
Incremental Mining of Frequent Serial Episodes
Considering Multiple Occurrences

Thomas Guyet1, Wenbin Zhang2, and Albert Bifet3,4

1 Inria, Lyon Center, France
thomas.guyet@inria.fr

2 Carnegie Mellon University, United States
wenbinzhang@cmu.edu

3 University of Waikato, New Zealand
4 LTCI, Telecom Paris, Institut Polytechnique de Paris, France

albert.bifet@waikato.ac.nz

Abstract. The need to analyze information from streams arises in a
variety of applications. One of its fundamental research directions is to
mine sequential patterns over data streams. Current studies mine series
of items based on the presence of the pattern in transactions but pay no
attention to the series of itemsets and their multiple occurrences. The
pattern over a window of itemsets stream and their multiple occurrences,
however, provides additional capability to recognize the essential char-
acteristics of the patterns and the inter-relationships among them that
are unidentifiable by the existing presence-based studies. In this paper,
we study such a new sequential pattern mining problem and propose a
corresponding sequential miner with novel strategies to prune the search
space efficiently. Experiments on both real and synthetic data show the
utility of our approach.

Keywords: event sequence, serial episode, multiple occurrences

1 Introduction

Online mining of frequent patterns over a sliding window is one of the most
important tasks in data stream mining with broad applications. In this case,
the data stream is made of items or itemsets that arrive continuously. The aim
is then to obtain a set of evolving frequent patterns over a sliding window, in
which the most recent frequent patterns as well as their evolution are available
at any time for information extraction. This motivates work on mining frequent
patterns over series of items based on their presence in the stream [2,21]. In this
paper, to gain additional information from the stream, we take one step further
to extract frequent sequential patterns over a stream of itemsets but also to
consider their multiple occurrences in the stream.

Mining frequent sequential patterns from a single long sequence S is better
known as serial episode mining [11]. Under this setting, the support of a pattern
is the number of times it occurs in S. The way to enumerate the multiple oc-
currences of a pattern turns out to be important to have the antimonotonicity

2 T. Guyet, W. Zhang and A. Bifet

of the measure. Among the possible enumeration strategies [1], the minimal oc-
currences is the most common [11] with the initial work discussed in [6]. With
this property, the classical breadth-first search (like PrefixSpan [13]) or depth-
first search algorithms (like GSP [15]) can be adapted to efficiently extract the
complete set of frequent sequential patterns occurring in a static sequence. How-
ever, applying such algorithms to maintain the recent frequent patterns over the
stream would be intractable. In addition, start from scratch each time a new
item arrives in the stream is needed, but the computation cost, in practice, is
unaffordable.

To address the aforementioned challenges, this paper introduces Incremental
Sequence (IncSeq), a novel framework to efficiently extract frequent serial
episodes over the stream of itemsets. To the best of our knowledge, this is the
first work capable of mining series of itemsets incrementally without the need to
start from scratch. To summarize, we present the following contributions:

– The formalization of a new incremental sequential pattern mining problem,
which counts the exact number of occurrences of sequential patterns.

– A complete algorithm for incremental sequential pattern mining with effi-
cient search space pruning.

– Extensive experiments on both real and synthetic datasets.

2 Basic Concepts and Problem Statement

Suppose that we have a set of items denoted E and < defines the total order on
this set (e.g. lexicographic order). An itemset β = (bi)i∈[m] ⊆ E is a sub-itemset
of α = (ai)i∈[n] ⊆ E , denoted β v α, iff there exists a sequence of integers

1 ≤ i1 < i2 < · · · < im ≤ n such that ∀k ∈ [m], bk = aik .1 A sequence S is a
finite ordered series of itemsets S = 〈s1, s2, . . . , sn〉. A serial episode (also called
sequential pattern or pattern for short) is a sequence. The length of a sequential
pattern S, denoted |S|, is the number of itemsets it contains. The total number
of items in a pattern S is denoted ‖S‖. T = 〈t1, t2, . . . , tm〉 is a sub-sequence
of S = 〈s1, s2, . . . , sn〉, denoted T � S, iff there exists a sequence of integers
1 ≤ i1 < i2 < · · · < im ≤ n such that tk v sik for all k ∈ [m].

The minimal occurrences [11] of a sequential pattern S = 〈s1, . . . , sn〉 in
a sequence W = 〈w1, . . . , wm〉, denoted IW (S), is the list of n-tuple of positions
(within W):

IW (S) =
{

(ij)j∈[n] ∈ [m] | ∀j ∈ [n], sj v wij , (a)
∀j ∈ [n− 1], ij < ij+1, (b)
(wj)j∈[i1+1,in]

� S, (c)

(wj)j∈[i1,in−1] � S } (d)

(1)

In Equation 1, condition (a) requires that any itemset of S is a sub-itemset
of an itemset of W , while condition (b) specifies the order of itemsets of W

1 [n] denotes the set of the n first integers {1, . . . , n}.

Incremental mining of frequent serial episodes 3

needs to respect. In addition, no itemset of W can be a super-itemset of two
distinct itemsets of S. This condition does not impose any time constraint be-
tween itemsets. Conditions (c) and (d) specify minimal occurrences: if a minimal
occurrence of S has been identified in the interval [i1, in], there can not be any
minimal occurrence of S in a strict subinterval of [i1, in]. For sake of simpli-
fication, “occurrence” denotes “minimal occurrence” in the remainder of this
paper.

Then, the support of a sequential pattern S in sequenceW , denoted suppW (S),
is the cardinality of IW (S), i.e. suppW (S) = card (IW (S)). The support mea-
sure suppW (·) is anti-monotonic on the set of sequential patterns with associated
partial order � [16]. Given a threshold σ, we say that a sequential pattern S is
frequent in a stream window W iff suppW (S) ≥ σ.

Mining frequent sequential patterns incrementally is therefore to extract
frequent sequential patterns in a sequence W = 〈w1, . . . , wm〉 from the ones in
W ′ = 〈w0, . . . , wm−1〉. This recursively mining of frequent sequential patterns
enables to mine a stream of itemsets, i.e. to maintain the set of frequent sequen-
tial patterns in a window sliding over a stream of itemsets.

3 Incremental Algorithm for Sequential Patterns

Our proposed approach relies on representing the set of frequent sequential pat-
terns (or patterns for short) in a tree structure inspired by the prefixing method
of PSP [12]. PSP represents a set of frequent sequential patterns as a tree with
two types of edges: the edges representing sequentiality (S) between itemsets
and the edges representing the composition (C) of itemsets. Masseglia et al. [12]
showed that such representation is memory efficient.

Formally, a tree node N is a 4-tuple 〈α, I,S, C〉 where:

– α = (ai)i∈[n] is a sequential pattern of size n,

– I = IW (α), the list of minimal occurrences of α in W ,
– S is the set of descendant nodes which represent patterns β = (bi)i∈[n+1] of

size ‖α‖+ 1 such that ∀i ∈ [n], ai = bi,
– C is the set of descendant nodes which represent patterns β = (bi)i∈[n] of size

‖α‖+ 1 such that ∀i ∈ [n− 1], ai = bi, an v bn and ∀j < |an|, ajn < b
|an|+1
n ,

(i.e. itemset bn extends itemset an with the item b
|an|+1
n).

A tree of frequent patterns, denoted Aσ(W), represents all patterns of W
having a support greater than σ. The root node of a prefix tree is a node of the
form 〈{}, ∅,S, C〉.

Let N be a node of Aσ(W). The subtree rooted at node N represents the tree
composed of all descendants of N (including N). Owing to the anti-monotonicity
property, we know that if a node has a support greater than or equal to σ then
all its ancestors are frequent sequential patterns in W . In addition, each node –
apart from the root – has a single parent. This ensures that a recursive processing
of a PSP tree is complete and non-redundant. Figure 1 exemplifies the frequent
PSP tree representation followed by its corresponding illustration.

4 T. Guyet, W. Zhang and A. Bifet

Fig. 1. Example of a tree of frequent sequential patterns (σ = 2)

Example 1 Let W = 〈a(bc)(abc)cb〉 and σ = 2. Figure 1 shows the tree Aσ(W).
Solid lines indicate membership in the set S (Succession in the sequential pat-
tern), while the dotted lines indicate membership in the set C (Composition with
the last itemset). The node (bc)b, highlighted in gray, has the pattern node (bc)
as parent, since (bc)b is obtained by concatenating b to (bc). The parent node of
(bc) is (b) and is obtained by itemset composition (dotted line). At each node of
Figure 1, the list of minimal occurrences is displayed in the index. For example,
the pattern (bc)c has two occurrences: I(〈(bc)c〉) = {(2, 3), (3, 5)}.

3.1 Illustration of the Algorithm

The incremental process aims at updating the tree of frequent patterns with
respect to the most recent window of the stream and determining which patterns
are frequent. The arrival of a new itemset in the stream triggers two steps: (1)
the deletion of occurrences related to the first itemset in the window; (2) the
addition of patterns and occurrences related to the new incoming itemset. The
addition step incurs the majority of computational load involving three substeps:
(i) merging sub-itemsets of the new itemset into the current tree, (ii) completing
the lists of occurrences, and (iii) pruning nodes of non-frequent patterns. Our
approach therefore performs the deletion step prior to the addition of a new
itemset in order to reduce the size of the tree before the computational expensive
merging and completion substeps.

Let us consider the window W = 〈(abc)(ab)(ab)c〉 of length 4, at position 1 of
the stream. Assume that A2(W), i.e. the tree of patterns with support greater
than 2, has already been built. The following steps transform the tree of frequent
patterns A2(W) into the tree A2(W ′) upon the arrival of the new itemset (bc).
These steps are illustrated in Figure 2 and detailed in the following.

1. Deletion of the first itemset: all occurrences starting at the first (old-
est) position of the window (orange occurrences at position 1 in the example)
are deleted. Then, patterns having a number of occurrences lower than σ = 2
are deleted from the tree. The result is the tree A2(〈(ab)(ab)c〉) where a, (ab), b

Incremental mining of frequent serial episodes 5

a
(1),(2),(3)

b
(1),(2),(3)

c
(1),(4)

aa
(1,2),
(2,3)

(ab)
(1),(2),(3)

ba
(1,2),
(2,3)

bb
(1,2),
(2,3)

(abc)
1

(ab)
2

(ab)
3

c
4

(bc)
5

b
(5)

c
(5)

(bc)
(5)

a
(2),(3)

b
(2),(3),
(5)

c*
(4),
(5)

(ab)
(2),(3)

bb*
(2,3),
(3,5)

ab*
(2,3)
(3,5)

ac
(3,5)
+(2,4)

a(bc)
(3,5)

(ab)b*
(2,3),
(3,5)

(ab)(bc)
(3,5)

bc
(3,5)
+(3,4)

(bc)
(5)

b(bc)
(3,5)

Input
sequence

1. Deletion of the
1st itemset: (abc)

T(bc): Itemset tree of the
new itemset (bc)

(ab)c
(3,5)
+(3,4)

A2(W): Frequent sequence
tree of first window

2-3. Merging and
Completion

4. Pruning of
unfrequent patterns

A2(W'): Final sequence tree
of 2nd window

Ac: Intermediate
sequence tree
of 2nd window

(ab)a
(1,2),
(2,3)

(ab)b
(1,2),
(2,3)

(ab)(ab)
(1,2),
(2,3)

a
(2),(3)

b
(2),(3),(5)

c
(4),(5)

(ab)
(2),(3)

bb
(2,3),
(3,5)

ab
(2,3),
(3,5)

ac
(2,4),
(3,5)

(ab)b
(2,3),
(3,5)Trees to be merged in step 2

a
(2),(3)

b
(2),(3)

c*
(4)

(ab)
(2),(3)

bb*
(2,3)

(ab)b*
(2,3)

A2(<(ab)(ab)c>):
Pruned

diminished tree

ab
(1,2),
(2,3)

ab*
(2,3)

w

w'

Fig. 2. Successive steps for updating the tree of frequent patterns upon the arrival of
itemset (bc) in the window W = 〈(abc)(ab)(ab)c〉.

are frequent. Quasi-frequent patterns (marked with asterisk in the example) are
not frequent but may become frequent as they have a support equals to σ − 1
and they are ended by an item present in the new itemset, i.e. (bc). Such nodes
are kept in the frequent tree with their occurrences as the following completion
step (see below) is not necessary for them.

2. Merging the new current itemset (bc) with every node of the
tree of patterns: this step generates all the new candidate patterns of the
new window. Intuitively, a pattern is a new candidate (i.e. potentially frequent)
only if it is the concatenation of a sub-itemset of (bc) to a frequent pattern of
〈(ab)(ab)c〉. In the tree representation of frequent patterns, this concatenation
can be seen as extending each node of A2(〈(ab)(ab)c〉) with the itemset tree T(bc)
representing all sub-itemsets of (bc).

In Figure 2, the tree T(bc) is merged with the four non-quasi-frequent nodes
of A2(〈(ab)(ab)c〉):

– with the root node (green occurrences): all subsequences of (bc) become
potentially frequent.

6 T. Guyet, W. Zhang and A. Bifet

– with the nodes a, (ab), b (blue occurrences): all patterns starting with one of
these three patterns (frequent in 〈(ab)(ab)c〉) and followed by a sub-itemset
of (bc) become potentially frequent.

We call this procedure “tree merging” because if a node already exists in the
tree (e.g. node (b)), the occurrences related to the new itemset are added to the
list of existing occurrences. The list of occurrences of (b) becomes {(2), (3), (5)}.
We know that each of these nodes holds all the occurrences of the associated
pattern in W ′. New nodes are noted in bold face in the frequent tree after the
merging step in Figure 2. Each of these new nodes of Af , e.g. the node (bc),
has an occurrence list consisting of only one occurrence of a sub-itemset of (bc).
Quasi-frequent nodes (nodes marked with the asterisk) are not merged with the
itemset tree T(bc). Their occurrence lists are simply updated when needed.

3. Completion of occurrences’ lists: Exclusively for new candidate nodes,
it is necessary to scan the window W ′ once again to build the complete list of
occurrences of a pattern. For example, the node ab is associated with the list
{(3, 5)}. This list must be completed with the occurrences of ab in the previous
window ({(2, 3)}). As 〈ab〉 was unfrequent in W , we must retrieve their occur-
rences. Red occurrences of the tree Ac in Figure 2 show the occurrences added
by completion.

4. Pruning non-frequent patterns: Ac, the tree obtained after comple-
tion, contains new candidate patterns with complete lists of occurrences. The
last step removes patterns with an occurrences’ list of size strictly lower than
σ = 2 yielding the tree A2(W ′).

Algorithm 1 Merging: merging the itemset tree T with every node of the tree
of patterns A.

1: function Merging(A, T)
2: T ′ ← T
3: for N ∈ A do
4: for n ∈ T ′ do . Prefixing T ′
5: n.α = N.α⊕ n.α . Prefixing the pattern with N.α
6: for all I ∈ n.I do . Prefixing all occurrences
7: I = d ∪ I . d is the last element of N.I
8: end for
9: end for

10: RecMerge(T ′, N) . Recursive merging of T ′ with nodes N of A
11: end for
12: return A
13: end function

3.2 Merging a Tree of an Itemset into a Tree of Frequent Patterns

Now, we detail the merging step which integrates the itemset tree T into the
pattern tree A. Then, we explain the completion of occurrences.

Incremental mining of frequent serial episodes 7

Algorithm 1 describes how the itemset tree T is merged with every node of
the frequent patterns tree A. It consists of two main steps:

– prefixing the itemset tree T with the pattern of node N ,
– recursively merging the prefixed T with descendants of node N (cf. Algo-

rithm 2).

Let N.α be the pattern associated with a node N from the tree of patterns
A and N.I be the list of occurrences associated with N . For each node N of
A, the itemset tree T is first prefixed by N : on the one hand, the patterns of
each node of T are prefixed by N.α; on the other hand, all occurrences of T are
prefixed by the last occurrence of N.I. Using the last occurrence in N.I enforces
the third property (see eq. 1).

Algorithm 2 RecMerge: recursively merging the prefixed itemset tree T with
a node of A
Input: n: itemset node tree, N : node of the tree of patterns to be merged with n and

such that n.α = N.α
1: function RecMerge(n, N)
2: N.I ← N.I ∪ n.I . Merging lists of occurrences
3: for sN ∈ N.S ∪N.C do . Recursion
4: for sn ∈ n.S ∪ n.C do
5: if sN .α = sn.α then
6: found← True

7: RecMerge(sn, sN)
8: end if
9: end for

10: if not found then
11: if sn ∈ n.S then
12: N.S ← N.S ∪ {Copy(sn)}
13: else
14: N.C ← N.C ∪ {Copy(sn)}
15: end if
16: end if
17: end for
18: end function

In a second step, the algorithm recursively merges the root of the itemset
tree T prefixed by N . Algorithm 2 details this merging operation. We first need
to make sure that n.α = N.α to verify that the two nodes represent the same
pattern. At line 2, occurrences of nodes n and N are merged. By construction of
the new occurrence, the conditions of Eq. 1 are satisfied. Then, the descendants
of n are processed recursively. For each node of n.S (resp. n.C), we search a node
sn in N.S (resp. N.C) such that these nodes represent the same pattern. If such
a node is found, then the function RecMerge is recursively applied. Otherwise,
a copy of the entire subtree of sn is added to n.S (resp. n.C).

8 T. Guyet, W. Zhang and A. Bifet

3.3 Completion of a List of Occurrences

When a new pattern is introduced in the tree, it means that it was unfrequent
in the previous window, but there might exist occurrences of this pattern. They
were simply not stored in the tree (except quasi-frequent patterns). For example,
in Figure 2, the pattern 〈bc〉 (node surrounded by a dotted line square) is not
frequent in W and is not present in the frequent patterns tree A2(W). However,
after the arrival of itemset (bc) the pattern 〈bc〉 may become frequent in W .
Thus, it is necessary to scan W ′ to retrieve all occurrences of 〈bc〉 to compute
its frequency.

The completion algorithm is applied exclusively to the nodes newly intro-
duced in the tree. While ensuring the completeness, this method reduces the
number of completions. In addition, to make the completion efficient, the occur-
rences of a pattern β is recursively constructed from the occurrences of its direct
parent along the following principles:

– each occurrence I = (i1, . . . , i|δ|) of a pattern δ obtained by adding an item e
to the last itemset of β (composition) are necessarily occurrences of β, thus
the algorithm tests whether e is included in the itemset wi|δ| .

– each occurrence I = (i1, . . . , i|ε|) of a pattern ε, obtained by adding an
itemset e to β (succession), are necessarily constructed by adding the element
i|ε| to an occurrence of β, thus the algorithm browses a sub-sequence of W ′

to test the presence of e.

For succession nodes, the completion scans only the sub-sequence of W ′ com-
posed of the itemsets between i|β| + 1 and j|β|−1, where J = (j1, . . . , j|β|) is the
occurrence after I in the list of occurrences of β.

As an example, on the tree Ac in Figure 2, the occurrences of 〈bc〉 is I(〈bc〉) =
{(3, 5)}. This occurrence has been obtained during the merging step by adding
the element 5 to the occurrence (3) of pattern 〈b〉. An occurrence of I(〈bc〉) is the
successor of one of the occurrences of 〈b〉: I(〈b〉) = {(2), (3), (5)}. To complete
occurrence (3) from I(〈b〉), the algorithm looks for one c in W ′ at a position
between 3 (= 2 + 1) and the beginning of the third occurrence of I(〈b〉), i.e. 5.
Here, occurrence (3, 4) is found. But it is a sub-sequence of an existing occurrence
(3, 5). Due to the definition of minimal occurrences (eq. 1), (3, 5) is deleted. The
same for pattern (ab)c (the other node surrounded by a dotted line square). It
is not possible to complete occurrence (2) of I(〈b〉) because there is no c in the
itemset at position 3 (the only possible itemset between the occurrence of 〈b〉 at
position (2) and the next occurrence in I(〈bc〉)).

It is worth mentioning that the proposed algorithm is complete. Specifically,
in a streaming context which applies recursively the incremental mining process,
it extracts all the frequent sequential patterns for each sliding window of the
stream.

4 Experiments and Results

The objective of our experiments is to show that the proposed algorithm is an
efficient strategy for mining sequential patterns incrementally. More specifically,

Incremental mining of frequent serial episodes 9

we would like to assess the space and time efficiency of the proposal compared to
a Batch approach, i.e. a strategy that does not exploit the incremental changes
of the window. The Batch algorithm is based on PrefixSpan and uses the PSP
tree structure. It rebuilds the entire tree Aσ(W) for each consecutive window of
size ws on the data stream. To the best of our knowledge, there is no state-of-
the-art competitor for this task.

It is worth noticing that the two approaches are complete and thus extract
the exact same sets of patterns. For this reason, we do not discuss the algorithm
outputs but only their efficiency.

In a first experiment, we present the result on synthetic data which have been
widely used to evaluate the efficiency of sequential pattern mining algorithms.
As the purely random nature of this data does not mimic the characteristics of
true datasets (with less balanced itemset occurrences or with the presence of
significant patterns), we supplement this experiment with an experiment on a
real dataset. This dataset also illustrates the practical value and additional in-
formation gained by addressing the newly formulated sequential pattern mining
problem of this work.

The algorithms were implemented in C++ and ran on a single core. The
source code, synthetic datasets and benchmarks scripts are available online2.

4.1 Experiments on Synthetic Data

In this section, we evaluate IncSeq against Batch on synthetic datasets gen-
erated in the same way as the IBM quest data generator. Specifically, at each
sequence position, an item is present with a probability of 3%, thus yielding a
random sequence of itemsets. The length of the sequence simulating the stream
is 1000 times of the windows size, which requires the incremental algorithm to be
recursively called 1000 times in a run. The item vocabulary size, card(E), is set
to 40. Then, the average number of items per itemset is 1.2. The experiments
were conducted by varying the parameters ws (window size from 80 to 300)
and σ (minimal support from 3 to 10 occurrences) on 5 different datasets per
configuration. The results reported are the average results of all the experiments.

Figure 3-(a) illustrates the execution time with respect to σ. As one can see,
the execution time grows exponentially when σ decreases. Note that a time-
out is set as 10 minutes. For more time-consuming mining tasks (with low σ),
Batch failed 17 times before a successful completion of the mining process, while
IncSeq failed 16 times. It is also clear that IncSeq, on average, is an order of
magnitude faster than Batch. To further assess the superior efficiency of IncSeq
on mining various sizes of window, Figure 3-(c) and (d) provide the execution
time ratio between IncSeq and Batch with respect to σ and ws, respectively.
As one can see, IncSeq dominates Batch by 10 to 20 times faster in processing
time when σ and ws increase. The different drop for σ = 10 because the number
of frequent patterns is closed to zero. Thus, the computing times are very low
for the two approaches.

2 https://gitlab.inria.fr/tguyet/seqstreamminer

https://gitlab.inria.fr/tguyet/seqstreamminer

10 T. Guyet, W. Zhang and A. Bifet

1e−02

1e−01

1e+00

1e+01

1e+02

4 5 6 7 10
σ

T
im

e

(
s
)

Batch
IncSeq

(a)

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

5000

10000

30000

50000

4 5 6 7 10
σ

M
e

m
o

r
y

(
k
b

)

Batch
IncSeq

(b)

0

10

20

30

40

4 5 6 7 10
σ

T
im

e

r
a

t
io

(
B

a
t
c
h

/
I
n

c
S

e
q

)

(c)

●

●

0

10

20

30

40

80 120 160 200
ws

T
im

e

r
a

t
io

(
B

a
t
c
h

/
I
n

c
S

e
q

)

(d)

Fig. 3. Comparison of processing time (logarithmic scale) and memory usage with
respect to the support threshold σ (with ws < 25) and the size of the sliding window
ws. (c) and (d) represent the respective computing time ratio of Batch to IncSeq on
the same dataset.

Incremental mining of frequent serial episodes 11

Figure 3-(b) additionally shows the memory usage of the two approaches.
As expected, the two approaches are comparable in terms of the memory usage
as the required memory is mainly to store the frequent sequential patterns and
the two approaches induce identical trees. We also observe that the memory re-
quirement depends upon σ as the lower σ the more frequent patterns. Ensuring
memory efficiency is also an essential prerequisite for sequential pattern min-
ing, our proposed method therefore enjoys the advantage of mining sequential
patterns with reduced time at no extra memory cost.

4.2 Experiments on Smart Electrical Meter Data

Batch
IncSeq

Batch

IncSeq

Fig. 4. Comparison of computation time (left) and memory usage (right) when mining
the power consumption streams.

We also conducted experiments on real smart electrical meter data. Smart
electrical meters record the power consumption of an individual or company in
intervals of 30 min and communicate that “instant” information to the electric
provider for monitoring and billing purposes. The aim of smart meters is to
better anticipate the high consumption of a distribution sector by awarding a
consumption profile to each meter, i.e. a dynamic model of changes in consump-
tion. As consumption profiles depend on the period of year (seasons, holidays),
week (weekdays, weekends) or day and are unpredictable for medium to long-
term consumption, we employ IncSeq and Batch to extract the dynamic online
profiles of short-term consumption of the meters.

The annual series of instantaneous consumption is a flow of about 18,000
values. We use the SAX algorithm [10] for discretizing the consumption values.
A vocabulary size of |E| = 14 and a window aggregation of PAA = 24 have been
chosen. The consumption profile of a smart meter at time t is the set of frequent
consumption patterns during the period [t− w, t] (sliding window of predefined
size w = 28 itemsets, i.e. 2 weeks).

12 T. Guyet, W. Zhang and A. Bifet

Figure 4 shows the results for 40 meters. It is clear that the results obtained
on the real data are consistent with those obtained on synthetic data. Specific
to the real data, while most of the meters can be processed within seconds, the
processing time of some meters are significantly longer (about few minutes). This
disparity is attributed to the observed consumption variability. Specifically, the
patterns that are more time-consuming to process are relatively constant (e.g.
industrial consumption) consisting of many repetitions of symbols, thus lead
to a large tree depth. It is however clear that the results of real and synthetic
datasets conclusively match, which suggests that our proposed method is an
efficient sequential pattern miner with manageable memory cost.

5 Related Work

In the field of stream mining, several approaches extended frequent pattern min-
ing in a setting similar to ours. For example, Chang et al. [3] proposed to extract
recent frequent patterns in a sliding window over a data stream, while Calders
et al. [2] improved such approaches with the adaptive window size. More re-
cently, Giacometti and Soulet [5] proposed a sampling of the pattern to improve
the efficiency. Our approach focuses on more complex patterns, i.e., sequential
patterns, to extract additional information with a similar streaming setup.

For sequential patterns, less efforts have been made in streaming settings [4].
The incremental or online sequential pattern mining algorithms in the literature
address simplified problems of ours: mining frequent sequential patterns in a
stream of transactions that are sequences, such as IncSPAM [7], or mining fre-
quent sequential patterns in a collection of itemsets streams, such as PSP-AMS
[8]; in both cases, the counting of sequential patterns is based on the number of
transactions (resp. number of streams) in which a pattern occurs. However, all
these algorithms examine the presence of a pattern in each transaction as the
pattern counting method and ignore the multiple occurrences of the pattern in
a transaction. Tseng et al. [17] share a similar objective, but their mining al-
gorithms are not incremental. Their framework combines the results of episode
mining by batches in a map-reduce architecture without the formal properties
of IncSeq.

Finally, our approach is also different from single-pass serial episodes min-
ing algorithms [9] whose objective is not to maintain the set of frequent serial-
episodes, but is to evaluate the support of serial episodes online.

6 Conclusion and Future Works

Although a number of studies have developed approaches to mine sequential
patterns over data streams, all of these techniques focus on a stream of items
and the number of transactions that contain patterns without considering their
multiple occurrences. In this work, we present our incremental algorithm based
on counting the minimal occurrences of the sequential patterns over the course

Incremental mining of frequent serial episodes 13

of itemsets stream. Experimental studies indicate the superior computational ef-
ficiency of our approach compared to the non-incremental method. In the future,
we plan to further extend it by considering the condensed representation such
as maximum patterns and closed patterns in the context of incremental mining.
One immediate future work is to extend these results in conjunction with our
previous works [18,19] for fair pattern mining. A relevant avenue is to investi-
gate the ubiquitous graph data representation [14,20] with unique challenges for
example the independent and identically distributed (IID) data distribution.

References

1. A. Achar, S. Laxman, and P. S. Sastry, A unified view of automata-based algorithms
for frequent episode discovery, CoRR abs/1007.0690 (2010).

2. Toon Calders, Nele Dexters, Joris JM Gillis, and Bart Goethals, Mining frequent
itemsets in a stream, Information Systems 39 (2014), 233–255.

3. Joong Hyuk Chang and Won Suk Lee, A sliding window method for finding recently
frequent itemsets over online data streams, Journal of Information science and
Engineering 20 (2004), no. 4, 753–762.

4. Philippe Fournier-Viger, Jerry Chun-Wei Lin, Rage Uday Kiran, Yun Sing Koh,
and Rincy Thomas, A survey of sequential pattern mining, Data Sc. Pat. Reco. 1
(2017), no. 1, 54–77.

5. Arnaud Giacometti and Arnaud Soulet, Reservoir pattern sampling in data
streams, Proc. ECML-PKDD, 2021, pp. 337–352.

6. Thomas Guyet and René Quiniou, Incremental mining of frequent sequences from
a window sliding over a stream of itemsets, Actes IAF (2012).

7. Chin-Chuan Ho, Hua-Fu Li, Fang-Fei Kuo, and Suh-Yin Lee, Incremental mining
of sequential patterns over a stream sliding window, International Conference on
Data Mining-Workshops (ICDMW), 2006, pp. 677–681.

8. Bijay Prasad Jaysawal and Jen-Wei Huang, Psp-ams: Progressive mining of se-
quential patterns across multiple streams, ACM Trans. Knowl. Discov. Data 13
(2018), no. 1, 1–23.

9. Hui Li, Sizhe Peng, Jian Li, Jingjing Li, Jiangtao Cui, and Jianfeng Ma, Counting
the frequency of time-constrained serial episodes in a streaming sequence, Informa-
tion Sciences 505 (2019), 422–439.

10. J. Lin, E. Keogh, S. Lonardi, and B. Chiu, A symbolic representation of time
series, with implications for streaming algorithms, Proceedings of the Workshop
on Research Issues in Data Mining and Knowledge Discovery, 2003.

11. H. Mannila, H. Toivonen, and A. I. Verkamo, Discovering frequent episodes in
event sequences, Journal of Data Mining and Knowledge Discovery 1 (1997), no. 3,
210–215.

12. F. Masseglia, F. Cathala, and P. Poncelet, The PSP approach for mining sequential
patterns, Proceedings of the European Symposium on Principles of Data Mining
and Knowledge Discovery, 1998, pp. 176–184.

13. J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and
M.-C. Hsu, Mining sequential patterns by pattern-growth: the PrefixSpan approach,
Transactions on Knowledge and Data Engineering 16 (2004), no. 11, 1424–1440.

14. Tai Le Quy, Arjun Roy, Vasileios Iosifidis, Wenbin Zhang, and Eirini Ntoutsi, A
survey on datasets for fairness-aware machine learning, Data Mining and Knowl-
edge Discovery (2022).

14 T. Guyet, W. Zhang and A. Bifet

15. R. Srikant and R. Agrawal, Mining sequential patterns: Generalizations and perfor-
mance improvements, Proceedings of the International Conference on Extending
Database Technology, 1996, pp. 3–17.

16. Nikolaj Tatti and Boris Cule, Mining closed strict episodes, Data Mining and
Knowledge Discovery 25 (2012), no. 1, 34–66.

17. Jerry C. C. Tseng, Jia-Yuan Gu, P. F. Wang, Ching-Yu Chen, Chu-Feng Li, and
Vincent S. Tseng, A scalable complex event analytical system with incremental
episode mining over data streams, Proc. of Congress on Evolutionary Computation,
2016, pp. 648–655.

18. Wenbin Zhang and Jeremy Weiss, Longitudinal fairness with censorship, Proceed-
ings of the AAAI Conference on Artificial Intelligence, 2022.

19. Wenbin Zhang and Jeremy Weiss, Rethinking fairness: New definitions and algo-
rithm for fair machine learning under uncertainty, Knowledge and Information
Systems (2022).

20. Wenbin Zhang, Jeremy C Weiss, Shuigeng Zhou, and Toby Walsh, Fairness amidst
non-iid graph data: A literature review, arXiv preprint arXiv:2202.07170 (2022).

21. Morteza Zihayat, Cheng-Wei Wu, Aijun An, Vincent S Tseng, and Chien Lin,
Efficiently mining high utility sequential patterns in static and streaming data,
Proc. of Intelligent Data Analysis, vol. 21, 2017, pp. 103–135.

	Incremental Mining of Frequent Serial Episodes Considering Multiple Occurrences

