈N

cuijuij. (4.1)

Routing costs consist of vehicle routing costs cv, worker routing costs for workers in

vehicles cw (both “bike” workers y′ and regular workers w), routing costs for workers

on bikes cy (y−y′) and workers using public transport cz, as well as truck routing costs

cx, and costs for accessing locations which cannot directly be reached with a truck cu.

We first consider the routing of the truck:∑
j∈N

xij =
∑
j∈N

xji ∀i ∈ N \ D (4.2)∑
j∈N

xij = 0 ∀i ∈ N+ (4.3)

uik ≤
∑
j∈N

xij ∀k ∈ N+, i ∈ Ek (4.4)

qi ≥ qj +
∑
k∈N

uik − (1− xji)κ ∀i ∈
⋃
l∈N+

El, j ∈ N (4.5)

qi ≤ qj +
∑
k∈N

uik + (1− xji)κ ∀i ∈
⋃
l∈N+

El, j ∈ N (4.6)

qi ≥ qj − 1− (1− xji)κ ∀i ∈ N−, j ∈ N (4.7)

qi ≤ qj − 1 + (1− xji)κ ∀i ∈ N−, j ∈ N (4.8)

qi ≤
∑
j∈N

xijκ ∀i ∈ N (4.9)∑
j∈N

x0j ≤ X (4.10)∑
j∈N

xj,n+1 ≤ X (4.11)

A truck must leave all locations it enters (flow conservation, constraints (4.2)), but

cannot directly visit pickup locations (constraints (4.3)). Instead, there exists at least

one entry point (i ∈ Ek ⊂ N ) from where this point k can be visited (constraints

(4.4)). Subtour elimination is necessary, but will follow directly from timing which
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we introduce later. We ensure that the capacity of the truck (parameter κ) is never

exceeded by guaranteeing that the load on the truck when leaving some node i does

not exceed κ (constraints (4.5)-(4.9)). When leaving and entering the depot, the load of

the truck is the same intrinsically, and we do not restrict this any further at this stage

(constraints (4.18) will ensure that sufficient vehicles are available at the depot). The

number of trucks leaving and entering the depot is limited to X , and if some trucks are

not required, they will not leave the depot (constraints (4.10)-(4.11)).

Next, we consider the routing of vehicles driven by workers:∑
a∈A

∑
j∈N

vaji −
∑
j∈Ei

uji =
∑
a∈A

∑
j∈N

vaij − 1 ∀i ∈ N+ (4.12)∑
a∈A

∑
j∈N

vaji − 1 =
∑
a∈A

∑
j∈N

vaij −
∑
j∈N

xij ∀i ∈ N− (4.13)∑
a∈A

∑
j∈N

vaij ≤ 2 ∀i ∈ N− (4.14)∑
a∈A

∑
j∈N

vaji ≤ 1 ∀i ∈ N− (4.15)∑
a∈A

∑
j∈N

vaij ≤ 1 ∀i ∈ N+ (4.16)∑
a∈A

∑
j∈N

vaji ≤ 2 ∀i ∈ N+ (4.17)∑
a∈A

∑
j∈N

va0j + q0 ≤ V (4.18)∑
a∈A

∑
j∈N

vaj,n+1 + qn+1 ≤ V (4.19)

All vehicles which are not loaded onto a truck must be driven from their pickup locations

to a delivery location. If a vehicle is driven from i ∈ N+ to j ∈ N− (and thus, not

carried on a truck:
∑

k∈Ei uki = 0 and
∑

k∈N xkj = 0), one more vehicle leaves i than

enters i (constraints (4.12)), whilst one more vehicle enters j than leaves j (constraints

(4.13)). The number of vehicles at any node is restricted by constraints (4.14)-(4.17).

Implicitly, there are two vehicles leaving i and one vehicle entering i, if i is serviced

by car, and one vehicle leaving i and no vehicle entering i, if i is serviced by bike or

public transportation (no vehicle enters or leaves i, if i is serviced by truck). The reverse

holds for delivery locations j. Similar to trucks, subtour elimination will follow from

the timing constraints introduced at a later stage. The number of vehicles leaving (and

entering) the depot (being driven or loaded onto a truck) is limited to V (constraints
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(4.18)-(4.19)).

Worker routing must reflect that the movement of workers is contingent to vehicles,

bikes, or public transport:∑
a∈A

∑
j∈N

waij +
∑
j∈N

zij =
∑
a∈A

∑
j∈N

waji +
∑
j∈N

zji ∀i ∈ N \ D (4.20)∑
a∈A

∑
j∈N

yaij =
∑
a∈A

∑
j∈N

yaji ∀i ∈ N \ D (4.21)

vaij ≤ waij + ya′ij ∀i, j ∈ N , a ∈ A (4.22)

waij + ya′ij ≤ θ · vaij ∀i, j ∈ N , a ∈ A (4.23)

ya′ij ≤ yaij ∀i, j ∈ N , a ∈ A (4.24)∑
a∈A

∑
j∈N

wa0j +
∑
j∈N

z0j +
∑
a∈A

∑
j∈N

ya0j ≤ W (4.25)∑
a∈A

∑
j∈N

ya0j ≤ Y (4.26)

Workers driving vehicles (or hitching a ride with another vehicle) and workers commut-

ing by public transport can switch roles (constraints (4.20)), whilst workers using bikes

are fixed in their role, as they have to bring along their bike. Thus, we model flow

conservation for bike workers (constraints (4.21)) and other workers (constraints (4.20))

separately. Subtours will be eliminated via timing constraints. Vehicles cannot oper-

ate unless a worker travels along the same arc (constraints (4.22)), and no worker can

travel by car, unless a vehicle travels there as well (constraints (4.23)). The latter set

of constraints also ensures that the capacity θ for workers per vehicle is not exceeded.

Constraints (4.24) are variable assignment constraints that link workers with bikes (re-

gardless of their current mode of transport) and bike workers driving cars. At most W
workers can leave the depot (constraint (4.25)), and at most Y of these can use bikes

(constraint (4.26)).

Worker and vehicle movements are synchronized using timing variables:

si + vaij
(
Tmax + tvij

)
≤ sj + Tmax ∀i, j ∈ N , a ∈ A (4.27)

si + zij
(
Tmax + tzij

)
≤ sj + Tmax ∀i, j ∈ N (4.28)

si +
(
yaij − ya′ij

) (
Tmax + tyij

)
≤ sj + Tmax ∀i, j ∈ N , a ∈ A (4.29)

si + xij
(
Tmax + txij

)
+
∑
g∈N

tuiguig ≤ sj + Tmax ∀i, j ∈ N (4.30)
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For each node, we define a point in time si. This is possible, as every node is visited

exactly once. All si must be lower than or equal to the time limit/maximum shift

length Tmax. Obviously, cars and workers in cars travel at the same velocity, resulting in

equal travel times tvij. A vehicle which leaves i and travels directly to j, thus, imposes

the timing constraint that sj must be at least tvij more than si (constraints (4.27)).

Similarly, we impose timing constraints for public transportation (constraints (4.28)). If

a bike worker is traveling by car, timing is already taken care of by constraints (4.27). If

she travels by bike (yaij − ya′ij = 1), constraints (4.29) ensure feasible routes with respect

to timing. For the timing of the truck, we further consider the time required to walk to

a pickup location and load the vehicle onto the truck (constraints (4.30)).

The domains are as follows:

uaji ∈ {0, 1} ∀i ∈ N , j ∈ Ei (4.31)

vaij ∈ {0, 1} ∀i, j ∈ N , a ∈ A (4.32)

waij ∈ N0 ∀i, j ∈ N , a ∈ A (4.33)

xij ∈ {0, 1} ∀i, j ∈ N (4.34)

yaij, y
a′
ij ∈ N0 ∀i, j ∈ N , a ∈ A (4.35)

zij ∈ {0, 1} ∀i, j ∈ N (4.36)

qi ≥ 0 ∀i ∈ N (4.37)

si ≥ 0 ∀i ∈ N . (4.38)

4.3 Feature-Based Selection and Numerical Study

To investigate which features drive the modal choice, we employ three different classifi-

cation algorithms, namely multiple linear regression, multinomial logistic regression, and

decision trees. We first introduce the numerical design and the classification algorithms.

The classifiers are then used to derive features driving the modal choice. Subsequently,

we show how the algorithms can be used to determine the benefit of hybridization, show

that misclassified instances are incorrectly classified due to random variances in the

tours, and apply the model to several example cities.
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4.3.1 Data Generation and Features

There are various factors which can influence the rebalancing cost. These are related

to the city/environment (e.g., average velocities for the individual modes and quality

of public transportation), as well as the operator and her fleet (e.g. number of vehicles

that shall be rebalanced and shift length). A list of features f ∈ F can be found in

Feature High Value Low Value

No. Vehicles |N+| 20 10

Shift Length [min] Tmax 480 240

Velocity Car [km/h] vv 40 20

Costs Car [N/km] cv 0.3 0.1

Capacity Car θ 4 2

Velocity Bike [km/h] vb 20 10

Velocity Walking [km/h] vw 6 3

Velocity Publ. [km/h] vp 50 25

Distance between lines [km] dp 3 1.5

Time Changeover [h] tc 0.2 0.1

Costs Employee [N/h] ce 20 10

Velocity Truck [km/h] vt 30 15

Costs Truck [N/km] ct 1.875 0.625

Capacity Truck κ 4 2

No. Access Pts. |Ai| 4 2

Max. Distance Access Pt. [km] da 0.4 0.0

Table 4.1: List of Potential Features for the Experimental Design

Table 4.1. We randomly generate instances abiding to these features. The number of

pickup and delivery locations coincides, and is given by # vehicles. Velocities and costs

are self-explanatory (but costs must be transformed into a distance-based measure since

all costs in the objective function ((4.1)) are distance-based). Thus, worker-related costs

must be calculated as costs employee/velocity. The velocity of the car is restricted by

the speed limit within the city, but not as much subject to congestion as during the day,

permitting higher velocities. The vehicle costs either only consist of fuel spent, or refer
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to the total cost of ownership. Trucks are slower than cars, but within the city, the speed

difference is not too high. The cost of the truck is modeled after Wittenbrink (2014), but

excluding costs for the driver, and considering that original equipment manufacturers

may be able to utilize idle time of their existing fleet of trucks for rebalancing (in the

lower value). This number of vehicles does not correspond to the fleet size, but is a

measure for the imbalance of the system.

Every night, only a small number of vehicles is selected for rebalancing (e.g., by

employing demand prediction, Vosooghi et al. (2017), or simple filtering rules), and the

number of vehicles does not change too much between two periods. If the imbalance

is less than 10 vehicles, operators will most likely not rebalance every night (resulting

in a larger number of vehicles that shall be rebalanced). If the imbalance exceeds 20,

operators either rebalance more frequently, or partition the operating area into districts

upfront (analogous to Weikl and Bogenberger (2015)). The public transport network is

modeled after the underground network of most major European cities with dense lines

resulting in a good coverage. It consists of a grid with stops every 1.5km, and the distance

between two horizontal (vertical) lines varies between 1.5 and 3km. Changeover between

lines takes on average between 6 and 12 minutes (less frequent than during rush hour, as

most public transport services are restricted at night when relocation takes place). Since

public transport uses a dedicated (congestion-free) network, the average velocity can be

as high as 50km/h (e.g., Munich underground), but may be slower for transportation

above ground.

As mentioned before, trucks cannot reach all pickup points directly, but the truck

must be parked at some access point. Access points are randomly sampled in a circle

around the pickup location, using a uniformly sampled distance between 0 and a given

maximum da that varies between 0.0 and 0.4km. The minimum value is attainable in

many North American cities where even city centers are car-friendly. The maximum

value is realistic for historic city centers (e.g., in Europe) where few major roads exist

that can be several hundred meters apart.

Some features in Table 4.1 have a non-linear impact on the rebalancing cost (e.g., the

marginal cost of an additional vehicle is decreasing due to pooling effects), features may

jointly impact the rebalancing cost (e.g., worker-related cost per kilometer of biking),

and the decision can be driven by the ratio between any two features. Thus, we generate

additional features:

log (# vehicles) = ln
(
|N+|

)
ln
(
|N+|

)
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Costs employee bike [N/km] =
ce

vb
cb

Costs employee walking [N/km] =
ce

vw
cw

Avg. costs line change [N] = ce · tc cl

Avg. distance walking to station [km] = dp ·
1∫

0

1∫
0

√
x2 + y2dydx ds

Avg. costs walking closest station [N] = ds · ce cs

Avg. distance closest acc. pt. =
1

1 + |N+| · d
a min da

as well as all ratios of two velocities, such as

Velocity Bike vs. Walking =
vb

vw
vb

vw
.

For the decision trees, we also use the predicted costs of the linear regression as input,

i.e., the predicted cost of the mode “car with dedicated helpers” Ccd and “car with

shared helpers” Ccs, the predicted cost of the mode “bike” Cb, the predicted cost of the

mode “public transit” Cp, and the predicted cost of the mode “truck” Ct, as well as

minimum costs Cmin and cost differences between the selected and the cheapest mode

(using predicted costs), ∆cd, ∆cs, ∆b, ∆p, and ∆t.

Instances are sampled using a space-filling design for the experiment. In total, 600

design points are generated using a 16-dimensional Sobol sequence. Every design point

contains the cost for all individual modes. To determine the costs, we solve the CRPs

outlined in Section 4.2 using IBM ILOG CPLEX v12.10 (managed through Java) on a

Windows computer with 16GB of memory and four cores. To show that our classifica-

tion of the best mode is good, and that misclassification mainly occurs if hybridization

improves the solution, we additionally calculate the cost of the hybrid solution for 150 of

the above design points. Further, instances that were incorrectly classified are replicated.

Details on the latter instances will follow during the course of this Chapter.

Table 4.2 lists general descriptive statistics regarding the training and test data. We

list the average cost for rebalancing the entire fleet, and how much the instances (with

other features) deviate from this average, given by the relative root-mean-squared error

(RRMSE). RRMSE (all) can be interpreted as the total variance in the rebalancing

cost, not differentiating between random and feature-driven variance. We also report

how frequently any mode is the best, second best, etc. mode. Rows ∆ report the cost
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increase if this mode were chosen in all instances, compared to the minimum costs of

an instance, separately for all instances and those instances in which the best mode

differs. For the test data, we additionally report how frequently a single-mode route

Car (Ded.) Car (Shared) Bike Publ. T. Truck

Training and Test Data (600 instances)

Avg. cost 235.18 212.95 143.71 220.06 178.45

RRMSE (all) 34.7% 32.3% 33.6% 34.3% 35.7%

# 1 0 4 408 7 181

# 2 1 138 172 113 176

# 3 81 239 19 201 60

# 4 212 219 0 112 57

# 5 306 0 1 167 126

∆ 104.44 82.22 12.56 89.28 89.97

∆ (misclass.) 104.44 82.78 39.25 90.49 128.53

Test Data (150 instances)

equal to hybrid (0) 0 88 0 32

used in hybrid (0) 2 107 0 41

Comparison (20 instances)

RRMSE (same) 19.4% 13.5% 19.1% 11.4% 12.7%

Table 4.2: Basic Statistics on Training and Test Data

coincides with the hybrid solution (and is, thus, the single best mode, and the benefit of

hybridization is non-existent), and how frequently a mode is used as part of the hybrid

solution (regardless of whether or not other modes are present). Since any incorrect

cost estimate or misclassification can either be due to random cost differences between

two instances with the same features or due to imprecisions of the classifiers, we list

the RRMSE for 20 identical instances that have average values for all features. This

RRMSE (same) can serve as a proxy for the cost differences between any two days in

the same carsharing system (random cost variance), and also provides an upper bound

on the classification performance.

On average, we see that bike is the best mode, followed by truck. The other modes

result in very similar average costs. This is due to a high dependency on the features,
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given by the high RRMSE (all) of ≈ 1/3 across all modes. Together with the low

RRMSE (same), this suggests that costs (and thus the mode selection), are in fact driven

by features. The reasonably low RRMSE (same) indicates that costs of similar instances

are in fact similar, and thus that it makes sense to predict costs as an intermediate step

for the feature-based selection. The added costs of 39.25 among instances in which bike is

not the best mode is already relatively low, but leaves some room for improvement. Any

feature-based algorithm must be evaluated against this benchmark. Surprisingly, the

added costs of always choosing mode truck are higher than those for mode car (shared)

which suggests that the instances where mode truck is optimal differ in their structure

from other instances. The low RRMSE (same) suggests that carsharing operators can use

the costs of a sample day to predict the costs of other days (using the same features), and

allocate sufficient budgets accordingly. However, bike and cars with dedicated helpers

show much higher random errors of 19.1% and 19.4%, respectively. This can be explained

by the bipartiteness of the routing graph, but restricts the predictive power of the cost

estimates. Then, restricting oneself to the same mode over a longer period of time may

be suboptimal on some days due to random realization of the spatial distribution of

demand.

4.3.2 Classification and Prediction Algorithms

To decide whether a mode shall be part of the routing, we predict costs of the individual

modes using linear regression, and the best mode is predicted via logistic regression and

decision trees.

Cost Estimation per Mode using Multiple Linear Regression

We estimate costs for rebalancing the fleet with each of the modes using separate multiple

linear regression models. The assumption of multiple linear regression classifiers is that

every describing variable (feature f ∈ F with value vif for instance i ∈ I) has linear

influence on the objective. The total costs Cm of mode m are then approximated by

Cm =
∑
f∈F

βmf · vif + βm0 (4.39)

where βmf is a weight on each feature f of mode m, and βm0 is the intercept of the linear

function. Given a set of numeric or boolean features, the regression outputs β values

that minimize the error, given by ordinary least squares (OLS), i.e., by the squared
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difference between observed and predicted feature value (on the training data). We

exclude features which cannot have an influence on a mode (e.g., velocity of bike for

truck-based relocation) to reduce the effects of overfitting to the training data.

Table 4.3 lists the β values for each feature. Features which we excluded a-priori are

marked with “−”, the value βmf = 0 indicates that the linear regression ignored this fea-

ture since it does not improve the cost estimate (when minimizing the Akaike criterion).

The β values reflect basic intuition: The more cars an operator has to relocate, the more

expensive is the entire process. Due to the combination of linear and logarithmic com-

ponents in the number of vehicles, ranking the modes by influence of additional vehicles

is not straight-forward, but in general, total costs of the mode truck grow slower in the

number of locations as well as velocities than costs of the other modes. This indicates

that in a more imbalanced system (with more rebalancing necessary), operators resort

to a less environmentally friendly mode (truck). Alternatively, a higher imbalance can

also be a result of a larger operating area, providing mobility to a larger share of the

population. Public authorities can counteract the usage of trucks in presence of larger

imbalances by encouraging more frequent rebalancing, and operators can reduce the im-

balance by incentivizing round trips and user-based rebalancing. The hourly wage (ce)

and costs for the car (cv) have the highest impact on the mode car, followed by bike and

public transit (both of which also have combined features containing ce), and are lowest

for the mode truck. A longer shift length slightly decreases the costs (as fewer routes

start from the depot on average, increasing the benefits of pooling). Higher velocities

decrease the total costs. This explains why operators rebalance during the night when

average velocities are higher due to lower congestion. This is beneficial for the society, as

rebalancing then does not contribute to congestion during the rush hours (even though

the number of vehicles that are rebalanced is not exceedingly high, searching for a park-

ing spot can substantially contribute to congestion). While it seems contradictory at

first that an increasing average distance to the closest station (dp) decreases the costs of

mode public transit, this effect is alleviated by the increasing effect of cs.

Table 4.4 shows the out-of-sample performance of the classifier. A common metric

for a classifier is listing the cost of misclassification as well as listing the probability of

misclassification. The cost can be represented in two ways: for each linear regression,

we can report the average deviation between actual (Cm
i ) and predicted (Ĉm

i ) costs∑
i∈I |Ĉm

i − Cm
i |

|I| ,
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Feature Car (D) Car (S) Bike Publ. T. Truck

|N+| 5.055 9.8453 0 7.9445 8.39

Tmax -0.0584 0 -0.0513 -0.146 -0.1013

vv -7.4095 -6.4485 -1.9165 -1.8213 0

cv 425.0377 336.6039 164.9144 160.9452 79.7144

θ - -3.4498 - - -

vb - - 0 - -

vw - - - 0 0

vp - - - -0.8535 -

dp - - - 50.453 -

tc - - - 0 -

ce 14.3235 12.5612 3.6474 5.7231 0.9454

vt - - - - -1.4956

ct - - - - 90.9407

κ - - - - -12.6297

|Ai| - - - - 0

da - - - - 0

ln (|N+|) 67.243 0 84.9794 40.2385 -18.8213

cb - - 86.7523 - -

cw - - - 5.9394 0

cl - - - 0 -

dp - - - -133.4148 -

cs - - - 37.6697 -

min da - - - - 0

intercept -56.674 29.8112 -177.9893 -109.6515 2.4168

Table 4.3: β Values of Linear Regression Models per Mode

and the relative root-mean-squared error (RRMSE)

RRMSE =

√√√√∑i∈I

(
Ĉm
i − Cm

i

)2
|I| · 1

C̄m
,

92



4.3 Feature-Based Selection and Numerical Study

where |I| is the number of instances, and C̄m is the average cost over all instances.

Another measure for the quality of an estimator is the coefficient of determination (R2)

R2 = 1−
∑

i∈I

(
Ĉm
i − Cm

i

)2
∑

i∈I
(
C̄m − Cm

i

)2 .
We also report the costs arising from incorrectly choosing one mode if another would be

preferred. In this case, the cost of misclassification only corresponds to the best mode,

rather than the entire ordering. We list how frequently any mode was incorrectly cho-

sen as best mode (false positives (FP)) or incorrectly chosen as inferior (false negatives

(FN)). The difference between actual and predicted costs increases with the actual costs

Car (D) Car (S) Bike Publ. T. Truck Overall

Cost deviation 37.26 27.92 22.50 26.83 19.57

RRMSE 21.0% 16.5% 20.8% 16.3% 14.8%

R2 44.8% 65.4% 34.5% 68.1% 78.5%

FP 0 2 2 2 6 8%

FN 0 1 9 0 2 8%

∆ cost (#1) - 20.64 14.39 9.40 11.64 13.84

Table 4.4: Out-of-Sample Accuracy Metrics Linear Regression

(which is to be expected). This entails that the absolute cost of misclassification, that

is the excess cost operators have to cover when choosing a suboptimal mode, increases

in the instance size (the relative cost of misclassification remains approx. constant).

The number of misclassified instances is very low with 12/150 instances (8.0%), and the

impact of the misclassification is comparatively low. If a misclassification occurs, this

adds costs of 13.84 on average, and is slightly lower if the mode “truck” is involved.

This means that on average, operators spend less than 14N daily – or less than 10%

of the total rebalancing cost – due to misclassification which is a reasonable price for

a simple approach. Also, linear regression adds fewer costs than a simple selection of

mode “bike” in all instances (compared to Table 4.2). Authorities can encourage a

more environmentally friendly mode by covering this cost difference. Further, misclas-

sification occurs more frequently if hybridization among the modes “bike” and“truck”

improves the solution, and both modes are part of the hybrid solution (7/12 misclassi-

fied instances benefit from hybridization, vs. 20% in the entire test data). Assuming
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that the necessity for hybridization is Bernoulli-distributed,this difference is statistically

significant for α = 0.99 using a two-tailed two-sample z-test. Misclassified instances

are commonly “borderline” instances; multiple modes are promising candidates, and

hybridization among these modes improves the solution.

Overall, this classifier based on linear regression allows operators to easily establish

the best mode. The classifier performs well with respect to accurary and cost of mis-

classification as metrics. However, linear regression only helps in establishing features

that drive rebalancing costs, and features driving modal choice cannot readily be found.

Prediction of the Best Mode using Multinomial Logistic Regression

Using (multinomial) logistic regression, we estimate the probability mode m minimizes

the cost for instance i. Logistic regression estimates the weights of a linear regressor, and

uses the logit of this linear regressor to predict the odds that a mode is best (probability

that mode m is best relative to the probability that the reference mode is best). As such,

multinomial logistic regression maximizes the multinomial log-likelihood (the probability

of predicting the correct class)

L =
∑
i∈I

zim · ln (Pm (v))

where zim = 1 iff the best mode for instance i is m (0 otherwise). Pm (v) is the predicted

probability for mode m, given the feature vector vi of instance i

Pm (vi) =
exp

(∑
f∈F v

i
fb
m
f

)
1− exp

(∑
f∈F v

i
fb
m
f

) ∀m ∈ b, p, c

Pt (vi) = 1− Pb (vi)− Pp (vi)− Pc (vi) .

b refers to weights on features (per mode). The classifier chooses the mode with the

highest probability.

Tables 4.5–4.6 list the b values for the modes car (shared), bike, and public transit.

The mode “truck” serves as reference category and is, thus, not listed. The out-of-

sample accuracy metrics can be found in Table 4.7. Using this classifier, 14/150 instances

are misclassified (90.7% accuracy), and the cost deviation is low with 16.09. Thus, the

logistic regression classifier performs better than using the same mode “bike” on all

instances, but does not perform as good as the linear regression classifier.
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Feature Car (S) Bike Publ. T.

|N+| -1.4869 2.9413 -2.7651

Tmax -0.0247 -0.0039 -0.15

vv 2.3782 0.2399 -1.7333

cv -241.2598 -48.0656 -163.4323

θ -0.6476 0.1085 6.6672

vb -0.9895 0.3481 -1.8377

vw -1.0752 -0.9432 17.4514

vp 1.5861 0.0161 1.8658

dp 2.9968 -6.9205 -95.0621

tc 198.52 91.5958 64.3535

ce -2.9399 -0.0496 0.6431

vt 0.6625 0.1045 0.1217

ct 27.0828 13.766 27.5977

κ -4.353 -2.05 -3.3037

|Ai| -0.0585 1.2758 10.642

da -43.4125 -32.5253 23.7726

Table 4.5: b Values of Multinomial Logistic Regression (Basic Features)

To establish the importance of the individual features, we report the odds ratio with

slight abuse of notation. Since the order of magnitude of the values differs substantially,

we instead report the odds ratio if the feature value changes by 10% of the difference

between minimum and maximum value, from the 45% percentile to the 55% percentile.

Besides, we have multiple interaction terms on different subsets of variables (e.g., costs

of an employee per hour influence four higher-order features, and the velocity of the

mode bike influences five second-order terms). Rather than reporting the odds ratio for

all combinations of minimum and maximum characteristics for all other variables, we

assume that those features f ′ with whom some explanatory variable interacts, are set to

their average value. Exemplarily,

ORm?
f = exp

(
vmin
f − vmax

f

)
bmf +

(
vmin
f − vmax

f

)
vavgf ′ b

m
f̂

shows the adapted odds ratio for a feature f that interacts with feature f ′ as a multi-
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Feature Car (S) Bike Publ. T.

ln (|N+|) 12.1653 -42.943 14.1244

cb 24.4473 -12.676 8.5237

cw 4.78 0.9899 -8.5303

cl -7.416 -5.3704 -15.5641

dp 7.6325 15.6181 82.7444

cs 4.8882 0.0255 10.0205

min da 53.8532 129.3161 17.6215

vb

vw -6.3868 1.4339 4.5752

vb

vv 16.0568 -12.3153 -132.1201

vb

vp 40.8518 17.8401 23.0729

vb

vt -3.4386 -17.8907 -36.734

vw

vc 82.1028 48.3739 69.8523

vw

vp -22.191 -47.3956 -199.2226

vw

vt -35.3511 55.155 158.4973

vv

vp -3.9882 7.6667 -7.6918

vv

vt -0.3903 -1.4769 -0.5563

vp

vt 6.6265 4.9853 -3.2219

intercept -226.1646 39.7793 37.299

Table 4.6: b Values of Multinomial Logistic Regression (Advanced Features)

plicative term such that f̂ = f · f ′. Table 4.8 lists the odds ratio for all modes except

truck. Since the number of instances for which car or public transit is the preferred mode

is very little, the odds ratios grow very large, but remain insignificant at a significance

level of 0.05. Thus, the odds ratios have limited power in describing the influence of

individual parameters on the probability of choosing public transit and car as modes.

We therefore focus on bike vs. truck, and only consider the other modes in a side re-

mark. Increasing wages reduce the probability of mode bike the most, followed by cv.

This suggests that two societal goals are competing: While high wages are beneficial for

workers (and increase equality since rebalancing is commonly a low-income job), high

wages increase the probability of using the less environmentally friendly mode “truck”.

Interestingly, an increasing velocity of public transit and an increasing distance between
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Metric Car Bike Publ. T. Truck Overall

Incorrect # 1 (FP) 0 6 3 7 9.3%

Incorrect not # 1 (FN) 2 10 0 4 9.3%

∆ cost (# 1) 15.17 14.64 20.68 11.26 16.09

Classified as Car 0 0 0 0

Classified as Bike 2 97 0 4

Classified as Publ. T. 0 3 0 0

Classified as Truck 0 7 0 37

Table 4.7: Out-of-Sample Accuracy Metrics of Mode Usage via Multinomial Logistic Regres-
sion

Feature Car (S) Bike Publ. T.

|N+| 2.56 1.08 2.25

Tmax 0.03 0.91 0.55

vv 0.81 1.98 23.37

cv 0.04 0.38 0.01

θ 3.79 1.02 0.88

vb 0.001 2.19 0.08

vw 262.49 1.01 0.24

vp 400.6 0.53 25.08

dp 0.0001 0.61 24.74

tc 0.18 1.12 2.39

ce 0.32 0.23 0.66

vt 1.12 0.81 2.50

ct 31.49 5.59 29.53

κ 0.52 0.66 0.42

|Ai| 8.04 0.93 0.86

da 3.09 0.99 0.3

Table 4.8: Odds Ratio derived from Multinomial Logistic Regression

lines exert a strong negative influence on the probability of choosing mode bike as well.
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The former can be explained by switching to public transit, the latter appears to be

random, and the randomness can be explained by using split variables: The distance

between lines decreases the probability of mode bike, while the average distance to the

closest station has a strong positive influence. An increasing capacity of the truck has a

larger impact than the velocity of the truck. This can be interpreted as using the mode

truck despite being slow if pooling benefits are sufficient (due to a larger capacity). If

a truck is used (regardless of the capacity), the society benefits from improved pooling

and shorter routes. Local authorities should therefore permit larger trucks if trucks are

used regardless of the capacity (that the operator will most likely use), but can impose

restrictions on the size of trucks in the city center to deter operators from switching

from bike to truck. If the costs for the truck increase, this increases the probability that

the mode bike is chosen. The influence of shift length on modal choice is miniscule, and

the capacity of the car, velocity of walking, and the number of access points only exert

a small influence.

Prediction of the Best Mode using Decision Trees

A decision tree consists of multiple consecutive decisions which split the data sample

along boolean criteria. Every decision increases the similarity of classified variables

(increases the probability that an instance in the sample is of class m). The classification

objective is to maximize the number of correctly classified instances (that is, correct

prediction of the best mode), using the normalized information gain as a proxy. Thus,

similarity within any subtree and dissimilarity between different subtrees is maximized.

We consider three different decision trees: (i) only using the features of the city and

fleet (including feature combinations), (ii) using features and real routing costs in the

training data, and evaluating against cost estimates from linear regression, and (iii)

using features and cost estimates. The first approach is the simplest, and can be applied

without any additional predictions. As such, it may prove best in determining influencing

factors (if the accuracy permits it). Both other approaches are upfront expected to yield

higher accuracies, but cost estimates may dominate other features. Approach (ii) is

better than approach (iii) if cost estimates from the linear regression are not biased,

since the decision tree becomes more precise. Vice versa, if cost estimates are not true

(e.g., due to missing some explanatory variables, or since some explanatory variables

do not have an approximately linear impact on the objective), approach (iii) is more

accurate than approach (ii). Thus, approaches (ii) and (iii) jointly allow us to determine

if the cost estimates are biased, and it is unclear upfront which approach performs better.
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Figure 4.5: Decision Tree with Features only

Figures 4.5–4.7 depict the decision trees. The decision tree is largest if only the

basic features are used (with 18 distinct features and 27 leaves, vs. 3 features and 4

leaves in approach (ii) and 13 features and 17 leaves in approach (iii)). This makes it

most prone to misclassification due to overfitting which we counteract by increasing the

minimum number of instances per leaf. For example, the tree uses the features vp

vt
and

vw

vp
in a subtree that never decides for the mode public transit. However, having less

features (e.g., by increasing the minimum number of items per leaf) reduces the number

of classes to two (bike and truck), and thus decreases the classification performance.
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∆b ≤ 0

bike ∆t ≤ 3.610515

truck ∆p ≤ 29.554422

publ. car

Figure 4.6: Decision Tree with Features and True Costs
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Figure 4.7: Decision Tree with Features and Estimated Costs

mode. Approach (ii) results in a very small tree that only uses the cost differences

∆m between some mode m and the best mode as features (trained on actual costs and
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evaluated against cost estimates) which suggests that the feature selection of the linear

regression is already reasonable, and that the features (and higher-order features) have

an approximately linear influence on the rebalancing cost (and thus indirectly on the

modal choice). Approach (ii) does not provide significant insights into features driving

the modal choice. Approach (iii) also overfits, but not as much as approach (i).

Table 4.9 lists the out-of-sample accuracy metrics (how frequently some mode was

incorrectly predicted as best mode, or incorrectly as not best mode, cost increase due to

misclassification, and confusion matrix) for all three approaches. We see that approach

Appr. Metric Car Bike Publ. T. Truck Overall

(i)

Incorrect # 1 (FP) 0 11 0 14 16.7%

Incorrect not # 1 (FN) 2 14 0 9 16.7%

∆ cost (# 1) 15.17 29.49 - 28.25 28.34

Classified as Car 0 0 0 0

Classified as Bike 2 93 0 9

Classified as Publ. T. 0 0 0 0

Classified as Truck 0 14 0 32

(ii)

Incorrect # 1 (FP) 0 2 5 7 9.3%

Incorrect not # 1 (FN) 2 10 0 3 9.3%

∆ cost (# 1) 11.58 10.71 10.36 11.10 10.84

Classified as Car 0 0 0 0

Classified as Bike 0 97 0 2

Classified as Publ. T. 2 3 0 0

Classified as Truck 0 7 0 39

(iii)

Incorrect # 1 (FP) 0 8 3 7 12%

Incorrect not # 1 (FN) 2 10 0 6 12%

∆ cost (# 1) 15.17 19.11 19.73 19.58 19.11

Classified as Car 0 0 0 0

Classified as Bike 2 97 0 6

Classified as Publ. T. 0 3 0 0

Classified as Truck 0 7 0 35

Table 4.9: Out-of-Sample Accuracy Metrics of Mode Usage via Decision Trees
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(i) only uses two classes on the test data (bike and truck), and the other approaches

seldomly classify instances as mode “car” or “public transit”, but this classification is

never correct. Thus, features driving the choice of other modes except bike and truck

cannot be determined well using decision trees. The number of incorrectly classified

instances is reasonably low for approach (iii) (12%), but higher than just using the

linear regression. Approach (ii) only uses the information from the linear regression,

and thus results in very similar classification performance.

Approaches (i) and (iii) only classify instances as mode “car” or “public transit” if

both bike and truck are disadvantageous due to very low velocities or very high costs.

To determine the modal split between truck and bike, we observe that the split is mainly

driven by the costs for the truck ct, ∆t and the cost for the employee ce (and higher-order

features depending on ce). Velocities and their relative differences also play a role in

determining the best mode, but their impact is less pronounced than the costs. Since

velocities are less relevant, using foldable bikes (with a lower velocity) is a reasonable

choice for a rebalancing mode.

4.3.3 Decision on Hybridization

Table 4.2 shows that hybridization improves the solution in 20% of all instances in the

test data. A closer look at the test data reveals a tendency that misclassified instances

have very similar costs for multiple modes (linear regression classifier), or a higher prob-

ability for multiple modes in logistic regression.

We use these insights to decide whether or not to use multiple modes. Using linear

regression classifier, we decide to use a mode if its predicted cost difference to the best

mode ∆m,m ∈ {c, b, p, t}, is in the range RRMSE (same). In the logistic regression, we

decide for hybridization if a suboptimal mode is chosen with a probability of at least

0.1%.

BBoth methods individually result in a false negative rate of 30.0% and 23.3% (missing

9 and 7 of 30 instances that shall be mixed). In the missed instances, bike and truck

are mostly mixed with public transit or car, and the second mode only covers a small

part of the rebalancing route. They result in false positives (classification as hybrid,

but single mode sufficient) in 51.7% (multiple linear regression) and 40.8% (multinomial

logistic regression) of all 120 test data instances that do not benefit from hybridization,

respectively. Thus, the classifier based on logistic regression is better qualified to predict

if an instance shall be rebalanced with multiple modes. However, using both methods

combined by deciding for hybridization whenever one of the methods suggests to do
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so, only four instances were misclassified, but the false positive rate increases to 59.2%

in the combined case with the same cutoff values. In these instances, the very cost-

efficient mode bike or truck is combined with a different mode on a small part of the

tour. While false positives are less problematic for operators since they do not increase

costs, only computation time, operators might aim at reducing the false positive rate at

the expense of the false negative rate. Table 4.10 reports the false negative and false

Lin. Reg. Log. Reg. Both

Cutoff (lin) Cutoff (log) FPR FNR FPR FNR FPR FNR

0.6 0.8 43.3 43.3 10.0 66.7 47.5 23.3

0.7 0.9 44.2 36.7 14.2 56.7 49.2 16.7

0.8 0.95 45.0 33.3 21.7 50.0 50.8 13.3

0.8 0.99 49.2 33.3 30.0 33.3 54.2 13.3

0.8 0.999 51.7 30.0 40.8 23.3 59.2 13.3

Table 4.10: False Positive and False Negative Rates in % for Different Cutoff Points

positive rates for different cutoff values. Clearly, a very high cutoff value is ideal if a

single method is chosen. If both methods are combined, it is possible to reduce the cutoff

values and subsequently the false positive rate and still achieve a low false negative rate.

Determining individual features that drive the decision for hybridization is not straight-

forward, since single features do not predict well if costs for different modes are close,

or more than one mode has a high probability. We observe that hybridization is more

frequently optimal on larger instances, as in larger instances, operators retain pooling

benefits in either class, and the average cost difference between bike and truck grows

smaller for larger instances.

4.3.4 Replicated Test

Whilst the rebalancing itself is an operational problem, the modal choice is of a more

strategic nature: The operator must buy trucks and bikes, have sufficient vehicles avail-

able at the depot, and hire enough personnel to perform all necessary operations (and

the number of workers can depend on the modal choice). Thus, a single replication is not

sufficient to make a statement about the optimality of the modal choice. We replicate

the incorrectly classified instances 20 times each and record the same metrics as before

(listed in Table 4.11). In total, there are 8 different feature combinations that resulted
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in misclassification in at least 4 out of 5 algorithms. First, we observe that of those in-

Alg. Car (S) Bike Publ. T. Truck Overall

Lin Reg

Incorrect #1 0 0 13 84 60.6%

Incorrect not #1 1 96 0 0 60.6%

∆ cost (#1) 25.56 21.93 8.60 24.04 21.97

Log Reg

Incorrect #1 0 8 0 84 57.5%

Incorrect not #1 1 84 7 0 57.5%

∆ cost (#1) 23.88 22.75 7.10 24.04 22.75

Tree (i)

Incorrect #1 0 0 0 104 65.0%

Incorrect not #1 1 96 7 0 65.0%

∆ cost (#1) 68.39 26.21 44.67 27.85 27.85

Tree (ii)

Incorrect #1 0 0 8 91 61.9%

Incorrect not #1 1 96 2 0 61.9%

∆ cost (#1) 68.39 23.38 14.13 25.66 24.18

Tree (iii)

Incorrect #1 0 8 0 84 57.5%

Incorrect not #1 1 84 7 0 57.5%

∆ cost (#1) 23.88 22.75 7.10 24.04 22.75

Table 4.11: Out-of-Sample Accuracy Metrics (Replicated)

stances, none is misclassified in all replications, hybridization is necessary in at least one

replication in all instances except one, and the best mode differs between replications

of the same instance in all but one instances, suggesting that the number of correctly

classified instances (56/160 - 68/160 depending on the algorithm) is reasonable. While

operators cannot expect that the predictors return the best mode for all days (with a

random realization of pickup and delivery demand), it indicates that the modal selection

is not biased.

4.3.5 Application to Sample Cities

To show the validity of our approach, we apply it to the sample cities of Milan (Italy),

Munich (Germany), and Toronto (Canada). These are cities for which case studies exist

that mention a relocation mode.
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Parameters

Table 4.12 lists the parameter values used for Milan (Italy), Munich (Germany) and

Toronto (Canada). Whenever possible, the values are set similar to Bruglieri et al.

(2014b), Nourinejad et al. (2015), and Weikl and Bogenberger (2015), and the remaining

open feature values are set to realistic values.

Feature Milan Munich Toronto

No. Vehicles |N+| 15 20 12

Shift Length [min] Tmax 300 240 240

Velocity Car [km/h] vv 25 20 20

Costs Car [N/km] cv 0.3 0.3 0.1

Capacity Car θ 2 4 2

Velocity Bike [km/h] vb 18 18 15

Velocity Walking [km/h] vw 5 5 5

Velocity Publ. [km/h] vp 35 40 30

Distance between lines [km] dp 2.2 2 3

Time Changeover [h] tc 0.18 0.15 0.15

Costs Employee [N/h] ce 13 15 10

Velocity Truck [km/h] vt 15 15 20

Costs Truck [N/km] ct 1.4 1.5 1.3

Capacity Truck κ 3 3 3

No. Access Pts. |Ai| 4 4 2

Max. Distance Access Pt. [km] da 0.4 0.4 0.2

Table 4.12: Feature Values for Example Cities (Milan, Munich, Toronto)

Insights

Table 4.13 lists the classification for all classifiers and cities. Using linear regression, we

support the modal choice reported in the case studies (bike), but also show that truck is

not much more expensive (Table 4.14). Operators may therefore frequently benefit from

hybridization. The other algorithms also frequently suggest to use trucks, supporting

the decision to use different modes (bike and truck) in the same city.
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Milan B T B B T 7 3

Munich B T T B T 3 3

Toronto B B T B T 3 3

Milan (+10%) B T B B T 7 3

Munich (+10%) B T B B T 3 3

Toronto (+10%) B B B B T 3 3

Milan (-10%) B T B T T 7 3

Munich (-10%) T T T T T 7 3

Toronto (-10%) B T T T B 3 3

Table 4.13: Predicted Best Mode per Classifier

Car (D) Car (S) Bike Publ. T. Truck

Milan 312.2 273.7 148.4 217.9 150.1

Munich 426.0 373.3 202.4 304.2 203.7

Toronto 194.6 171.4 93.3 162.6 99.9

Table 4.14: Predicted Costs (Multiple Linear Regression) for Example Cities

The decision for hybridization is stable against slight input manipulation, while the

choice of the optimal mode changes if the parameters are varied by +/-10% (reported

in the second and third block in Table 4.13). This also indicates that operators should

decide for hybridization if multiple modes result in reasonable costs, or a reasonable

choice probability.

4.4 Conclusion

We study how vehicles shall be relocated in a carsharing system: Workers can either drive

the car themselves, or load them onto a truck. To make relocation profitable, operators

“pool” multiple relocation operations. Then, the worker somehow has to continue to

the next vehicle. She can do so by biking, using public transportation, or – if there are
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multiple relocation workers – by getting a lift by a colleague.

Not all modes are necessary in all cities, and hybridization adds a substantial com-

putational overhead. We develop algorithms to determine the best mode in a city and

for a given fleet, and use these to establish key drivers for the modal choice. (i) Costs

per mode are predicted using linear regression, and the cheapest mode is used. (ii) The

probability of a mode being cost-minimizing is predicted using logistic regression, and

the mode with the highest probability is used. (iii) The best mode is predicted using

one of three different decision trees. Among the five classifiers, using the cheapest mode

(cost estimate using linear regression) results in the highest accuracy and lowest added

cost due to misclassification.

We find that in most instances, the optimal mode is bike or truck. The most cost-

efficient mode is bike if wages for workers are not too high, and costs for vehicles (fuel,

wear, tear) are low. Thus, the societal goals of low emissions (rebalancing by bike) and

high salaries (resulting in truck as cost-minimizing mode), compete, as well as high prices

for fuel (and thus tax income) and low emissions. If the high imbalance in the system

(and thus the high number of vehicles that shall be rebalanced, and the optimality of

mode “truck”) is a consequence of a larger operating area, the societal goals of providing

mobility to a larger part of the population and environmentally friendly rebalancing

may also compete. Since the optimality of the mode “truck” is also affected by the

accessibility (given by the average distance between a parking spot and the location of

the vehicles, as well as the maximum capacity that still allows the truck to maneuver in

the city), rebalancing by bike is more common in dense (often historic) city centers than

in sub-urban regions. These competing goals open a new avenue for future research: How

can public authorities incentivize operators to rebalance using environmentally friendly

modes, while reaching a high availability and paying fair wages to their employees?

Public transit and car are only the preferred mode if bike and truck are impeded: If

accessibility by truck is very low, and if bikes travel very slowly. We find that in most

instances, hybridization is in fact not necessary.

Our analysis is restricted to operator-based rebalancing. In future research, one can

use a similar analysis might allow operators to determine to what extent they should

incentivize users to rebalance, and which to rebalance using one of the aforementioned

modes, and which vehicles should be rebalanced by users. This process can then serve

as a preprocessing step to the routing.
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Chapter 5

It’s All in the Mix: Technology Choice

for Vehicle Sharing

With the rise of driverless vehicles, operators of vehicle sharing systems might benefit from in-

troducing them into their fleet mix. Whilst optimization models for fleet sizing and rebalancing

exist for both the driverless and human-driven case, no model considers the value of driverless

vehicles in sharing systems due to operational benefits despite higher investment costs. This

Chapter studies a new technology choice and mix problem with stochastic demands. We show

when vehicle sharing operators benefit from introducing driverless vehicles in their fleet mix,

and when driverless vehicles are necessary for profitable operations. The problem is formal-

ized as a fleet sizing and composition problem that consists of two stages: The first stage

problem (strategic decision) focuses on fleet size and composition. We formulate the second

stage problem (rebalancing; operational decision) as a semi-Markov decision problem and as

a closed queueing network; both reformulations are solved using linear programming. Many

vehicle sharing systems can benefit from driverless vehicles, and frequently from using a mix of

driverless and human-driven vehicles. If the contribution margin for driverless vehicles exceeds

the contribution margin for human-driven vehicles, driverless vehicles are imperative to obtain

profitable vehicle sharing systems. Mixed fleets are beneficial if contribution margins of the

two vehicle types are similar (e.g., in carsharing), and if fixed costs vary substantially between

vehicle types. In case studies for DiDi (China) and New York City, driverless vehicles are

beneficial, while mixed fleets only increase profits in the DiDi case study. Even if demand is

relatively balanced, operators shall consider introducing driverless vehicles in their fleet. Fur-

ther, once driverless vehicles are used, operators can enter new markets that were previously

unprofitable.
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5.1 Introduction

Mobility systems currently face two paradigm shifts in parallel: the advent of a “sharing

economy” including vehicle sharing; and driverless vehicles (Qi and Shen, 2019). Vehicle

sharing comprises different types of shared mobility, including one-way carsharing (e.g.,

ShareNow) and ride-hailing (e.g., Uber). Vehicle sharing constitutes an environmentally

friendly alternative to private car ownership, permits one-way trips, is more flexible

than public transportation, and cheaper than taxis (Martin and Shaheen, 2011). For

many users, in particular in urban areas, renting vehicles for individual trips is more

cost-efficient than buying a car (Baptista et al., 2014). However, vehicle sharing systems

are so far often unprofitable due to high operational costs and low utilization, and either

require subsidies or cease operations (like AutoLib in Paris).

Currently, first vehicle sharing operators experiment with driverless vehicles in ur-

ban environments (Lyft, 2020), expecting advantages for both users and operators. For

users, renting driverless vehicles is often more beneficial than owning them (Wall Street

Journal, 2017), resulting in increasing demand for vehicle sharing. For operators, driver-

less vehicles come with significant operational benefits with regards to fleet rebalancing.

Most user flows are imbalanced in the sense that in a given time interval and at a given

station, the number of arriving users does not equal the number of departing users,

e.g., due to commuter traffic (Huang et al., 2018). To ensure that many users can rent

a vehicle at any given location, vehicles must be rebalanced, i.e. driven from a low-

demand station to a high-demand station. With driverless vehicles, rebalancing costs

can be reduced significantly. Thus, vehicle sharing firms are most likely among the first

to use driverless vehicles (Boston Consulting Group, 2020). However, driverless vehicles

are costly, since the upfront investment is substantially larger than for human-driven

vehicles.

Against this background, we study the technology choice and mix problem for partially

driverless vehicle sharing systems consisting of finding the optimal number of human-

driven and driverless vehicles, as well as the rebalancing strategy. We focus on operator-

based rebalancing rather than user-based rebalancing via incentive mechanisms (e.g.,

Ströhle et al. (2019)) or dynamic pricing (e.g., Bimpikis et al. (2019)), since user-based

rebalancing does not dissolve demand imbalances entirely, and operator-based rebalanc-

ing is more profitable if the willingness of users to move is low (Guda and Subramanian,

2019).
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5.1.1 Contribution

We present a novel technology choice and mix problem to study the benefits of intro-

ducing driverless vehicles and the benefit of mixed fleets. Specifically, our contribution

is 3-fold: (i) For the second stage rebalancing problem considering multiple vehicles,

we provide two model formulations for the dynamic carsharing rebalancing problem

with driverless and human-driven vehicles, based on Semi-Markov Decision Processes

(SMDPs) and closed queueing networks by means of a fluid-based approximation re-

spectively. (ii) For the first stage decision, we introduce a solution algorithm based

on bound-and-enumerate. (iii) We investigate the benefit of driverless vehicles in ve-

hicle sharing systems, i.e., we compare the highest achievable profits under mixed and

human-driven fleets. As such, we support operators of vehicle sharing systems in their

choice whether to use driverless vehicles. We validate our results on two sets of artificial

instances and two real-world case studies with data from DiDi (China) and New York

City. We find that in most case studies and instances, driverless vehicles are beneficial,

and mixed fleets often result in profits increasing further. Driverless vehicles may be

necessary to operate any fleet profitably.

5.1.2 Outline

Section 5.2 introduces the models and solution algorithms for first and second stage

decisions. In Section 5.3, we introduce artificial instances and real-world case studies.

Section 5.4 presents results including insights into the value of driverless vehicles both

on artificial instances and real-life case study data. Section 5.5 concludes the Chapter.

5.2 Methodology

We focus on a strategic fleet composition and technology choice decision from the per-

spective of a vehicle sharing operator. Accordingly, this decision comprises fleet pro-

curement and fleet rebalancing. Formally, a vehicle sharing provider decides how many

driverless (md) and human-driven (mh) vehicles to procure. α ∈ {d, h} refers to the

vehicle type. Formally, the operator maximizes

max
md,mh

Π
(
md,mh

)
=π
(
md,mh

)
−md · F d −mh · F h. (5.1)
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For each vehicle, she faces annuities of F d and F h per period of time, respectively. These

annuities are higher for driverless vehicles than for human-driven vehicles (F d ≥ F h).

π
(
md,mh

)
refers to the expected operational profits, i.e., contribution margins for served

customers minus rebalancing costs. Customers use the vehicle sharing system, and the

operator rebalances her fleet to maximize expected operational profits π
(
md,mh

)
. Ve-

hicles can be rented from n stations (I = 1 . . . n) which may also approximate districts

in a free-floating sharing system. Customers arrive at stations i ∈ I following a Pois-

son process with arrival rate λi. We assume that customers randomly select one of the

available vehicles. In carsharing systems, this is analogous to users selecting the closest

available vehicle. In ride-hailing systems, operators assign vehicles, and if this assign-

ment is not strategic, it can be approximated by random choice among vehicles available

nearby. Customers then travel to station j ∈ I with probability pij and exponentially

distributed travel times 1
µij

. The operator’s profit increases by a contribution margin of

rαij for every user she serves from station i to station j, given by revenue minus direct

costs. Thus, contribution margins may be higher for driverless vehicles than for human-

driven vehicles (rdij ≥ rhij ∀i, j ∈ I). Customers who arrive at a station with no vehicles

are lost, since customers often have an outside option such as bike or public transporta-

tion. To ensure a high availability throughout the vehicle sharing system, the operator

can rebalance her fleet by sending a vehicle from station i to station j. Relocating a

vehicle is associated with cost cαij which consist of direct vehicle and labor costs. cαij is

higher for human-driven vehicles than for driverless vehicles (cdij ≤ chij ∀i, j ∈ I).

The decisions can be split into two different stages. The first stage comprises the fleet

sizing and composition decision, the second stage comprises the operational rebalancing

decisions. While both decisions can be integrated, such an integrated approach is com-

putationally intractable even for small instances. Thus, we address the first and second

stage decisions consecutively, and adopt a bound-and-enumerate algorithm in the first

stage, and present two algorithms for the second stage decision. The algorithm for the

first stage decision utilizes three properties that apply to both second stage algorithms.

These properties will be introduced as part of the first stage decision, and proven when

discussing the second stage algorithms.

5.2.1 First Stage Decision and Solution Method

Algorithm 1 presents pseudo-code for the bound-and-enumerate procedure used to de-

termine the optimal fleet composition. Lemma 5.1 gives three conditions that guarantee

the optimality of Algorithm 1.
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Algorithm 1 Pseudo-Code of the Bound-and-Enumerate Algorithm
Π← 0
compute mmax

for md ≤ mmax do
compute π

(
md, 0

)
Π← maxπ

(
md, 0

)
− F dmd

end for
for md +mh ≤ maxm do

if π
(
md +mh, 0

)
− F dmd − F hmh ≥ Π then

compute π
(
md,mh

)
Π
(
md,mh

)
= π

(
md,mh

)
− F dmd − F hmh

end if
end for

Lemma 5.1. Algorithm 1 finds an optimal solution if the following properties hold.

1. The expected operational profit of a fleet that consists of driverless vehicles is an

upper bound for any fleet of the same size (π
(
md,mh

)
≤ π

(
md +mh, 0

)
∀md,mh).

2. The expected operational profit of any fleet is bounded from below by 0, and from

above by some constant π̄.

3. The maximum total fleet size is bounded, i.e., there exists some mmax such that for

all md,mh s.t. md +mh > mmax is not optimal (Π? > Π
(
md,mh

)
).

We refer to Appendix 5.A.1 for the proof of Lemma 5.1. π
(
md,mh

)
is not generally

concave in md and mh, but Algorithm 1 can still find the optimal fleet composition. To

prove that the maximum fleet size is bounded (Property 3), we require Lemma 5.2 and

Corollary 5.1. Appendices 5.A.2 and 5.A.3 contain the proofs.

Lemma 5.2. Let π
(
md,mh

)
be known for some m = {md,mh}. If there exists any

upper bound π̄ on the operational profit, then any m′ such that

π̄ − π
(
md,mh

)
≤ F d

(
md′ −md

)
+ F h

(
mh′ −mh

)
, (5.2)

cannot be optimal. If the above criterion holds for some m′, it also holds for all m̂ ≥ m′.

The above criterion can only apply if m ≤ m′, since the left hand side of (5.2) is

strictly positive. Lemma 5.2 directly implies that the number of vehicles cannot exceed

an upper bound m̄d, m̄h:
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Corollary 5.1. If the expected operational profit cannot exceed some upper bound π̄,

then the optimal number of driverless/human-driven vehicles is bounded from above by

md · F d +mh · F h ≤ π̄,

or independently per vehicle type by

md ≤
⌊ π̄
F d

⌋
; mh ≤

⌊ π̄
F h

⌋
.

5.2.2 Dual Linear Programming Formulation for the Semi-Markov

Decision Process

We solve the second stage SMDP for an optimal, state-dependent policy by means of

linear programming using the formulation of Tijms (2003). On preliminary numerical

experiments, linear programming solved slightly larger instances than value iteration

or policy iteration. The decision variable x̂sa is the long-run probability of being in

state s ∈ S taking action a ∈ A (s) weighted by the expected sojourn time of this

state/action pair, πs (a) is the expected contribution margin in state s taking action

a (expected revenue minus rebalancing costs), pst (a) is the transition probability from

state s to state t when taking action a, and τsa is the average time in state s taking

action a.

maxπ
(
md,mh

)
=
∑
s∈S

∑
a∈A(s)

πs (a) x̂sa (5.3a)

∑
a∈A(t)

x̂ta −
∑
s∈S

∑
a∈A(s)

pst (a) x̂sa = 0 ∀t ∈ S (5.3b)

∑
s∈S

∑
a∈A(s)

τsax̂sa = 1 (5.3c)

x̂sa ∈ R+
0 ∀s ∈ S, a ∈ A (s) (5.3d)

The objective function (5.3a) maximizes the expected operational profit per period of

time, given by the probability of entering a state s, taking action a, multiplied by the

contribution margin. Constraints (5.3b) are flow-balancing constraints. Constraints

(5.3c) establish that the system must be in exactly one state at any point in time.

Constraints (5.3d) define the variable domain.
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States

We define a state by the number of driverless and human-driven vehicles at each station

i, ydi and yhi , and the number of vehicles in transit between any two stations i and j, ydij

and yhij:

s = 〈yα1 , . . . yαn , yα11, . . . yαnn | ∀i, j ∈ I, α ∈ {d, h}〉, s ∈ S.

A state is feasible if the number of vehicles at stations and in transit of any type equals

the total number of vehicles of this type. yαi (s) and yαij (s) refer to station-inventories

and in-transit-inventories of state s, respectively.

Actions and Sojourn Times

The operator chooses an action after each event (customer arrival or vehicle return), i.e.,

in every decision epoch. Since the state does not change between two events, rebalancing

at other points in time will not improve the decision. In every decision epoch, the

operator rebalances at most one vehicle, and preferably a driverless vehicle. As Benjaafar

et al. (2018) prove, operators always return to the border of some “no-rebalancing zone”,

i.e. a steady state. Whenever the system leaves the steady state, rebalancing one vehicle

is sufficient, since the operator can react after each event. Action a ∈ A (s) defines the

rebalancing operation: a = 〈i, j〉 for moving a vehicle from i to j, or a = ∅ if the operator

chooses to not relocate any vehicles. We define an auxiliary state s′ (post-decision state)

which does not trigger an event, but keeps track of all planned changes due to action a.

The time the system remains in state s′ only depends on the inventories in this state, and

is calculated as the merged Poisson process over all customer arrival rates and vehicle

return rates

τsa = τs′ =

∑
i∈I

λi +
∑
ij∈I

µij
∑

α∈{d,h}

yαij (s′)

−1 .
State Transitions

State transitions from a post-decision state s′ to the next state t can be triggered either

by the arrival of a customer or the return of a vehicle. If the event is a customer arrival at

a non-empty station i, the inventory at this station i decreases by 1 either for driverless

or human-driven vehicles with probability
yαi

ydi+y
h
i
, and one of the inventories in transit ydij
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(yhij) increases by 1 (with probability pij). The probability of this state transition is

ps′t (∅) =
yαi (s′)

ydi (s′) + yhi (s′)
· λipij · τs′ .

If the event is a driverless (human-driven) vehicle return at station j from station i,

the inventory at this station j increases by 1 driverless (human-driven) vehicle and the

inventory in transit yαij decreases by 1. The probability of this state transition is

ps′t (∅) = yαij (s′)µij · τs′ .

If the event is a customer arrival at an empty station i (ydi + yhi = 0), the state does

not change and the customer leaves the system. The probability of remaining in the

previous state is

ps′t (∅) =
∑
i∈I

λi · 1ydi+yhi =0 · τs′

where 1 is the indicator function.

Profit of State-Action Pairs

The profit of being in state s taking action a depends on two main components: reloca-

tion costs cαij and expected contribution margins rαi . The contribution margin depends on

the vehicle choice which is random to represent customers choosing the closest available

vehicle. The former only apply if the action is to relocate some vehicles (a 6= ∅).

πs (a) = τsa
∑

i∈I|ydi+yhi 6=0

∑
α∈{d,h}

yαi
ydi + yhi

rαi · λi −
∑
i,j∈I

1a=〈i,j〉

(
cdij + 1ydi=0

(
chij − cdij

))
(5.4)

Properties of the SMDP

We show that the expected operational profit derived using SMDP fulfills the three

properties introduced in Lemma 5.1. Theorem 5.1 implies Property 1, as well as the

lower bound for Property 2. If there exists an upper bound, Theorem 5.1 also implies

Property 3.

Theorem 5.1. The optimal expected operational profit function π
(
md,mh

)
of the second

stage problem is (i) quasi-concave, (ii) increasing, and (iii) non-negative in the number
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of driverless and human-driven vehicles. (iv) an additional driverless vehicle increases

expected operational profits more than an additional human-driven vehicle:

π
(
md − x,mh + x

)
≤ π

(
md,mh

)
∀x ∈ N ∀i, j.

The proof can be found in Appendix 5.A.4.

While the Dual Linear Program (DLP) provably results in optimal solutions, it is

computationally infeasible even for small instances. The state space of the SMDP grows

exponentially (due to the second Stars and Bars Theorem, Feller (1950, pg. 37)), e.g.,

for 2 locations and 20 vehicles per type, the number of state-action pairs already exceeds

5 · 107.

5.2.3 Fluid-Based Approximation

To solve the rebalancing problem on larger instances, we adapt a Fluid-Based Approx-

imation Linear Program (FLP) from Braverman et al. (2019). Similar to Zhang et al.

(2018), the system consists of two coupled closed queueing networks. At every sta-

tion i, newly arriving customers are assigned to either the driverless or human-driven

queueing network with a variable probability of pαi , and continue to another station j

with probability pij. Each system consists of n single-server nodes representing stations,

n2 infinite-server nodes representing vehicles in which a customer is chauffeured from

station i to station j, and n · (n− 1) infinite-server nodes representing vehicles that

currently rebalance from i to j (i 6= j). The average number of vehicles at each node

(i.e., the queue length) is given by eαii for the single-server nodes (“empty vehicles”), and

fαij (“full vehicles”) and eαij for the infinite-server nodes. If the number of vehicles is too

low, the operator cannot satisfy all customers, even if those customers were willing to

wait. Then, the linear programming formulation is as follows:

max π̄
(
md,mh

)
=

∑
i∈I,α∈{d,h}

rαi λip
α
i

−
∑

i,j∈I,α∈{d,h}

cαijµije
α
ij (5.5a)

λipijp
α
i =µijf

α
ij ∀i, j ∈ I, α ∈ {d, h} (5.5b)

µije
α
ij ≤

∑
k∈I

µkif
α
ki ∀i, j ∈ I, α ∈ {d, h} (5.5c)∑

k∈I,k 6=i

µkie
α
ki ≤λipαi ∀i ∈ I, α ∈ {d, h} (5.5d)
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λip
α
i +

∑
j∈I,j 6=i

µije
α
ij =

∑
k∈{d,h},k 6=i

µkie
α
ki +

∑
k∈I

µkif
α
ki ∀i ∈ I, α ∈ {d, h} (5.5e)

pdi + phi ≤1 ∀i ∈ I (5.5f)∑
i,j∈I

eαij + fαij = mα ∀α ∈ {d, h} (5.5g)

0 ≤ eαij, f
α
ij ≤mα ∀i, j ∈ I, α ∈ {d, h} (5.5h)

0 ≤ pαi ≤1 ∀i ∈ I, α ∈ {d, h} (5.5i)

The objective is to maximize expected operational profits, given by contribution margins

for served customers and rebalancing costs for every vehicle that enters a rebalancing

queue. Constraints (5.5b)–(5.5e) follow from Braverman et al. (2019) for each type

of vehicle independently. Constraints (5.5b) makes sure that (i) a fraction pij of all

customers who are assigned to vehicle type α at location i (in total λip
α
i ) travel to location

j, and thus increase the expected number of vehicles in the infinite-server node from i

to j by µijf
α
ij (since they remain in this queue for µij periods on average). Constraints

(5.5c) and (5.5d) guarantee that the number of empty vehicles that leave station i in any

period does not exceed the number of full vehicles arriving there; and that the number

of empty vehicles that arrive at some station i does not exceed the total demand at this

station. (5.5e) are flow balancing equalities for station i and vehicle type α. Constraints

(5.5f) link both closed queueing networks. Constraints (5.5g) ensure that the number

of vehicles per type equals the fleet size. It shall be noted that in the second stage

problem, md and mh cannot be endogenized, since pdi + phi is only an upper bound on

the availability, and the actual availability is non-linear.

Corollary 5.2. The solution to the linear program in (5.5) yields an upper bound on

the operational profit π̄, if mh = 0 and md is sufficiently large such that there exists a

feasible solution in which all demand can be satisfied and vehicles can be rebalanced on

the cheapest (rather than fastest) rebalancing arcs.

We refer to Appendix 5.A.5 for the proof.

The fluid-based approximation control is then to rebalance one vehicle with probability

qαij to some location j if the event is a vehicle return of type α at location i with

qαij =
µije

α
ij∑

k∈I µkif
α
ki +

∑
k∈I,k 6=i µkie

α
ki

∀i, j ∈ I, j 6= i,

and no rebalancing otherwise. Rebalancing after rentals does not improve a state-

118



5.2 Methodology

independent control.

Actual Availability

Since ai is only a theoretical upper bound on the availability, we must calculate the

actual availability Aαi (mα). Analogous to Zhang and Pavone (2016), we use Mean Value

Analysis (MVA) (Reiser and Lavenberg, 1980) to compute average waiting timesWα
i (m′)

and queue lengths Lαi (m′) for 1 ≤ m′ ≤∑i,j e
α
ij + fαij. The underlying principle behind

MVA is to add one vehicle at a time and study how the expected number of vehicles

per station – and consequentially the average waiting time of a vehicle at a station –

increases. The expected time a vehicle spends in an infinite-server node (between two

stations) is independent from the number of vehicles in the system, and given by 1
µij

(the

travel time). The expected time a vehicle remains at a station before being rented by a

customer is given by the current queue length (assuming that the additional vehicle is

placed at station i) multiplied by the inter-arrival time at this station ( 1
λ̃αi

). The mean

length of a queue at a station is given by waiting time weighted by throughput, scaled

to the size of the system and weighted waiting times in other queues.

Wij (m′) =
1

µij (1)
∀i, j ∈ I

Wi (m
′) =

1

λ̃αi
(1 + Li (m

′ − 1)) ∀i ∈ I

Li (m
′) =

m′πiWi (m
′)∑

j πjWj (m′) +
∑

jk πjkWjk (m′)
∀i ∈ I

with Li (0) = 0, and λ̃αi = λi · pαi +
∑

j

eαij
µij

being the adapted arrival rate accounting for

the customers delegated to system α as well as the rate at which vehicles are rebalanced

(Zhang and Pavone, 2016). The relative throughput of station i, πi, solves the set of

equations

πi =
∑
k∈I

πkp̃
α
ki ∀i ∈ I

and defines the relative throughput of the infinite-server nodes

πij = πj p̃
α
ij ∀i, j ∈ I

where p̃αij = pijq
α
ii + qαij are adapted transition probabilities.
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The availability is

Aαi (mα) =
Li (m

α)

Wi (mα) λ̃αi
∀i ∈ I. (5.6)

Operational Profit Function

The expected operational profit is

π
(
md,mh

)
=

∑
α∈{d,h},i∈I

(
rαi λip

α
i −

∑
j∈I

cαijµije
α
ij

)
· Aαi (mα). (5.7)

Both payoffs and rebalancing costs only occur if a vehicle is available that the customer

uses, or if a customer returns a vehicle and this vehicle is rebalanced.

The optimal solution to the linear program (5.5) can be degenerate, as the variables pαi ,

fαij do not directly affect the objective function. The two symmetry-breaking constraints

∑
i∈I

pαi
λi∑
j λj

=
∑
i∈I

mα

md +mh
· ai ∀α ∈ {d, h}, (5.8)

ensure that a control with a “more even” usage of vehicle types is chosen. The idea

behind this constraint is that in the balanced case, the operator assigns customers to

the two different systems proportional to the fleet size per system.

Properties

To show that the expected operational profit of an entirely driverless fleet is an upper

bound on the expected operational profit of any fleet of the same size, we show that the

objective (5.5a) and the availability Aα are at least as high with only driverless vehicles

as with any mixed fleet.

Lemma 5.3. The availability of mixed vehicle fleets md,mh is never higher than the

availability of an driverless fleet of the same total size (md +mh, 0) if costs and contri-

bution margins are proportional to the expected travel time.

The proof of Lemma 5.3 can be found in Appendix 5.A.6.

Theorem 5.2 directly implies Property 1, as well as the lower bound for Property 2;

the upper bound follows from Corollary 5.2.
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Theorem 5.2. The expected operational profit function π
(
md,mh

)
of the second stage

problem derived via FLP is (i) concave if md = 0 or mh = 0 (for md + mh ≥ m), (ii)

increasing in mh (md) if md = 0 (mh = 0) and (iii) non-negative in the number of

driverless and human-driven vehicles. Also, (iv) operators can gain the highest expected

operational profit if a fleet of constant size consists of only driverless vehicles

π
(
md +mh, 0

)
≥ π

(
md,mh

)
∀md,mh ∈ N, if cdij ≤ chij∀i, j ∈ I

if costs and contribution margins are proportional to the expected travel time.

We note that if both md,mh > 0, the expected operational profit function for the FLP

is neither concave nor provably increasing.

5.3 Experimental Design

We study three different sets of instances and case studies: (i) we consider small instances

which allow to investigate effects using SMDP as a second stage algorithm; (ii) we

generate artificial instances which resemble realistic environments for vehicle sharing

systems; and (iii) we present results for two different real-world case studies settled in

China and New York City. The artificial instances and case studies complement each

other, as the case studies allow to quantify the benefit of driverless and mixed fleets, while

the artificial instances can explain under which circumstances driverless vehicles are

necessary to operate fleets profitably. Since the case studies resemble existing carsharing

and ride-hailing services with currently only human-driven vehicles, we do not expect to

see this effect there. Furthermore, the impact of demand imbalances becomes clearer on

artificial instances. We define the demand imbalance as the difference between arrivals

and departures per station:

imbalance =

∑
i∈I |
∑

j∈I (λipij − λjpji)|
2 ·∑i,j∈I λipij

5.3.1 Small Instances

The number of locations is n = 2, the arrival rate at station 2 is 1. All vehicles drive

to the other location, and the expected travel times between the stations are 1. Re-

balancing costs with driverless vehicles are cd12 = cd21 = 1, and contribution margins are

10. The design differs in the rebalancing costs for human-driven vehicles (2, 3, 5), the
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annuities for human-driven vehicles (0.5, 0.625, 0.75), the annuities for driverless vehicles

(relative to F h, F d

Fh
∈ {1.1, 1.2, 1.3}), and the arrival rate at the first station (λ1 = 1, 2).

Consequentially, the imbalance is either 0 or 1/3. cαij and Fα are realistic $ values if

customers arrive in expectancy every 6 minutes. The contribution margins reflect a very

high value for customer retention, and permit a positive fleet size. In total, we study 54

different instances.

5.3.2 Artificial Instances.

We randomly sample n ∈ {5, 10, 20} stations in a circle, with uniform distributions

for distances from the center (∈ {0, 10} kilometers) and angle. Thus, the density of

stations decreases towards the outer boroughs. The expected travel time between any

two stations i and j (1/µij) is derived by dividing the Euclidean distance between i

and j by an average velocity of 25km/h. Arrival rates (average number of customers

per hour) are either similar across the entire operating area, or higher closer to the

center (radius ≤ 5) and lower outside. In the case of similar arrival rates, they are

sampled from either U [8, 12], case HS, or U [4, 6], case LS. In the latter case, we sample

arrival rates from either U [6, 9]/U [11, 14], case HD, or U [3, 4.5]/U [5.5, 7], case LD.

Decreasing demand towards the outskirts of the city is realistic in many major cities.

To represent the significant differences in adoption between different shared mobility

services, we additionally multiply arrival rates by a factor of 10 in all settings to generate

instances (resulting in instance sets “base” and “x10”). Customers either travel to any

other station with equal probability (case E), or the probability of traveling to another

station is directly proportional to the distance (case P), reflecting the higher likelihood of

motorized travel on longer distances. Relocation costs are 0.3$/km (7.5$/h) and 0.7$/km

(17.5$/h) for driverless and human-driven vehicles, respectively, given by 0.3$/km for

fuel and usage, 25km/h / 10$/h = 0.4$/km for the driver. The driver costs approx.

reflect minimum wages in Europe and North America, and the costs for fuel and usage

are approx. in line with Lanzetti et al. (2020). The contribution margin per served

customer kilometer is either 0.6$ (cases LS, LD) or 1.5$ (cases HS, HD), depending on

whether customer retention is considered. These contribution margins realistically mimic

the contribution margins of ShareNow with roughly 0.35-0.4$ per minute and 0.3$/km

direct costs. The contribution margin per served customer kilometer in a human-driven

vehicle decreases by 0.4$ if customers do not drive themselves (cases HD, LD). The

annuity per vehicle per hour in $ is {F d, F h} ∈ {{1.15, 1}, {1.3, 1}, {4.6, 4}, {5.2, 4}}
(cases LL, LH, HL, HH). The rationale behind this choice is that the total cost of
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ownership for human-driven vehicles is approx. 35,000$ (e.g., a BMW i3), and vehicles

are deprecated over a period of 1-4 years; driverless vehicles are more expensive, but for

bulk buyers or original equipment manufacturers, a relative price difference of 1.15-1.3

is achievable.

This results in 768 instances distinguished by number of vehicles n, arrival rates,

transit probabilities, contribution margins per served customer kilometer, and annuity.

For example, the base instance 5 HS E LD LL is characterized by a 5 station system at

which customer arrival rates are sampled from the distribution U [8, 12] at all stations,

customers travel to all other stations with equal probability, only direct revenues are

considered and human-driven vehicles are driven by employees of the the operator, and

the annuity is low for both human-driven and driverless vehicles.

Table 5.1 lists the imbalance for all instances. The imbalance of the instances varies

5 stations 10 stations 20 stations

Arr. Type E P E P E P

HS 8.83 16.15 6.56 6.68 6.32 10.81

LS 7.25 10.66 3.59 9.12 5.67 12.57

HD 13.23 23.81 13.50 31.14 10.57 28.31

LD 12.98 18.47 13.50 25.64 12.01 20.09

Table 5.1: Imbalance (in %) of the Artificial Case Study Instances for Different Sizes (Header),
Arrival Types, and Transition Types

between 3.6% and 31.1%, where the P instances are more imbalanced than the E in-

stances since the expected number of incoming vehicles increases with the distance to

the center in the P instances. The HD and LD instances are more imbalanced than HS

and LS instances. Size of the instances and average arrival rate have a smaller impact.

5.3.3 Case Studies based on Real-Life Vehicle Sharing Systems

The case studies represent two different vehicle sharing systems from different continents.

DiDi Challenge, China

We use the dataset of Braverman et al. (2019) which reflects customer demand of the

Chinese ride-hailing provider DiDi Chuxing. The dataset consists of average trip counts

during the evening rush hour (5-6PM), divided into 10 minute intervals. During this
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interval, taxi movements are almost balanced (imbalance 5.9%). The average number

of trips per interval is 176, and those trips take on average 13.2 minutes. The trip fare

is 1.41$ per 10 minute time interval, the costs for the driver amount to 0.82$ per time

interval, and the costs for fuel and wear amount to 0.24$ per time interval, assuming

an average velocity of 20km/h. We consider two settings for contribution margins of

human-driven vehicles rhij = 0.35 1
µij

, and rhij = 1.17 1
µij

which refer to customers be-

ing chauffeured (“ride-hailing”) or driving themselves (“carsharing”), respectively. The

annuities amount to 0.205$ for human-driven and 0.236$ or 0.256$ for driverless vehicles.

Lower Manhattan, NY, USA

The New York City Taxi and Limousine Commission publishes the booking data for all

taxis (yellow cabs) in New York City. We use data for the end of the morning rush

hour (9-10AM) on weekdays in January 2015 to generate average movement patterns

within Lower Manhattan. Lower Manhattan consists of into 19 quadratic tiles with

500m edge length, and the total number of trips is counted for every pair of locations.

On average, 1467 trips occurred within one hour. The average trip is 2km long, takes

8.34 minutes, and results in a fare of 7.52$. Taxi demand in Lower Manhattan faces

substantial imbalances of 14.8%. The costs of a trip or rebalancing operation comprise

costs for the vehicle, 0.36$ per km, and potentially driver, 42$ per hour. This cost

structure is due to Lanzetti et al. (2020). Payoffs are calculated by subtracting the costs

from the fare. Annuities are F d = 1.15 or F d = 1.3 and F h = 1.

5.4 Computational Study

We study the value of driverless vehicles and the benefit of mixed fleets in vehicle sharing

systems on the artificial instances and real-life case studies introduced in Section 5.3.

Since service levels are an relevant criterion for users of the system, and since service

levels allow to explain varying profits, we also report these.

We conduct numerical experiments on a personal computer with 16GB of memory

on a single core. The bound-and-enumerate algorithm is implemented in Java, utilizing

IBM ILOG CPLEX v12.10 for solving the linear programs of the second stage. For most

experiments, we restrict ourselves to using FLP as a second stage algorithm, since the

SMDPs can only solve small instances.
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5.4.1 Fleet Sizing and Composition on Small Instances

In the following, we study service levels and the value of driverless vehicles on instances

with two locations.

SMDP FLP

Service Levels Profits Service Levels Profits
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Rebalancing Costs

2 97.27 -0.11 0.18 17.25 0.79 2.05 83.49 -0.22 1.65 15.1 0.36 3.5

3 97.21 0.68 0.14 17.17 3 1.7 83.07 -0.22 1.47 14.92 1.88 3.22

5 97.14 4.34 0.1 17.16 9.43 1.68 82.9 -0.4 1.41 14.91 7.28 3.49

Annuities h

0.5 97.72 1.7 0.01 18.32 4.89 1.32 84.54 0 0 16.06 3.63 2.76

0.625 97.07 1.52 -0.06 17.17 4.53 1.8 83.65 -0.18 2 14.94 3.65 3.25

0.75 96.84 1.69 0.47 16.09 4.35 2.31 81.27 -0.72 1.98 13.93 3.51 4.17

Annuities d

1.1 97.52 1.86 0.11 17.44 5.37 0.69 83.24 -0.15 1.02 15.19 4.37 1.69

1.2 97.1 1.56 0.09 17.17 4.27 1.7 83.03 -0.48 1.24 14.96 3.53 3.24

1.3 97.01 1.49 0.21 16.97 4.05 3.03 83.2 -0.28 2.04 14.79 2.6 4.9

Imbalance

1 96.74 1.88 0.28 13.49 3.98 3.53 82.27 - 4.59 12.33 - 6.97

2 97.68 3.03 0.13 20.9 9.92 1.9 84.05 3.03 0.13 17.63 8.71 2.86

Table 5.2: Average Service Level, Increase of Service Level (% increase over only human-
driven/driverless if both exist), Average Profits (abs. values), Value of Driver-
less Vehicles (% increase over only human-driven vehicles), and Value of Keeping
Human-Driven Vehicles (% increase over only driverless vehicles) in the Small
Instances
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Impact of Driverless Vehicles on the Service Level

The left-most and third block of Table 5.2 list service levels and the increase of service

level relative to fleets consisting of only human-driven or only driverless vehicles. Due to

the high contribution margins, average service levels are very high at 97.2%. This is 1.6%

higher compared to only human-driven vehicles and 0.14% higher than for fleets only

consisting of driverless vehicles. Using FLP as a second stage algorithm, the service levels

are lower with 83.2% on average, but the trends and influencing factors are identical for

both second stage algorithms. The main drivers for high services levels are low annuities

and high imbalances. The former is unsurprising since lower annuities permit procuring

larger fleets. The latter seems surprising, and can be explained by increasing fleet sizes

to counteract the rebalancing demand as well. The difference in service levels of fleets

only consisting of human-driven vehicles (driverless vehicles) and mixed fleets increases

(decreases) (i) if the rebalancing cost of human-driven vehicles increases, (ii) if annuities

of driverless vehicles decreases, and (iii) if the imbalance increases.

Impact of Driverless Vehicles on Profits

The second-left and right-most block of Table 5.2 report profits, and percentage increases

of the profit relative to fleets consisting of only human-driven and only driverless vehicles.

On average over all instances, the benefit of driverless vehicles w.r.t. profits is 4.6%, and

the benefit of keeping human-driven vehicles, i.e., the profit difference between mixed and

driverless fleets, is 1.8%. Using FLP as a second stage algorithm, the benefit of driverless

vehicles is slightly lower (3.6%), and the benefit of human-driven vehicles is substantially

higher (3.4%). The former occurs since with FLP, the operator does not rebalance her

fleet if the imbalance is 0. As the imbalance is 0 in half of all instances, these instances do

not benefit from driverless vehicles. On these very small instances, the gap between the

profits of the two algorithms is substantial, but the profits increase faster for FLP than

for SMDP as annuities F h increase. Thus, the approximation error of FLP decreases as

the fleet size increases which is the case in more realistic instances. Profits increase if the

imbalance increases. The latter is an artefact of increasing customer demand (50% more

demand), and does not persist when computing the profit per customer. Surprisingly,

the profit only decreases very little if rebalancing costs of human-driven vehicles increase.

This is because a the operator can smoothly increase the fraction of driverless vehicles,

and only rebalance with those. Unsurprisingly, the benefit of driverless vehicles (human-

driven vehicles) is driven by increasing (decreasing) contribution margins of human-

126



5.4 Computational Study

driven vehicles, decreasing (increasing) differences in annuities between vehicle types,

and an increasing (decreasing) imbalance.

5.4.2 Fleet Sizing and Composition on Artificial Instances

In the following, we study service levels, fleet size and composition, and value of driverless

vehicles on artificial instances.

Impact on Service Availability and Fleet Structure

For instances with equal contribution margins, Table 5.3 lists the average service levels

(over those instances in which md + mh > 0), the percentage increase in the service

level over a fleet only consisting of human-driven/driverless vehicles, and the number of

instances in which the service can be offered (with a mixed fleet, a human-driven, and an

driverless fleet), separately for a base system and a system with 10-fold arrival rate (x10

system). Omitting different contribution margins from the analysis allows to interpret

the results without the superimposing effect that different contribution margins always

result in the optimal choice of only driverless vehicles. We further report the influence of

different contribution margins in the last block of Table 5.3. When introducing driverless

vehicles, it is possible that the vehicle sharing system can be operated even if it was

unprofitable with only human-driven vehicles, resulting in an increase in the number

of instances in which the service is offered with human-driven vehicles (column “#

h”) to mixed fleets (column “# total”). Further, the operators may reach a higher

average service level, suggesting a better usage of the invested capacity. We find that

vehicle sharing is not offered (md + mh = 0) in many base instances (271 out of 384)

which is mainly since current customer payoffs are insufficient for profitable systems.

A system with a larger customer base (x10 instances) is more profitable, but there

is still a large number of instances in which service is not offered (223 out of 384).

Table 5.3 reports the number of instances which have a non-zero fleet size if the fleet is

mixed, human-driven, or driverless. Unprofitability is mainly driven by the instance size

(only 5 instances with n = 20 stations can be operated profitably in the base setting),

high annuities for human-driven vehicles, and low contribution margins for driverless

vehicles. We observe that a higher average arrival rate per location increases the service

level. Since low contribution margins in the numerical design are direct revenues minus

direct operating costs, we conclude that without subsidies (e.g., by the city or parent

company) or a high valuation for customer retention (e.g., anticipation of a growing
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Base x10
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Size

5 48.96 9.52 -22.21 42 6 42 34 67.36 16.07 -17.03 48 20 48 47

10 40.49 2.75 -13.34 16 1 16 16 55.12 7.58 -9.09 21 6 20 19

20 22.04 1.07 -0.88 4 0 4 1 43.92 2.2 -6.43 16 0 16 10

Arrival Type

HS 49.63 3.74 -13.31 18 2 18 15 68.11 8.05 -9.13 20 4 20 19

LS 53.91 0.85 -11.39 14 4 14 13 68.55 2.35 -9.18 22 8 22 19

HD 37.54 10.22 -10.65 16 0 16 11 53.07 16.75 -11.54 21 7 20 19

LD 38.82 2.97 -13.22 14 1 14 12 50.4 7.32 -13.55 22 7 22 19

Transition Type

E 47.62 0.92 -10.94 26 4 26 23 61.16 4.17 -8.84 40 14 40 33

P 43.17 7.98 -13.35 36 3 36 28 58.83 13.06 -12.85 45 12 44 43

Annuities

LL 49.62 12.12 -22.7 26 3 26 25 61.51 17.28 -18.87 35 10 34 33

LH 46.27 3.88 -21.99 26 4 26 23 61.13 14.59 -14.57 34 16 34 28

HL 29.93 0.89 -2.59 5 0 5 2 55.41 1.73 -5.42 8 0 8 8

HH 29.93 0.89 -1.29 5 0 5 1 52.42 0.87 -4.54 8 0 8 7

Contribution Margin

LS 34.53 4.67 -8.75 16 2 16 15 51.34 9.13 -6.32 21 13 20 19

HS 48.69 4.23 -15.54 46 5 46 36 62.74 8.1 -15.37 64 13 64 57

LD 38.21 0 -8.22 15 0 0 15 52.89 0 -6.51 19 0 0 19

HD 56.94 16.45 -14.52 36 0 30 36 66.03 74.55 -14.46 57 0 52 57

Table 5.3: Average Service Level (if available), Increase of Service Level (% increase over
only human-driven/driverless if both exist), and Numbers of Offered Fleets (total,
mixed, human-driven and driverless) in the Artificial Instances

market), carsharing and ride-hailing services can hardly ever operate. Surprisingly, a 10-

fold arrival rate does not increase the number of instances in which the service is offered
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substantially if contribution margins are low. This indicates that even larger customer

bases cannot alleviate the effect of low contribution margins, and can be explained by

means of the upper bound π̄ that reflects the maximum attainable operational profit:

Rebalancing costs, contribution margins and fleet sizes due to the π̄ scale linearily in

the multiplicative factor on λi, and if π̄ is already very low, profitability with non-zero

fleet sizes is hardly ever reached when considering stochasticity. For high contribution

margins, the increased availability by a fleet at scale allows to offer the fleet profitably

in additional instances.

In the 21 out of 384 base instances and 25 x10 instances, the service can only be offered

if driverless vehicles are available. In these instances, the fleet consists of driverless

vehicles only. Driverless vehicles are necessary for offering the service if contribution

margins differ between vehicle types, or the system has a high imbalance. Operators

may benefit from mixed fleets if contribution margins are equal for both vehicle types,

and if annuities are low. If contribution margins differ, using only driverless vehicle is

usually a dominant strategy. If annuities are high, operators resort to a smaller fleet

which more frequently consists of only a single vehicle type. Driverless vehicles can

ensure operations in particular if travel flows are imbalanced (given by different arrival

rates and transit probabilities proportional to the distance), if contribution margins for

human-driven vehicles are lower than for driverless vehicles, and if annuities are high.

Figure 5.1 lists the fleet composition of the x10 instances for different sets of instances,

aggregated by number of instances, same or different arrival rates, and transition type.

Though affected by some random differences, the trend is clear: With an increasing

imbalance, driverless and mixed fleets become more frequent.

If driverless vehicles are permitted, the service level increases significantly (6.3% for

the base case and 22.9% in the x10 instances), and decreases in 3 out of 384 base

instances. This is due to inefficiencies in allocating vehicles (lost pooling benefits). Vice

versa, when comparing the service level between mixed and driverless fleets, the service

level decreases significantly (11.8% decrease for the base case and 10.7% decrease for

the x10 instances). This is since rebalancing activities are drastically reduced in human-

driven or mixed fleets, and customers are instead being rejected at stations with more

rental requests than returns. This can be alleviated by forcing equal service levels at all

stations, such as suggested by Zhang et al. (2018). Service levels are low in almost all

base instances (47.9% on average if service is offered). With a 10-fold arrival rate, average

service levels are higher (61.3%), but still lower than target service levels suggested in

literature (e.g., 80% in He et al. (2017), or 85-95% in Zhang et al. (2018)). This gap
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Figure 5.1: Fleet Composition (No fleet, mixed fleet, driverless fleet, human-driven fleet) for
x10 Instances Grouped by No. of Stations, Same/Different Arrival Rate and
Transition Type, Ordered by Imbalance

indicates that (i) optimizing profits for a given service level as suggested in literature

is suboptimal for operators, but (ii) introducing service levels in the optimization may

result in an unreliable service. The increasing average service level is due to improved

pooling: The number of vehicles necessary to serve a customer trip decreases, allowing

operators to serve more customers with a comparable fleet size. Service levels are mainly

driven by an increasing arrival rate or a decreasing number of locations.

Impact on Profits and the Benefit of Driverless Vehicles

Table 5.4 lists the average profits of the vehicle sharing service, as well as the benefit

of driverless vehicles and the benefit of keeping human-driven vehicles in the fleet, for

the base case and the x10 instances. Obviously, the benefit of driverless (human-driven)

vehicles is only available if the service is also offered if only human-driven (driverless)

vehicles were available. For comparability to the service levels, Table 5.4 only lists

those instances where rd = rh. The benefits of driverless and human-driven vehicles are

represented in percentage values. For the base instances, the average profits over all

instances are low, the hourly return is 7.59$. This very low value is partially due to the

low number of instances in which the service is offered. If the service is operated, the
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Size

5 27.28 5.6 25.76 434.26 7.3 23.99

10 22.38 0.36 22.25 278.6 5.35 8.33

20 7.3 0 3.6 171.97 0 29.02

Arrival Type

HS 38.95 1.01 18.38 548.38 7.99 12.18

LS 21.26 0.4 11.33 297.86 1.19 14.98

HD 21.82 4.15 1.32 347.97 5.55 40.28

LD 13.23 1.03 33.88 209.95 1.89 16.44

Transition Type

E 19.93 0.74 20.87 264.77 3.53 27.18

P 28.19 2.67 11.88 419.02 5 13.48

Annuities

LL 28.78 5.39 11.3 364.78 10.55 55.95

LH 27.47 1.97 44.88 362.77 7.53 12.66

HL 7.07 0 3.76 274.46 0.34 6.14

HH 7.07 0 7.23 268.68 0 16.29

Contribution Margin

LS 6.95 0.78 7.94 135.01 1.52 5.93

HS 30.91 2.79 25.97 415.8 8.28 38.25

LD 6.02 0 0 133.5 0 0

HD 35.81 51.15 0 419.44 189.67 0

Table 5.4: Average Profits (abs. values), Value of Driverless Vehicles (% inc. over only
human-driven vehicles), Value of Keeping Human-Driven Vehicles (% inc. over
only driverless vehicles) in Artificial Instances

average hourly return increases to 25.8$. The influencing factors on the profit generated

by the service are straight-forward: A smaller number of stations results in low random
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imbalances, and thus high profits. A high arrival rate and low imbalances increase

revenues and decrease the necessity for rebalancing. High contribution margins and low

annuities directly influence the profit/cost structure. The influence of a high arrival rate

also explains why the average profits increase to 145.5$ over all x10 instances (347.1$

for instances in which service is offered).

On average the benefit of driverless vehicles is 15.0% over all base instances in which

a fleet of human-driven vehicles is operated. This is significantly higher for the x10

instances (54.8%). While the extent of this increase seems surprising, it can be explained

by those instances which are only offered if the arrival rate increases. In these instances,

the profit often increases by a factor of more than 2 when permitting driverless vehicles.

The main drivers for the value of driverless vehicles in vehicle sharing systems are low

annuities for human-driven vehicles, and high contribution margins which are higher for

driverless than human-driven vehicles (case HD). The influence of contribution margins

is self-explanatory, and the influence of annuities can be explained by an increasing

number of instances in which the service is offered, regardless of the vehicle type. The

benefit of human-driven vehicles is lower than the benefit of driverless vehicles, with

9.2% in the carsharing instances and 12.4% in the ride-hailing instances. Human-driven

vehicles are particularily beneficial if the imbalance in the system is low.

5.4.3 Fleet Sizing and Composition in Real-Life Case Studies

Table 5.5 and 5.6 list the profits and fleet compositions for mixed, driverless and human-

driven fleets. Bold font highlights instances with mixed fleets. The per-period profits

Instance Carsharing Ride-Hailing

Data Set F d Mix h d Mix h d

DiDi 0.236 1263.7 1228.4 1259.3 1259.3 119.7 1259.3

DiDi 0.256 1228.5 1228.4 1165.5 1165.5 119.7 1165.5

NYC 1.15 6467.3 6225.0 6467.3 6467.3 295.0 6467.3

NYC 1.3 6413.6 6225.0 6413.6 6413.6 295.0 6413.6

Table 5.5: Average Profits (abs. values) of the Case Study Instances

are very high for the DiDi and NYC case studies. In the NYC carsharing instances, a

mixed fleet does not increase profits compared to a fleet of only driverless vehicles. The

operator benefits from using driverless vehicles in all instances. The value of driverless
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Instance Carsharing Ride-Hailing

Data Set F d Mix h d Mix h d

DiDi 0.236 763, 1207 1875 1854 1854, 0 1155 1854

DiDi 0.256 1, 1865 1875 1827 1827, 0 1155 1827

NYC 1.15 215, 0 308 215 215, 0 139 215

NYC 1.3 215, 0 308 215 215, 0 139 215

Table 5.6: Fleet Composition (md,mh) in the Case Study Instances

vehicles is up to 2.9% in the DiDi carsharing instances, and up to 3.9% in the NYC

carsharing instances. In the ride-hailing instances, the profit increases by a factor of up

to 10.5 (DiDi) and 21.9 (NYC) due to introducing driverless vehicles.

We, thus, confirm the result that driverless vehicles can be beneficial from the exper-

iment with artificial data. However, mixed fleets are less commonly beneficial, since the

NYC case study is an extreme case with a very high imbalance and large differences

in rebalancing costs. In both case studies, the optimal fleet size is consistently smaller

than anticipated. This is since operators currently maximize revenues, service level, or

market coverage rather than profits. In all instances with equal contribution margins,

the fleet size is smaller using driverless vehicles than human-driven vehicles. This sug-

gests (i) that the additional flexibility to relocate vehicles (quickly) is used, and (ii)

that operators do not increase their upfront investment too much. In NYC, they even

decrease their investment in the fleet.

For several instances, the optimal fleet mix is using only driverless vehicles, resulting

in equal profits for mixed and driverless fleets. Unsurprisingly, the highly imbalanced

system in NYC benefits from driverless vehicles to the extent that only these vehicles

are being used, even if there are no differences in the contribution margins (“carsharing”

setting). Surprisingly, even the low imbalance in the DiDi instances is sufficient to make

mixed fleets preferred to only human-driven vehicles even if customers drive themselves.

This is most likely due to the very high costs: Rebalancing a human-driven vehicle costs

1.06$ per time interval (vs. 0.24$ for driverless vehicles). Even counteracting the low

imbalance is then too expensive with only human-driven vehicles. If only little excess

capacity is available, fleets with a single vehicle type are preferential.
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Sensitivity Analysis

We are interested in what drives the choice between modes. As such, we vary four

different parameters: (i) The annuities of driverless vehicles F d, (ii) the contribution

margin of human-driven vehicles rh (relative to rd), and (iii) the rebalancing costs of

human-driven vehicles ch (relative to cd). We use the three case study instances, and

always study the instance with equal revenue and low annuities, unless stated otherwise.

To study the influence of the first two parameters on the fleet composition, and the

interdependency of the first two parameters, we use the DiDi case study instance. The

influence of the parameter “rebalancing cost” on the fleet composition is studied using

the NYC instance. The resulting graphs for fleet composition, profit and availability
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Figure 5.2: Fleet Size and Composition (1st row), as well as Profit and Availability (2nd row)
for DiDi (varying annuity, contribution margin) and NYC (varying rebalancing
costs) Instances

can be found in Figure 5.2. As one can see, an increasing annuity for driverless vehicles

decreases the share of driverless vehicles. We observe that this does not happen contin-

uously, but the share of human-driven vehicles directly increases from 0 to approx. 2/3.

The availability is lower if the fleet is mixed, but at a similar level regardless of whether

the fleet consists of only human-driven or driverless vehicles. The profits monotonely

decrease in an increasing annuity. When varying contribution margins, human-driven

vehicles are only beneficial if contribution margins for driverless and human-driven vehi-

cles are identical. Otherwise, the operator is better off only procuring driverless vehicles.

The availability decreases if the fleet is mixed, but the profits increase. For increasing
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ch, the fleet composition also switches directly from only driverless to only human-driven

vehicles above some threshold very close to ch = cd.
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Figure 5.3: Barrier Graph for DiDi Instance

Figure 5.3 depicts the resulting barrier graphs for the interdependency between the

parameters annuity and rebalancing costs. We do not show the interdependency between

contribution margin and the other parameters, since even slightly unequal contribution

margins result in always driverless fleets. When increasing the annuities between 0.3075

and 0.5125, the fleet composition shifts from mixed fleets from a fleet only consisting

of one vehicle type which is human-driven vehicles below some threshold on cd

ch
, and

driverless vehicles above, to a mixed fleet above some threshold on cd

ch
, and human-driven

vehicles below. This threshold increases in F d.

5.4.4 Discussion

The results of artificial instances and real-life case studies suggest that operators fre-

quently benefit from introducing driverless vehicles into their fleet mix. If the contribu-

tion margin of driverless and human-driven vehicles differs (e.g., in ride-hailing systems),

operators almost always resort to fleets only comprised of driverless vehicles. In these

instances, driverless vehicles are often necessary to offer the service profitably. Other-

wise, operators may not replace their entire fleet by driverless vehicles, but rather resort

to mixed fleets.

In the case studies, mixed fleets are less frequently optimal than in the artificial

instances. This is because the DiDi fleet and the NYC taxi fleet are extreme cases: The

DiDi instance has highly diverging contribution margins. Once these are equal, mixed

fleets become beneficial. In New York City, demand imbalances are very high, thus, in

a mixed fleet even human-driven vehicles would be rebalanced very frequently.
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5.5 Conclusion

This Chapter studies the technology choice and mix problem vehicle sharing operators

face once driverless vehicles become available. While driverless vehicles are cheaper to

rebalance and might result in higher contribution margins per served customer, their

procurement cost is higher than that of human-driven vehicles. We conduct a large

numerical experiment with both artificial instances and real-world case studies. Our

main insights can be summarized as follows:

Driverless vehicles substantially improve the profitability of vehicle sharing systems.

On average over a large set of artificial instances, introducing driverless vehicles increases

the profit by 16.8% if the arrival rate is low and 10.6% if the arrival rate is high. Two

case studies suggest that the profit increase may even be larger.

Driverless vehicles may be necessary to operate the service. Driverless vehicles are

most helpful in cities in which demand patterns are highly imbalanced, i.e., some lo-

cations are have more incoming trips, while others have more outgoing trips, and if

contribution margins of driverless vehicles exceed that of human-driven vehicles. Thus,

driverless vehicles can help towards a more wide-spread adoption of vehicle sharing. Even

if the service can be offered without driverless vehicles, introducing them frequently in-

creases the optimal fleet size, improving the service quality.

Mixed fleets can be optimal if contribution margins for driverless and human-driven

vehicles are equal. In such a mixed fleet, human-driven vehicles are being rebalanced

significantly less, reducing operational costs, while not incurring as high annuities as if

the entire fleet were comprised of driverless vehicles. If contribution margins of driverless

vehicles exceed that of human-driven vehicles, the optimal fleet composition is almost

always to procure only driverless vehicles.

Mixed fleets become more frequently optimal when the total demand increases. The

number of artificial instances with mixed fleets as optimal procurement strategy increases

from 7 to 26 if the arrival rates are multiplied by 10. This is since the larger demand

results in larger fleets, which in turn increases pooling benefits and the availability.

Low contribution margins almost always result in unprofitable operations. We find

that the profitability if very low in many instances, and most vehicle sharing systems

are unprofitable if only direct revenues are considered, i.e., without subsidies (from the

city government or a parent company), or a high value of customer retention (e.g. if the

operator assumes that the number of customers or revenues will increase).

The technology choice and mix problem in vehicle sharing may be extended along
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different avenues. So far, we have ignored that customers may have preferences for

driverless or human-driven vehicles. The fleet mix will trivially be driven towards the

preferred vehicle type, or towards a mix of both (if different customers have different

preferences). Customer preferences become more relevant in competitive settings. Com-

petition is a common trend in technology choice literature (e.g., Goyal and Netessine

(2007)), and also commences in the literature on shared mobility (e.g., Chapter 3). In a

competitive setting, an early adopter may increase the availability to prevent competi-

tors from entering the market. In practice, demand patterns are non-stationary. So far,

only few papers study non-stationary demand (e.g., Hao et al. (2020), He et al. (2020),

and Tang et al. (2020)), and our analyses on fleet size and mix can be adapted to them.

However, most results presented herein remain valid.
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Appendix 5.A Proofs

5.A.1 Proof for Lemma 5.1

We prove by contradiction. Since the algorithm iterates all fleet compositions, unless

(i) md + mh > mmax, or (ii) π
(
md +mh, 0

)
− F dmd − F hmh < Π, we must prove that

no solution that does not fulfill both can be an optimal solution, or vice versa, that any

optimal solution fulfills both. The upper bound on the fleet size follows from Corollary

5.1 (proven in Appendix 5.A.3). Case (ii) follows directly from Property 1, and will be

proven for both second-stage algorithms independently.

5.A.2 Proof for Lemma 5.2

We prove by contradiction. Let’s assume that inequality (5.2) holds, but md′,mh′ is

optimal. Then,

Π
(
md,mh

)
< Π

(
md′,mh′) (5.9)

must hold. By adding (5.2) and (5.9), the contradiction becomes obvious:

Π
(
md,mh

)
+ π̄ − π

(
md,mh

)
< Π

(
md′,mh′)+ F d

(
md′ −md

)
+ F h

(
mh′ −mh

)
π
(
md,mh

)
− F dmd − F hmh + π̄ − π

(
md,mh

)
< π

(
md′,mh′)− F dmd′ − F hmh′

+ F d
(
md′ −md

)
+ F h

(
mh′ −mh

)
π̄ < π

(
md′,mh′)

This contradicts the assumption that π
(
md,mh

)
and π

(
md′,mh′) are bounded from

above by π̄.

The second part of this Lemma follows from the non-decreasing costs on the right

hand side: Any m̂ ≥ m′ necessarily incurs higher annuities, and can therefore not be

optimal, either.
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5.A.3 Proof for Corollary 5.1

We prove by contradiction. We apply Lemma 5.2 and compare to the fleet 〈0, 0〉. Then,

any fleet such that

π̄ ≥ F dmd + F hmh

cannot be optimal. Since F d and F h are positive, the largest number of vehicles of one

type can be achieved if the other is 0. Thus, inequality (5.2) can be restated as

md ≤ π̄

F d

mh ≤ π̄

F h
.

The largest fleet size that fulfills these inequalities is then given by rounding down to

the next integer.

5.A.4 Proof for Theorem 5.1

We prove (i) quasi-concavity, (ii) non-decreasingness, (iii) non-negativity, and (iv) a

preference for driverless vehicles. Parts 1-3 are trivial properties of the SMDP, and part

(iv) is proven by comparing policies.

Part (i): First, we prove quasi-concavity. Koole (2006) proves that quasi-concavity

propagates through maximization and addition. When calculating the profit of the

second stage using value iteration, these are the necessary operations. Thus, the profits

of the second-stage problem are quasi-concave as well.

Part (ii): We observe that the profit function of the (exact) second-stage problem

can only increase when adding an additional vehicle: Even if this vehicle remains at its

original location, another vehicle will not decrease the profit.

Part (iii), the non-negativity, will follow from part (ii) and part (iv).

Part (iv): To prove that “making vehicles driverless” never decreases operational

profits we compare policies. Assume that R1 is the optimal policy with additional

driverless vehicles and R3 is the optimal policy with fewer driverless vehicles. To be able

to compare policies, we assign x driverless vehicles in the solution 1 the type “human-

driven”. Thus, in the 3 solution they appear in the inventories for human-driven vehicles,

but incur lower cost during rebalancing (reducing the expected rebalancing costs, but

rebalancing costs of driverless vehicles remain strictly lower than rebalancing costs for
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human-driven vehicles). The optimal policy in this case is R2. Since policy R3 is feasible

for setting 2, and in all states either incurs equal rebalancing costs (if driverless vehicles

or no vehicles are rebalanced) or higher rebalancing costs (if human-driven vehicles are

rebalanced),

πmd+x,mh−x
(
R2
)
≥ πmd,mh

(
R3
)

holds. Also, R1 cannot return lower profits than R2, since the “proper” rebalancing

vehicles can be selected. In fact, human-driven vehicles will only be rebalanced, if no

driverless vehicles are available at the location of origin. In setting 2, it is possible

that this scenario there are driverless vehicles at the origin location, but they have been

assigned the human-driven type. In these states, the marginal profit is lower. In all

other states, the marginal profit is identical. Thus,

πmd+x,mh−x
(
R1
)
≥ πmd+x,mh−x

(
R2
)

holds. Both previous inequalities together prove the assumption: Operators always

prefer driverless vehicles over human-driven vehicles on an operational planning horizon.

5.A.5 Proof for Corollary 5.2

We first reduce the FLP to the model of Braverman et al. (2019) to prove that objective

(5.5a) is an upper bound for any policy, and then show that this upper bound does not

exceed some bound.

To prove that objective (5.5a) is an upper bound for any (state-dependent or state-

independent) policy for a fleet of the same size, we first observe that the constraints in

(5.5) with pdi = 1 ∀i ∈ I can be transformed into the model of Braverman et al. (2019)

by dividing all λi, f
d
ij, and edij by md. Then, Theorem 2 and Remark 5 of Braverman

et al. (2019) hold which state that if the objective function is (i) non-decreasing in

a (true since a = pdi is monotonely increasing), (ii) non-decreasing in fij (true since

λip
d
i =

∑
j∈I µijf

d
ij is monotonely increasing), (iii) non-increasing in eij, i 6= j (true sind

monotonely decreasing), independent from eii (true since eii does not appear in the

objective), and concave in eij and fij (true since linear or independent), the optimal

objective function value is a (strict) upper bound on the profit of any routing policy.

Second, we show that π̄
(
md,mh

)
is bounded. If the fleet size is infinitely large, all

customers will be served, assuming that the revenues are sufficiently high compared to
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the rebalancing cost. The rebalancing problem can then be reformulated as a trans-

portation problem with the demand imbalance (difference between number of incoming

and outgoing vehicles at a station) as pickup or delivery demand. This transportation

problem has a cost-minimizing solution which translates to rebalancing rates (number

of vehicles the operator should rebalance per period of time, λ′ij) which in turn can be

transformed into the expected number of empty vehicles, edij =
λ′i
µij

. Let’s denote the

minimum number of vehicles necessary to rebalance in the most cost-efficient manner by

md. Any additional vehicle above
⌊
md
⌋

cannot increase revenues, and does not decrease

cost, and thus does not influence the objective function, resulting in a (constant) upper

bound on any state-dependent policy.

5.A.6 Proof for Lemma 5.3

We define the system with md driverless and mh human-driven vehicles as two coupled

closed queueing networks. Analogously, we can define the system with md+mh driverless

vehicles (without human-driven vehicles) as two coupled closed queueing networks with

md and mh vehicles, respectively. Then, the routing, and thus the availability, in the

first system remains the same. The routing in the second system remains feasible, but

not necessarily optimal in the most general case. However, if rebalancing costs cαij and

contribution margins rαij are proportional to the traversal time 1
µij

, a routing solution

that is optimal for human-driven vehicles is also optimal for driverless vehicles.

We show that adapting the routing decision cannot improve profits: The routing

decision can only improve in the formerly human-driven queueing system. In this system,

all demand assigned to the system is served, and since rdij ≥ rhij and cdij ≤ chij as well as

rdij ≥ cdji, all demand will be served after merging. Thus, we can safely ignore contribution

margins rdij, and instead focus on minimizing the cost. Henceforth, the let γα be defined

such that cαij = γα

µij
. The assumption that cdij ≤ chij ∀i, j then translates to γd ≤ γh. Let’s

assume that some rebalancing policy e is optimal for the human-driven system, but

some other rebalancing policy e′ is optimal if the same demand is served with driverless

vehicles. This then results in the following two optimality conditions:∑
i 6=j

eijµijc
h
ij <

∑
i 6=j

e′ijµijc
h
ij∑

i 6=j

e′ijµijc
d
ij <

∑
i 6=j

eijµijc
d
ij

141



Chapter 5 Technology Choice for Vehicle Sharing

When replacing the costs cdij and chij, this reads∑
i 6=j

eijγ
h <

∑
i 6=j

e′ijγ
h

∑
i 6=j

e′ijγ
d <

∑
i 6=j

eijγ
d

which cannot be satisfied.

If the since the calculation of the availability only depends on the arrival rates λ̃i and

expected travel times 1
µij

, it directly follows that if the routing does not change, the

availability Aα does not change either.

If both systems are being merged, the availability is thus at least the same (and often

higher).

5.A.7 Proof for Theorem 5.2

We prove (i) concavity (if either md = 0 or mh = 0), (ii) non-decreasingness (if either

md = 0 or mh = 0), (iii) non-negativity, and (iv) a preference for driverless vehicles.

Part (i): We first prove that the expected operational profit function is concave and

increasing for md ≥ m, and mh = 0. Here, m is the number of vehicles necessary such

that all rebalancing can be performed on the cheapest rather than fastest rebalancing

arc, and still fulfilling all customer requests. It follows from Corollary 5.2 that the

optimal solution to (5.5) is constant in md.

It is obvious that the objective function value of (5.5) is non-negative, since pdi = phi =

0∀i ∈ I, edij = ehij = 0∀i, j ∈ I, i 6= j, eαii = mα

n
∀i ∈ I, α ∈ {d, h}, and fdij = fhij = 0∀i ∈ I

is a feasible solution that yields the objective function value 0.

Shanthikumar and Yao (1987) prove that MVA yields concavely increasing availabil-

ities if md increases. Obviously, concavity and increasingness survive multiplication by

a non-negative constant (the objective function value of (5.5)). By symmetry, the same

holds for md = 0 and mh ≥ m.

Part (ii): Next, we show that the expected operational profit is also increasing for

md < m and mh = 0 (mh < m and md = 0). The expected operational profit is a

product of the objective function value to (5.5) and the availability. Since both are

clearly non-negative and increasing, the expected operational profit must also be non-

negative and increasing.

Part (iii): By the same argument, non-negativity persists even if both md and mh

are strictly positive. Then, the objective function value to (5.5) and the availability are
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both non-negative, and so is their product.

Part (iv): If costs and contribution margins are proportional to the expected travel

time, Lemma 5.3 states that the availability of an purely driverless fleet is at least as high

as the availability of any mixed fleet of the same total size. Also, as stated before, the

availability is always non-negative. Also, the objective function value of (5.5) necessarily

increases the higher the share of driverless vehicles in the system grows. It is obvious

that the objective function value of (5.5) is non-negative. The expected operational

profit of a purely driverless fleet is the product of two non-negative values that are both

at least as high as the corresponding values for mixed fleets. Thus, a purely driverless

fleet always incurs at least as high expected operational profits as any mixed fleet of the

same size.
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Chapter 6

Conclusions

6.1 Summary

This thesis studies different aspects of rebalancing shared mobility systems, focusing

on one-way station-based and one-way free-floating carsharing systems as well as ride-

hailing. In such systems, rebalancing is paramount to increase availability of vehicles

and avoid piling of vehicles in some regions. Consequentially, rebalancing leads to higher

customer satisfaction and higher profits for operators.

Chapter 3 investigates profit gains due to considering the presence of competition and

losses due to the presence of competition, as well as features that drive profit gains and

losses. We present a novel model formulation, the Competitive Pickup and Delivery

Orienteering Problem (C-PDOP), that models competition between multiple one-way

carsharing operators that rebalance their fleets simultaneously. The C-PDOP is solved

for pure strategy Nash equilibria using Iterated Best Response (IBR) and Potential

Function Optimizer (PFO).

RQ 1.1 How much can operators gain from considering the presence of competition in

their rebalancing operations with regards to gross profits? Put differently, what is the

price of ignoring the presence of competition?

Using artificial data, profit gains can be up to several orders of magnitude. Using data

from a case study settled in Munich, Germany, with two operators, we quantify the

profit gains to be 35% on average over both operators, if the operators otherwise ignore

the presence of competition (optimistic). If the operators otherwise assume that their

competitor has vehicles at all competitive locations (pessimistic), the operators can gain

on average 12% of their profits.

RQ 1.2 How much is lost by competing in comparison to jointly optimizing fleet re-
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balancing with regard to gross profits, and how do alternative business models under

competition compare to each other?

We find that welfare-maximization in the routing (joint optimization of the sum over

both objectives) does not improve profitability by a large margin, compared to equilib-

rium profits. For most operators, these minor profit improvements do not justify the

additional coordination effort. Under two minor restrictions, merging the fleets, or out-

sourcing rebalancing to a third-party operator provably increases profitability. Merging

the fleets results in at least as high profits as outsourcing, and equal profits if all cus-

tomers have memberships with all operators. On artificial data, this improvement can

be several orders of magnitude, whilst in a Munich, Germany, case study, operators only

lose 10% by competing rather than merging.

RQ 1.3 Which features drive the gains from considering competition, and the losses due

to the presence of competition?

The profit gain due to considering competition increases if competition is fierce, given by

a high fraction of customers with multiple memberships. The profit loss due to presence

of competition decreases with increasingly fierce competition. An increasing instance

size decreases the percentage loss due to the presence of competition. The profit gain

also increases in a high number of operators, but decreases if the size of stations (excess

demand per station) increases. Further, inhomogeneous payoffs (under full competi-

tion), and customers preferring one operator over the other (only for the less preferred

operator), increase the profit gain due to considering competition.

In Chapter 4 we study the mode selection problem of carsharing operators: Vehicles

can either be loaded onto a truck, or be driven by workers. In the latter case, the

workers have to continue to the next vehicle (or return to the depot) by biking, hitching

rides with colleagues, or by using public transit. We support operators in their modal

decision and their decision to hybridize among different modes by building classifiers

and providing insights into the key features driving the modal choice.

RQ 2.1 Can a good mode be selected a-priori based upon features of the fleet and city?

Yes, the best mode can be determined with an accuracy of more than 90% using linear

regression, logistic regression, and one of the three suggested decision trees. With these

classifiers, the excess cost due to misclassification is low (less than 10% of the total

cost on average over all misclassified instances). Most instances in which the algorithms

fail to return the optimal mode are borderline cases in the sense that given the set of

features, the optimal mode differs between days, and hybridization among various modes

often reduces costs.
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RQ 2.2 Which features drive the choice of the optimal rebalancing mode?

We find that in most instances, the optimal mode is either bike or truck, and bike

is preferred, unless worker wages are very high, or costs for vehicles (fuel, wear, tear,

deprecation) is not too low. Public transit and car are only the best mode, if the modes

bike and truck are impeded, e.g., by very low accessibility by truck and very low velocities

for the mode bike.

Chapter 5 focuses on the technology choice problem of shared mobility operators

arising when driverless vehicles become available. While driverless vehicles are cheaper

to rebalance and might result in higher contribution margins per customer, they incur

substantially higher investment costs, in particular in an early stage after their intro-

duction. Operators thus face the problem of determining the optimal fleet size and mix.

The technology choice problem is solved using a bound-and-enumerate algorithm, and

the rebalancing problems (for a fixed fleet mix) are solved using either Semi-Markov

Decision Processes (SMDPs) or Fluid-Based Approximation Linear Program (FLP).

RQ 3.1 Should shared mobility operators use fleets with only one vehicle type, or mix

among driverless and human-driven vehicles?

While in some instances driverless vehicles do not increase profits, there are many in-

stances for which the possibility of introducing driverless vehicles in the fleet mix in-

creases profits. If contribution margins differ between vehicle types, operators should

almost always only use driverless vehicles. Mixed fleets become increasingly important

if the fleet size is large due to a large customer base.

RQ 3.2 Under which circumstances can shared mobility operators benefit from intro-

ducing driverless vehicles in their fleet?

Operators benefit from introducing driverless vehicles in their fleet mix in most instances,

unless rebalancing costs and contribution margins of driverless and human-driven vehi-

cles are almost identical, and annuities differ largely between vehicle types.

RQ 3.3 How much can operators gain with respect to total profits from using mixed

fleets comprised of driverless vehicles?

In some instances, driverless vehicles are necessary for the shared mobility operator to

reach profitability, and thus offer their service. They can improve their profitability by

several orders of magnitude if instances are highly imbalanced and contribution margins

differ. The benefit of mixed fleets over fleets only consisting of driverless vehicles is

substantially lower (on average 2%).
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6.2 Limitations and Future Research

The methodogical contributions and managerial insights developed in this thesis can be

extended in different directions.

In Chapter 3, we assume that the profit functions of the competitors are known. In

practice, operators must first observe their operators’ reactions, to be able to determine

the profit function. Future research could investigate how to learn a profit function

from the limited information available (e.g., vehicle position, pricing structure). Once a

profit function is established for the non-competitive case, additional research can extend

this to learning own demand if competition is present by including the availability of

the competitor in the data for the demand prediction algorithms. Further, timing of

rebalancing operations may influence the insights: Our numerical experiments show

that it is possible that one operator refrains from rebalancing altogether. Possibly,

operators might benefit from rebalancing on different days (then, the problem should

be studied as a repeated game). Further, operators may benefit from delaying their

rebalancing activities until the other operator has finished (in particular if multiple

equilibria exist). If both operators delay their actions, they might reach a prisoner’s

dilemma. Future research can extend the C-PDOP to a repeated game, and consider

the timing of rebalancing (timing and frequency of rebalancing operations is also an

open problem in the non-competitive case).

Chapter 4 currently only studies operator-based rebalancing in a homogeneous op-

erating area. A similar feature-based classifier can help to determine if an operator

should rebalance entirely herself, or additionally offer incentives for users to rebalance.

If user-based rebalancing is used, this may also affect the optimal mode with which the

remaining fleet is rebalanced. Extending the feature-based classifier to different features

within the operating area (e.g., city center with high density of locations and low veloci-

ties vs. suburban areas with lower density and higher velocities) is not trivial, and future

research can address this line of research either by integrating the feature-based mode

selection with districting, or by enhancing the algorithms to explicitly consider the vari-

ability of features. Currently, the Carsharing Relocation Problem (CRP) is restricted to

rebalancing during the night when demand is negligible. If the operator also rebalanced

during the day to counteract short-term imbalances, the longer vehicle unavailability

and inflexibility when loaded onto a truck might deter operators from using this mode.

Future research can address this tradeoff between a mode with a higher capacity and

less flexibility, both from a modelling and an analytics perspective. We model the CRP
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as a cost-minimizing problem. In line with Chapter 3, the CRP could be include the

profitability of locations. While this could result in some locations being frequently

omitted (and thus not fulfill the goal of a balanced fleet), this could also improve the

performance of modes with a high variance in rebalancing costs (e.g., bike).

We assume that when driverless vehicles become available, operators will start offer-

ing shared mobility, or directly replace their entire fleet. In practice, operators replace

vehicles over time. Since our numerical study showed that having single driverless ve-

hicles is often not beneficial, technology diffusion may thwart the adoption of driverless

vehicles. Further, the cost difference between driverless and human-driven vehicles will

decrease over time. Thus, operators may put off procuring driverless vehicles. Future

research may address the question how quickly the fleet is replaced to reach the target

state according to Chapter 5.

An interesting line for future research is integrating competition and fleet mix, that

are studied separately in Chapters 3 and 5. Competition might speed up the adoption

of driverless vehicles if frequent rebalancing is necessary to compete on availability, but

might as well slow down the adoption if operators increase their fleet size to catch more

customers and thus rebalance less.

In all chapters, we assume that the demand processes at different stations (or in

different districts in the case of free-floating systems) are independent, i.e., a customer

who cannot be served at a station is lost, rather than walking to a nearby station if the

other station has ample supply. There exist first approaches for measuring this effect

(e.g., Kabra et al. (2020)). Future research could (i) develop modelling approaches

for addressing this behavior in rebalancing problems which can for example draw upon

results from attractivity in facility location problems, and (ii) measure the cost reduction

and profit increase that becomes possible if the customer’s willingness to walk is explicitly

considered. In Chapter 3, this mainly affects the payoff function and results in non-

linearities for which a novel algorithmic treatment needs to be developed. In Chapter

5, one can first study how much the availability increases, and subsequently also devise

methods to address interdependent demand. Currently, we assume that the demand

(or the demand distribution) is stationary and exogeneous. While demand stationarity

is not very restrictive if vehicles are rebalanced periodically during the night, demand

is subject to change during the day and, thus, affects dynamic rebalancing. Varying

demand may impact the optimal fleet composition, since driverless vehicles can better

react to spatio-temporal demand imbalances, but also incur higher costs during periods

of low demand (e.g., the night). Future research could first investigate the optimal fleet
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size under non-stationary demand, and then extend this to the optimal fleet composition.

If demand is partially endogeneous, that is if we consider return trips which require that

a vehicle was available for the first part of the trip, and that longer periods of low

availability reduce the trust in vehicle sharing, we must integrate the demand process

into the rebalancing models.
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Illgen, Stefan and Michael Höck (2019). Literature review of the vehicle relocation prob-

lem in one-way car sharing networks. Transportation Research Part B: Methodolog-

ical 120, pp. 193–204.

Jiang, Zhong-Zhong, Guangwen Kong, and Yinghao Zhang (2020). Making the most of

your regret: Workers’ relocation decisions in on-demand platforms. Manufacturing

& Service Operations Management, Forthcoming.

Jordan, William C and Stephen C Graves (1995). Principles on the benefits of manufac-

turing process flexibility. Management Science 41 (4), pp. 577–594.
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