Skip to main content

Enumerating Classes of Effective Quasi-Polish Spaces

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13359))

Abstract

We discuss ideal presentations of effective quasi-Polish spaces and some of their subclasses. Based on this, we introduce and study natural numberings of these classes, in analogy with the numberings of classes of algebraic structures popular in computability theory. We estimate the complexity of (effective) homeomorphism w.r.t. these numberings, and of some natural index sets. In particular, we give precise characterizations of the complexity of certain classes related to separation axioms.

M. de Brecht—De Brecht’s research was supported by JSPS KAKENHI Grant Number 18K11166.

T. Kihara—Kihara’s research was partially supported by JSPS KAKENHI Grant Numbers 19K03602 and 21H03392, and the JSPS-RFBR Bilateral Joint Research Project JPJSBP120204809.

V. Selivanov—Selivanov’s research was supported by the RFBR-JSPS Bilateral Joint Research Project 20-51-50001.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We thank Nikolay Bazhenov for the related bibliographical hints.

References

  1. Abramsky S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Science, vol. 3, pp. 1–168. Oxford (1994)

    Google Scholar 

  2. Ash, C., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy. Studies in Logic and the Foundations of Mathematics, vol. 144. North-Holland Publishing Co., Amsterdam (2000)

    MATH  Google Scholar 

  3. de Brecht, M.: Quasi-Polish spaces. Ann. Pure Appl. Logic 164, 356–381 (2013)

    Article  MathSciNet  Google Scholar 

  4. de Brecht, M.: Some notes on spaces of ideals and computable topology. In: Anselmo, M., Della Vedova, G., Manea, F., Pauly, A. (eds.) CiE 2020. LNCS, vol. 12098, pp. 26–37. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51466-2_3

    Chapter  Google Scholar 

  5. Downey R., Melnikov A.G.: Effectively compact spaces. Unpublished manuscript

    Google Scholar 

  6. de Brecht, M., Pauly, A., Schröder, M.: Overt choice. Computability 9(3–4), 169–191 (2020)

    Article  MathSciNet  Google Scholar 

  7. Ershov, Y.L., Goncharov, S.S.: Constructive Models. Plenum, New York (1999)

    MATH  Google Scholar 

  8. Fokina, E.D., Friedman, S.D., Harizanov, V., Knight, J.F., McCoy, C., Montalban, A.: Isomrphism relations on computable structures. J. Symb. Log. 77(1), 122–132 (2012)

    Article  Google Scholar 

  9. Fokina, E., Friedman, S., Nies, A.: Equivalence relations that are \(\Sigma ^0_3\) complete for computable reducibility. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 26–33. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32621-9_2

    Chapter  Google Scholar 

  10. Fokina, E.B., Harizanov, V., Melnikov, A.: Computable model theory. In: Turing’s Legacy: Developments From Turing’s Ideas in Logic. Lecture Notes Logic, vol. 42, pp. 124–194. Association for Symbolic Logic, La Jolla (2014)

    Google Scholar 

  11. Goncharov S.S., Knight J.: Computable structure and antistructure theorems. Algebra Logika 41(6), 639–681, 757 (2002)

    Google Scholar 

  12. Hoyrup, M., Kihara, T., Selivanov, V. Degree spectra of homeomorphism types of Polish spaces. Arxiv 2004.06872v1 (2020)

    Google Scholar 

  13. Hoyrup, M., Rojas, C., Selivanov, V., Stull, D.M.: Computability on Quasi-Polish spaces. In: Hospodár, M., Jirásková, G., Konstantinidis, S. (eds.) DCFS 2019. LNCS, vol. 11612, pp. 171–183. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23247-4_13

    Chapter  Google Scholar 

  14. Harrison-Trainor M., Melnikov A., Ng K.M.: Computability of Polish spaces up to homeomorphism. J. Symb. Log. 85(4), 1–25 (2020)

    Google Scholar 

  15. Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol. 156. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-4190-4

    Book  MATH  Google Scholar 

  16. Korovina, M., Kudinov, O.: On higher effective descriptive set theory. In: Kari, J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 282–291. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58741-7_27

    Chapter  Google Scholar 

  17. Kihara, T., Ng, K.M., Pauly, A.: Enumeration degrees and nonmetrizable topology. Submitted. arXiv:1904.04107

  18. McNicholl, T.H., Stull, D.M.: The isometry degree of a computable copy of \(\ell ^{p1}\). Computability 8(2), 179–189 (2019)

    Article  MathSciNet  Google Scholar 

  19. Melnikov, A.G.: Computably isometric spaces. J. Symb. Log. 78(4), 1055–1085 (2013)

    Article  MathSciNet  Google Scholar 

  20. Selivanov, V.L.: Positive structures. In: Barry Cooper, B., Goncharov, S.S. (eds.) Computability and Models, Perspectives East and West, pp. 321–350. Kluwer Academic/Plenum Publishers, New York (2003)

    Chapter  Google Scholar 

  21. Selivanov, V.L.: Towards the effective descriptive set theory. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 324–333. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20028-6_33

    Chapter  Google Scholar 

  22. Selivanov, V.: On degree spectra of topological spaces. Lobachevskii J. Math. 41(2), 252–259 (2020)

    Article  MathSciNet  Google Scholar 

  23. Steen, L.A., Seebach, J.A.: Counterexamples in Topology. Springer, New York (1978). https://doi.org/10.1007/978-1-4612-6290-9. Reprinted by Dover Publications, New York, 1995

Download references

Acknowledgement

The authors are grateful to anonymous referees for the careful reading and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Selivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Brecht, M., Kihara, T., Selivanov, V. (2022). Enumerating Classes of Effective Quasi-Polish Spaces. In: Berger, U., Franklin, J.N.Y., Manea, F., Pauly, A. (eds) Revolutions and Revelations in Computability. CiE 2022. Lecture Notes in Computer Science, vol 13359. Springer, Cham. https://doi.org/10.1007/978-3-031-08740-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08740-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08739-4

  • Online ISBN: 978-3-031-08740-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics