Skip to main content

Peridynamic Damage Model Based on Absolute Bond Elongation

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13350))

Included in the following conference series:

  • 1175 Accesses

Abstract

A bond-based peridynamic damage model is proposed to incorporate the deformation and the damage process into a unified framework. This new model is established based on absolute bond elongation, and both the elastic and damage parameters of the material are embedded in the constitutive relationship, which makes the model better characterize the process of material damage. Finally, different phenomenons for various damage patterns is observed by numerical experiments, rich damage patterns will make this model better suitable for damage simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasiniyan, L., Hoseini, S.H., Faroughi, S.: Fracture analysis of pre-cracked and notched thin plates using peridynamic theory. J. Comput. Appl. Res. Mech. Eng. 11(2), 329–338 (2019). https://doi.org/10.22061/jcarme.2019.5136.1628

  2. Bobaru, F., Foster, J.T., Geubelle, P.H., Silling, S.A.: Handbook of Peridynamic Modeling. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  3. Bobaru, F., Ha, Y.D., Hu, W.: Damage progression from impact in layered glass modeled with peridynamics. Cent. Eur. J. Eng. 2(4), 551–561 (2012)

    Google Scholar 

  4. Bobaru, F., Zhang, G.: Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. Int. J. Fract. 196(1–2), 59–98 (2015)

    Article  Google Scholar 

  5. Chen, X., Gunzburger, M.: Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Methods Appl. Mech. Eng. 200(9–12), 1237–1250 (2011)

    Article  MathSciNet  Google Scholar 

  6. Dayal, K., Bhattacharya, K.: Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54(9), 1811–1842 (2006)

    Article  MathSciNet  Google Scholar 

  7. Dong, Y., Wei, D., Xuefeng, L., Shenghui, Y., Xiaoqiao, H.: Investigation on mode-I crack propagation in concrete using bond-based peridynamics with a new damage model. Eng. Fract. Mech. 199, 567–581 (2018)

    Article  Google Scholar 

  8. Du, Q., Tao, Y., Tian, X.: A peridynamic model of fracture mechanics with bond-breaking. J. Elast. 132(2), 197–218 (2018)

    Article  MathSciNet  Google Scholar 

  9. Emmrich, E., Puhst, D.: Well-posedness of the peridynamic model with lipschitz continuous pairwise force function. Commun. Math. Sci. 11(4), 1039–1049 (2013)

    Article  MathSciNet  Google Scholar 

  10. Emmrich, E., Puhst, D.: A short note on modeling damage in peridynamics. J. Elast. 123(2), 245–252 (2016)

    Article  MathSciNet  Google Scholar 

  11. Emmrich, E., Weckner, O.: The peridynamic equation and its spatial discretisation. Math. Model. Anal. 12(1), 17–27 (2007)

    Article  MathSciNet  Google Scholar 

  12. Ha, Y.D., Bobaru, F.: Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162(1–2), 229–244 (2010)

    Article  Google Scholar 

  13. Ha, Y.D., Bobaru, F.: Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78(6), 1156–1168 (2011)

    Article  Google Scholar 

  14. Huang, D., Lu, G., Wang, C., Qiao, P.: An extended peridynamic approach for deformation and fracture analysis. Eng. Fract. Mech. 141, 196–211 (2015)

    Article  Google Scholar 

  15. Kilic, B., Madenci, E.: Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int. J. Fract. 156(2), 165–177 (2009)

    Article  Google Scholar 

  16. Madenci, E., Oterkus, E.: Peridynamic theory. In: Peridynamic Theory and Its Applications. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-8465-3_2

  17. Prakash, N., Seidel, G.D.: A novel two-parameter linear elastic constitutive model for bond based peridynamics. In: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2015)

    Google Scholar 

  18. Ramulu, M., Kobayashi, A.S.: Mechanics of crack curving and branching - a dynamic fracture analysis. Int. J. Fract. 27(C5), 187–201 (1985)

    Article  Google Scholar 

  19. Silling, S.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  MathSciNet  Google Scholar 

  20. Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83(17–18), 1526–1535 (2005)

    Article  Google Scholar 

  21. Silling, S.A., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J. Fract. 162(1–2), 219–227 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (No. 11971386) and the National Key R&D Program of China (No. 2020YFA0713603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Nie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, S., Nie, Y. (2022). Peridynamic Damage Model Based on Absolute Bond Elongation. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13350. Springer, Cham. https://doi.org/10.1007/978-3-031-08751-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08751-6_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08750-9

  • Online ISBN: 978-3-031-08751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics