Skip to main content

Simple and Efficient Acceleration of the Smallest Enclosing Ball for Large Data Sets in \(E^2\): Analysis and Comparative Results

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13350))

Included in the following conference series:

Abstract

Finding the smallest enclosing circle of the given points in \(E^2\) is a seemingly simple problem. However, already proposed algorithms have high memory requirements or require special solutions due to the great recursion depth or high computational complexity unacceptable for large data sets, etc. This paper presents a simple and efficient method with speed-up over 100 times based on processed data reduction. It is based on efficient preprocessing, which significantly reduces points used in the final processing. It also significantly reduces the depth of recursion and memory requirements, which is a limiting factor for large data processing. The proposed algorithm is easy to implement and it is extensible to the \(E^3\) case, too. The proposed algorithm was tested for up to \(10^9\) of points using the Halton’s and “Salt and Pepper” distributions.

Research supported by the University of West Bohemia - Institutional research support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also, instead of computing the distance between points d, the \(\sqrt{d^2}\) should not be used and \(d^2\) can be used for distance comparisons Skala [52, 54]. Same idea can be applied to the radius of a circumscribed circle in Welzl’s algorithm.

  2. 2.

    Responsibilities: Algorithm design and analysis, manuscript preparation - V.Skala, Experimental implementation and verification - M. Cerny and J.Y. Saleh.

References

  1. Agarwal, P., Ben Avraham, R., Sharir, M.: The 2-center problem in three dimensions. Comput. Geometry Theory Appl. 46(6), 734–746 (2013). https://doi.org/10.1016/j.comgeo.2012.11.005

    Article  MathSciNet  MATH  Google Scholar 

  2. Cavaleiro, M., Alizadeh, F.: A faster dual algorithm for the euclidean minimum covering ball problem. Ann. Oper. Res. (2020). https://doi.org/10.1007/s10479-018-3123-5

  3. Cavaleiro, M., Alizadeh, F.: A dual simplex-type algorithm for the smallest enclosing ball of balls. Comput. Optim. Appl. 79(3), 767–787 (2021). https://doi.org/10.1007/s10589-021-00283-6

    Article  MathSciNet  MATH  Google Scholar 

  4. Cazals, F., Dreyfus, T., Sachdeva, S., Shah, N.: Greedy geometric algorithms for collection of balls, with applications to geometric approximation and molecular coarse-graining. Comput. Graph. Forum 33(6), 1–17 (2014). https://doi.org/10.1111/cgf.12270

    Article  Google Scholar 

  5. Chen, Q.Q., Hung, M.H., Zou, F.: Effective and adaptive algorithm for pepper-and-salt noise removal. IET Image Proc. 11(9), 709–716 (2017). https://doi.org/10.1049/iet-ipr.2016.0692

    Article  Google Scholar 

  6. Drager, L., Lee, J., Martin, C.: On the geometry of the smallest circle enclosing a finite set of points. J. Franklin Inst. 344(7), 929–940 (2007). https://doi.org/10.1016/j.jfranklin.2007.01.003

    Article  MathSciNet  MATH  Google Scholar 

  7. Edelsbrunner, H., Virk, Z., Wagner, H.: Smallest enclosing spheres and chernoff points in bregman geometry. Leibniz International Proceedings in Informatics, LIPIcs 99, 351–3513 (2018). https://doi.org/10.4230/LIPIcs.SoCG.2018.35

    Article  MathSciNet  MATH  Google Scholar 

  8. Efrat, A., Sharir, M., Ziv, A.: Computing the smallest k-enclosing circle and related problems. In: Dehne, F., Sack, J.-R., Santoro, N., Whitesides, S. (eds.) WADS 1993. LNCS, vol. 709, pp. 325–336. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57155-8_259

    Chapter  Google Scholar 

  9. Efrat, A., Sharir, M., Ziv, A.: Computing the smallest k-enclosing circle and related problems. Comput. Geometry Theory Appl. 4(3), 119–136 (1994). https://doi.org/10.1016/0925-7721(94)90003-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Elzinga, D.J., Hearn, D.W.: The minimum covering sphere problem. Manage. Sci. 19(1), 96–104 (1972). https://doi.org/10.1287/mnsc.19.1.96

  11. Fischer, K., Gartner, B.: The smallest enclosing ball of balls: combinatorial structure and algorithms. Int. J. Comput. Geom. Appl. 14(4–5), 341–378 (2004). https://doi.org/10.1142/s0218195904001500

    Article  MathSciNet  MATH  Google Scholar 

  12. Fischer, K., Gärtner, B.: The smallest enclosing ball of balls: combinatorial structure and algorithms. In: Proceedings of the Annual Symposium on Computational Geometry, pp. 292–301 (2003)

    Google Scholar 

  13. Fischer, K., Gärtner, B., Kutz, M.: Fast smallest-enclosing-ball computation in high dimensions. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 630–641. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39658-1_57

    Chapter  Google Scholar 

  14. Friedman, F., Stroudsburg, E.: Minimal enclosing circle and two and three point partitions of a plane. In: Proceedings of International Conference on Scientific Computing (2006)

    Google Scholar 

  15. Gärtner, B.: Fast and robust smallest enclosing balls. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 325–338. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48481-7_29

    Chapter  Google Scholar 

  16. Gao, S., Wang, C.: A new algorithm for the smallest enclosing circle. In: Proceedings of the 2018 8th International Conference on Management, Education and Information (MEICI 2018), pp. 562–567. Atlantis Press, December 2018. https://doi.org/10.2991/meici-18.2018.111

  17. Goaoc, X., Welzl, E.: Convex hulls of random order types. In: Leibniz International Proceedings in Informatics, LIPIcs 164 (2020). https://doi.org/10.4230/LIPIcs.SoCG.2020.49

  18. Har-Peled, S., Mazumdar, S.: Fast algorithms for computing the smallest k-enclosing circle. Algorithmica (New York) 41(3), 147–157 (2005). https://doi.org/10.1007/s00453-004-1123-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, Y., Cai, Y.: A reformulation-linearization based algorithm for the smallest enclosing circle problem. J. Ind. Manage. Optim. 17(6), 3633–3644 (2021). https://doi.org/10.3934/jimo.2020136

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, Y., Luo, C., Ling, S.: An efficient cutting plane algorithm for the smallest enclosing circle problem. J. Ind. Manage. Optim. 13(1), 147–153 (2017). https://doi.org/10.3934/jimo.2016009

    Article  MathSciNet  MATH  Google Scholar 

  21. Kallberg, L., Shellshear, E., Larsson, T.: An external memory algorithm for the minimum enclosing ball problem. VISIGRAPP 2016 - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 83–90 (2016). https://doi.org/10.5220/0005675600810088

  22. Karmakar, A., Roy, S., Das, S.: Fast computation of smallest enclosing circle with center on a query line segment. In: CCCG 2007–19th Canadian Conference on Computational Geometry, pp. 273–276 (2007)

    Google Scholar 

  23. Karmakar, A., Roy, S., Das, S.: Fast computation of smallest enclosing circle with center on a query line segment. Inf. Process. Lett. 108(6), 343–346 (2008). https://doi.org/10.1016/j.ipl.2008.07.002

    Article  MathSciNet  MATH  Google Scholar 

  24. Krivosija, A., Munteanu, A.: Probabilistic smallest enclosing ball in high dimensions via subgradient sampling. Leibniz International Proceedings in Informatics, LIPIcs 129 (2019). https://doi.org/10.4230/LIPIcs.SoCG.2019.47

  25. Larsson, T., Kallberg, L.: Fast and robust approximation of smallest enclosing balls in arbitrary dimensions. Comput. Graph. Forum 32(5), 93–101 (2013). https://doi.org/10.1111/cgf.12176

    Article  Google Scholar 

  26. Li, X., Ercan, M.F.: An algorithm for smallest enclosing circle problem of planar point sets. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 309–318. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42085-1_24

    Chapter  Google Scholar 

  27. Liu, Y.-F., Diao, R., Ye, F., Liu, H.-W.: An efficient inexact newton-CG algorithm for the smallest enclosing ball problem of large dimensions. J. Oper. Res. Soc. China 4(2), 167–191 (2015). https://doi.org/10.1007/s40305-015-0097-8

    Article  MathSciNet  MATH  Google Scholar 

  28. Martinetz, T., Mamlouk, A., Mota, C.: Fast and easy computation of approximate smallest enclosing balls. In: Brazilian Symposium of Computer Graphic and Image Processing, pp. 163–168 (2006). https://doi.org/10.1109/SIBGRAPI.2006.20

  29. Martyn, T.: Tight bounding ball for affine IFS attractor. Comput. Graph. (Pergamon) 27(4), 535–552 (2003). https://doi.org/10.1016/S0097-8493(03)00089-X

    Article  Google Scholar 

  30. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica (New York) 16(4–5), 498–516 (1996). https://doi.org/10.1007/bf01940877, the code available at https://news.ycombinator.com/item?id=14475832

  31. Megiddo, N.: On the ball spanned by balls. Discrete Comput. Geometry 4(6), 605–610 (1989). https://doi.org/10.1007/BF02187750

    Article  MathSciNet  MATH  Google Scholar 

  32. Mordukhovich, B., Nam, N., Villalobos, C.: The smallest enclosing ball problem and the smallest intersecting ball problem: existence and uniqueness of solutions. Optim. Lett. 7(5), 839–853 (2013). https://doi.org/10.1007/s11590-012-0483-7

    Article  MathSciNet  MATH  Google Scholar 

  33. Mukherjee, D.: Reduction of two-dimensional data for speeding up convex hull computation (2022). arxiv:2201.11412, https://arxiv.org/pdf/2201.11412.pdf

  34. Munteanu, A., Sohler, C., Feldman, D.: Smallest enclosing ball for probabilistic data. In: Proceedings of the Annual Symposium on Computational Geometry, pp. 214–223 (2014). https://doi.org/10.1145/2582112.2582114

  35. Nam, N., Nguyen, T., Salinas, J.: Applications of convex analysis to the smallest intersecting ball problem. J. Convex Anal. 19(2), 497–518 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Nielsen, F.: The siegel-klein disk: Hilbert geometry of the siegel disk domain. Entropy 22(9) (2020). https://doi.org/10.3390/e22091019

  37. Nielsen, F., Hadjeres, G.: Approximating covering and minimum enclosing balls in hyperbolic geometry. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2015. LNCS, vol. 9389, pp. 586–594. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25040-3_63

    Chapter  Google Scholar 

  38. Nielsen, F., Nock, R.: Approximating smallest enclosing balls. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 147–157. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24767-8_16

    Chapter  Google Scholar 

  39. Nielsen, F., Nock, R.: A fast deterministic smallest enclosing disk approximation algorithm. Inf. Process. Lett. 93(6), 263–268 (2005). https://doi.org/10.1016/j.ipl.2004.12.006

    Article  MathSciNet  MATH  Google Scholar 

  40. Nielsen, F., Nock, R.: On approximating the smallest enclosing bregman balls. In: Proceedings of the Annual Symposium on Computational Geometry 2006, pp. 485–486 (2006). https://doi.org/10.1145/1137856.1137931

  41. Nielsen, F., Nock, R.: On the smallest enclosing information disk. Inf. Process. Lett. 105(3), 93–97 (2008). https://doi.org/10.1016/j.ipl.2007.08.007

    Article  MathSciNet  MATH  Google Scholar 

  42. Nielsen, F., Nock, R.: Approximating smallest enclosing balls with applications to machine learning. Int. J. Comput. Geom. Appl. 19(5), 389–414 (2009). https://doi.org/10.1142/S0218195909003039

    Article  MathSciNet  MATH  Google Scholar 

  43. Nock, R., Nielsen, F.: Fitting the smallest enclosing bregman ball. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 649–656. Springer, Heidelberg (2005). https://doi.org/10.1007/11564096_65

    Chapter  Google Scholar 

  44. Pan, S., Li, X.: An efficient algorithm for the smallest enclosing ball problem in high dimensions. Appl. Math. Comput. 172(1), 49–61 (2006). https://doi.org/10.1016/j.amc.2005.01.127

    Article  MathSciNet  MATH  Google Scholar 

  45. Pronzato, L.: On the elimination of inessential points in the smallest enclosing ball problem. Optim. Methods Softw. 34(2), 225–247 (2019). https://doi.org/10.1080/10556788.2017.1359266

    Article  MathSciNet  MATH  Google Scholar 

  46. Ritter, J.: An efficient bounding sphere, pp. 301–303. Graphics Gems, Academic Press Professional, Inc (1990)

    Google Scholar 

  47. Saha, A., Vishwanathan, S., Zhang, X.: New approximation algorithms for minimum enclosing convex shapes. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms pp. 1146–1160 (2011). https://doi.org/10.1137/1.9781611973082.86

  48. Shen, K.W., Wang, X.K., Wang, J.Q.: Multi-criteria decision-making method based on smallest enclosing circle in incompletely reliable information environment. Comput. Ind. Eng. 130, 1–13 (2019). https://doi.org/10.1016/j.cie.2019.02.011

    Article  Google Scholar 

  49. Shenmaier, V.: Complexity and approximation of the smallest k-enclosing ball problem. Eur. J. Comb. 48, 81–87 (2015). https://doi.org/10.1016/j.ejc.2015.02.011

    Article  MathSciNet  MATH  Google Scholar 

  50. Shi, Y.Z., Wang, S.T., Wang, J., Deng, Z.H.: Fast classification for nonstationary large scale data sets using minimal enclosing ball. Kongzhi yu Juece/Control and Decision 28(7), 1065–1072 (2013)

    Google Scholar 

  51. Skala, V.: Trading time for space: an O(1) average time algorithm for point-in-polygon location problem: theoretical fiction or practical usage? Mach. Graph. Vision 5(3), 483–494 (1996)

    Google Scholar 

  52. Skala, V.: Barycentric coordinates computation in homogeneous coordinates. Comput. Graph. (Pergamon) 32(1), 120–127 (2008). https://doi.org/10.1016/j.cag.2007.09.007

    Article  Google Scholar 

  53. Skala, V.: Fast \(o_{expected}(n)\) algorithm for finding exact maximum distance in E2 instead of \(O(N^2)\) or \(O(N~lgN)\). AIP Conf. Proc. 1558, 2496–2499 (2013). https://doi.org/10.1063/1.4826047

    Article  Google Scholar 

  54. Skala, V.: A new robust algorithm for computation of a triangle circumscribed sphere in E3 and a hypersphere simplex. In: AIP Conference Proceedings 1738 (2016). https://doi.org/10.1063/1.4952269

  55. Skala, V.: Diameter and convex hull of points using space subdivision in E2 and E3. In: Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A.C., Tarantino, E., Torre, C.M., Karaca, Y. (eds.) ICCSA 2020. LNCS, vol. 12249, pp. 286–295. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58799-4_21

    Chapter  Google Scholar 

  56. Skala, V., Majdisova, Z.: Fast algorithm for finding maximum distance with space subdivision in E2. LNCS 9218, 261–274 (2015). https://doi.org/10.1007/978-3-319-21963-9_24

    Article  Google Scholar 

  57. Skala, V., Majdisova, Z., Smolik, M.: Space subdivision to speed-up convex hull construction in E3. Adv. Eng. Softw. 91, 12–22 (2016). https://doi.org/10.1016/j.advengsoft.2015.09.002

    Article  Google Scholar 

  58. Skala, V.: Fast \(o_{expected}(n)\) algorithm for finding exact maximum distance in E2 instead of \(O(N^2)\) or \(O(N~lgN)\). In: Misra, S., Gervasi, O., Murgante, B., Stankova, E., Korkhov, V., Torre, C., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 367–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_27

  59. Skala, V., Smolik, M., Majdisova, Z.: Reducing the number of points on the convex hull calculation using the polar space subdivision in E2. SIBGRAPI 2016, 40–47 (2017). https://doi.org/10.1109/SIBGRAPI.2016.015

    Article  Google Scholar 

  60. Skyum, S.: A simple algorithm for computing the smallest enclosing circle. Inf. Process. Lett. 37(3), 121–125 (1991). https://doi.org/10.1016/0020-0190(91)90030-L

    Article  MathSciNet  MATH  Google Scholar 

  61. Smolik, Z.M., Skala, V.: Efficient speed-up of the smallest enclosing circle algorithm. Informatica, pp. 1–11 (2022). https://doi.org/10.15388/22-INFOR477, accepted for publication, online 2022–03-23

  62. Sylvester, J.: A question in the geometry of situation. Quarterly J. Pure Appl. Math. 1, 79 (1857). https://doi.org/10.1049/iet-ipr.2016.0692

    Article  Google Scholar 

  63. Tao, J.W., Wang, S.T.: Large margin and minimal reduced enclosing ball learning machine. Ruan Jian Xue Bao/Journal of Software 23(6), 1458–1471 (2012). https://doi.org/10.3724/SP.J.1001.2012.04071

    Article  MathSciNet  Google Scholar 

  64. Wang, Y., Li, Y., Chang, L.: Approximate minimum enclosing ball algorithm with smaller core sets for binary support vector machine. In: 2010 Chinese Control and Decision Conference, CCDC 2010, pp. 3404–3408 (2010). https://doi.org/10.1109/CCDC.2010.5498584

  65. Wang, Y., Li, Y., Tan, K.L.: Coresets for minimum enclosing balls over sliding windows. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 314–323 (2019). https://doi.org/10.1145/3292500.3330826

  66. Wei, L.Y., Anand, A., Kumar, S., Beri, T.: Simple methods to represent shapes with sample spheres. In: SIGGRAPH Asia 2020 Technical Communications, SA 2020 (2020). https://doi.org/10.1145/3410700.3425424

  67. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0038202

    Chapter  Google Scholar 

  68. Welzl, E.: Geometric optimization and unique sink orientations of cubes. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 176–176. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28629-5_9

    Chapter  MATH  Google Scholar 

  69. Welzl, E.: The smallest enclosing circle - a contribution to democracy from switzerland? Algorithms Unplugged, pp. 357–360 (2011). https://doi.org/10.1007/978-3-642-15328-0_36

  70. Wikipedia contributors: Article: Smallest-circle problem - Wikipedia, the free encyclopedia (2021). https://en.wikipedia.org/wiki/Smallest-circle_problem. Accessed 29 Jan 2022

  71. Wikipedia contributors: Halton sequence - Wikipedia, the free encyclopedia (2021). en.wikipedia.org/wiki/Halton_sequence. Accessed 27 Jan 2022

    Google Scholar 

  72. Wikipedia contributors: Talk: Smallest-circle problem - Wikipedia, the free encyclopedia (2021). https://en.wikipedia.org/wiki/Talk:Smallest-circle_problem. Accessed 29 Jan 2022

  73. Xu, J., Bu, F., Si, W., Qiu, Y., Chen, Z.: An algorithm of weighted Monte Carlo localization based on smallest enclosing circle. In: Proceedings - 2011 IEEE International Conference on Internet of Things and Cyber, Physical and Social Computing, iThings/CPSCom 2011, pp. 157–161 (2011). https://doi.org/10.1109/iThings/CPSCom.2011.67

  74. Xu, S., Freund, R., Sun, J.: Solution methodologies for the smallest enclosing circle problem. Comput. Optim. Appl. 25(1–3), 283–292 (2003). https://doi.org/10.1023/A:1022977709811

    Article  MathSciNet  MATH  Google Scholar 

  75. Yildirim, E.: Two algorithms for the minimum enclosing ball problem. SIAM J. Optim. 19(3), 1368–1391 (2008). https://doi.org/10.1137/070690419

    Article  MathSciNet  MATH  Google Scholar 

  76. Zhou, G., Tohemail, K.C., Sun, J.: Efficient algorithms for the smallest enclosing ball problem. Comput. Optim. Appl. 30(2), 147–160 (2005). https://doi.org/10.1007/s10589-005-4565-7

    Article  MathSciNet  MATH  Google Scholar 

  77. Zhou, Q., Zhu, H.S., Xu, Y.J., Li, X.W.: Smallest enclosing circle based localization approach for wireless sensor networks. Tongxin Xuebao/J. Commun. 29(11), 84–90 (2008)

    Google Scholar 

  78. Zhou, Y., Yang, B., Wang, J., Zhu, J., Tian, G.: A scaling-free minimum enclosing ball method to detect differentially expressed genes for RNA-SEQ data. BMC Genomics 22(1), 479 (2021). https://doi.org/10.1186/s12864-021-07790-0

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank to colleagues at the Shandong University in Jinan (China) and University of West Bohemia in Pilsen (Czech Rep.) for stimulating of this work and discussions made. Thanks belong also to the anonymous reviewers for their critical comments, hints provided and for unknown relevant references. \(^3\)(\(^3\)SIMD version using Intel’s intrinsics AVX-2 has been tested and led to an additional roughly 20% performance gain.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaclav Skala .

Editor information

Editors and Affiliations

Appendix

Appendix

This appendix presents related papers to the Smallest Enclosing Ball problem:

Agarwal [1], Cavaleiro [2, 3], Cazals [4], Chen [5], Drager [6], Edelsbrunner [7], Efrat [8, 9], Elzinga [10], wiki: [70,71,72], Fischer [11,12,13], Friedman [14], Gaertner [15], Gao [16], Goaoc [17], Har-Peled [18], Jiang [19, 20], Kallberg [21], Karmakar [22, 23], Krivosija [24], Larsson [25], Li [26], Liu [27], Martinetz [28], Martyn [29], Matousek [30], Megiddo [31], Mordukhovich [32], Mukherjee [33], Munteanu [34], Nam [35], Nielsen [38,39,40], Nielsen [36, 37, 41, 42], Nock [43], Pan [44], Pronzato [45], Ritter [46], Saha [47], Shen [48], Shenmaier [49], Shi [50], Skyum [60], Smolik [61], Sylvester [62], Tao [63], Wang [64, 65], Wei [66], Welzl [67,68,69], Xu [73, 74], Yildirim [75], Zhou [76,77,78].

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skala, V., Cerny, M., Saleh, J.Y. (2022). Simple and Efficient Acceleration of the Smallest Enclosing Ball for Large Data Sets in \(E^2\): Analysis and Comparative Results. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13350. Springer, Cham. https://doi.org/10.1007/978-3-031-08751-6_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08751-6_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08750-9

  • Online ISBN: 978-3-031-08751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics