
Partitioning Dense Graphs with Hardware Accelerators

Xiaoyuan Liu1,2, Hayato Ushijima-Mwesigwa2, Indradeep Ghosh2, and Ilya Safro1

1 University of Delaware, Newark, DE, USA {joeyxliu,isafro}@udel.edu
2 Fujitsu Research of America, Inc., Sunnyvale, CA, USA {hayato,ighosh}@fujitsu.com

Abstract. Graph partitioning is a fundamental combinatorial optimization problem that attracts a lot
of attention from theoreticians and practitioners due to its broad applications. From multilevel graph
partitioning to more general-purpose optimization solvers such as Gurobi and CPLEX, a wide range of
approaches have been developed. Limitations of these approaches are important to study in order to
break the computational optimization barriers of this problem. As we approach the limits of Moore’s
law, there is now a need to explore ways of solving such problems with special-purpose hardware such as
quantum computers or quantum-inspired accelerators. In this work, we experiment with solving the graph
partitioning on the Fujitsu Digital Annealer (a special-purpose hardware designed for solving combinatorial
optimization problems) and compare it with the existing top solvers. We demonstrate limitations of existing
solvers on many dense graphs as well as those of the Digital Annealer on sparse graphs which opens an
avenue to hybridize these approaches.

Keywords: Graph Partitioning · Dense Graphs · Digital Annealer · Quantum-Inspired

1 Introduction

There are several reasons to be optimistic about the future of quantum-inspired and quantum devices. However,
despite their great potential, we also need to acknowledge that state-of-art classical methods are extremely
powerful after years of relentless research and development. In classical computing, the development of algo-
rithms, the rich mathematical framework behind them, and sophisticated data structures are relatively mature,
whereas the area of quantum computing is still at its nascent stage. Many existing classical algorithms do not
have provable or good enough bounds on the performance (e.g., they might not have ideal performance in
the worst case), but in many applications, the worst-case scenarios are rather rarely seen. As a result, such
algorithms, many of which heuristics, can achieve excellent results in terms of the solution quality or speed.
Therefore, when utilizing emerging technologies such as quantum-inspired hardware accelerators and quantum
computers to tackle certain problems, it is important to compare them not only with possibly slow but provably
strong algorithms but also with the heuristic algorithms that exhibit reasonably good results on the instances
of interest.

The graph partitioning [3] is one of the combinatorial optimization problems for which there exists a big gap
between rigorous theoretical approaches that ensure best known worst-case scenarios, and heuristics that are
designed to cope with application instances exhibiting a reasonable quality-speed trade-off. Instances that arise
in practical applications often contain special structures on which heuristics are engineered and tuned. Because of
its practical importance, a huge amount of work has been done for a big class of graphs that arise in such areas as
combinatorial scientific computing, machine learning, bioinformatics, and social science, namely, sparse graphs.
Over the years, there were several benchmarks on which the graph partitioning algorithms have been tested and
compared with each other to mention just a few [2, 7, 41]. However, dense graphs can be rarely found in them.
The situation with general dense linear algebra instances, many of which are used to test graph partitioners, is
just a little bit better. In many cases, working with dense graphs requires very different algorithms and advanced
computational resources. As a result, most existing excellent graph partitioning heuristics do not perform well
in practice on dense graphs, while provable algorithms with complexity that depends on the number of edges (or
non-zeros in the corresponding matrix) are extremely slow. As we also show in computational results, a graph
sparsification does not necessarily practically help to achieve high-quality solutions.

Multilevel Algorithms This class of heuristics is one of the most successful for a variety of cut-based graph
problems such as the minimum linear arrangement [31], and vertex separator [11]. Specifically for a whole
variety of (hyper)graph partitioning versions [21, 22, 32, 34] these heuristics exhibit best quality/speed trade-
off [3]. In multilevel graph partitioning frameworks, a hierarchy of coarse graph representations is constructed in
such a way that each next coarser graph is smaller than the previous finer one, and a solution of the partitioning
for the coarse graph can approximate that of the fine graph and be further improved using fast local refinement.
Multilevel algorithms are ideally suited for sparse graphs and suffer from the same problems as the algebraic
multigrid (which generalizes, to the best of our knowledge, all known multilevel coarsening for partitioning)
on dense matrices. In addition, a real scalability of the existing refinement for partitioning is achieved only

ar
X

iv
:2

20
2.

09
42

0v
2

 [
cs

.E
T

]
 2

2
Fe

b
20

22

2 X. Liu et al.

for sparse local problems. Typically, if the density is increasing throughout the hierarchy construction, various
ad-hoc tricks are used to accelerate optimization sacrificing the solution quality. When such things happen at
the coarse levels, an error is quickly accumulated. Here we compare our results with KaHIP [33] which produced
the best results among several multilevel solvers [3].

Hardware Accelerators for Combinatorial Problems Hardware accelerators such as GPU have been pivotal in the
recent advancements of fields such as machine learning. Due to the computing challenges arising as a result of
the physical scaling limits of Moore’s law, scientists have started to develop special-purpose hardware for solving
combinatorial optimization problems. Examples of such hardware include adiabatic quantum computers [19],
complementary metal-oxide-semiconductor (CMOS) annealers [1] and coherent Ising machines [17]. The gate-
based universal quantum computers can also be used to solve such optimization problems [26]. These novel
technologies are all unified by an ability to solve the Ising model or, equivalently, the quadratic unconstrained
binary optimization (QUBO) problem. The general QUBO is NP-hard and many problems can be formulated
as QUBO [28]. Previous work on using QUBO based models include areas such as clustering and community
detection [4, 5, 20, 29] [35, 36, 40], chemistry [15, 16, 39], finance [30], and machine learning [6, 14, 23, 25]. It is
also often used as a subroutine to model large neighborhood local search [27]. The Fujitsu Digital Annealer
(DA) [8], used in this work, utilizes application-specific integrated circuit hardware for solving fully connected
QUBO problems. Internally the hardware runs a modified version of the Metropolis-Hastings algorithm for
simulated annealing. The hardware utilizes massive parallelization and a novel sampling technique. The novel
sampling technique speeds up the traditional Markov Chain Monte Carlo by almost always moving to a new
state instead of being stuck in a local minimum. Here, we use the third generation DA, which is a hybrid
software-hardware configuration that supports up to 100,000 binary variables. DA also supports users to specify
inequality constraints and special equality constraints such as 1-hot and 2-way 1-hot constraints.

Our contribution The goal of this paper is twofold. First, we demonstrate that existing scalable graph parti-
tioning dedicated solvers are struggling with the dense graphs not only in comparison to the special-purpose
hardware accelerators but even sometimes if compared to generic global optimization solvers that are not con-
verged. At the same time, we demonstrate a clear superiority of classical dedicated graph partitioning solvers
on sparse instances. Second, this work is a step towards investigating what kind of problems we can solve using
combinatorial hardware accelerators. Can we find problems that are hard for existing methods, but can be solved
more efficiently with novel hardware and specialized algorithms? As an example, we explore the performance of
Fujitsu Digital Annealer (DA) on graph partitioning and compare it with general-purpose solver Gurobi, and
also graph partitioning solver KaHIP.

We do not attempt to achieve an advantage for every single instance, especially since at the current stage,
the devices we have right now are still facing many issues on scalability, noise, and so on. However, we advocate
that hybridization of classical algorithms and specialized hardware (e.g., future quantum and existing quantum-
inspired hardware) is a good candidate to break the barriers of the existing quality/speed trade-off.

2 Graph Partitioning Formulations

Let G = (V,E) be an undirected, unweighted graph, where V denotes the set of n vertices, and E denotes the
set of m edges. The goal of perfect balanced k-way graph partitioning (GP), is to partition V into k parts,
V1, V2, · · · , Vk, such that the k parts are disjoint and have equal size, while minimizing the total number of cut
edges. A cut edge is an edge that has two end vertices assigned to different parts. Sometimes, the quality of
the partition can be improved if we allow some imbalance between different parts. In this case, we allow some
imbalance factor ε > 0, and each part can have at most (1 + ε)dn/ke vertices.

Binary Quadratic Programming Formulation of GP We first review the integer quadratic programming for-
mulation for k-way GP [12, 40]. When k = 2, we introduce binary variables xi ∈ {0, 1} for each vertex
i ∈ V , where xi = 1 if vertex i is assigned to one part, and 0 otherwise. We denote by x the column vec-
tor x = (x1, x2, · · · , xn)T . The quadratic programming is then given by

min
x

xTLx such that xi ∈ {0, 1}, ∀i ∈ V, (1)

where L is the Laplacian matrix of graph G. The Laplacian matrix L is defined as L = D − A, where D is a
diagonal matrix, with the degree of each node on the diagonal entries, and A is the adjacency matrix of graph
G, with Aij = 1,∀(i, j) ∈ E and 0 otherwise. For perfect balance GP, we have the following equality constraint:

xT1 =
⌈n

2

⌉
, (2)

Partitioning Dense Graphs with Hardware Accelerators 3

where 1 is the column vector with ones. For the imbalanced case, we have the following inequality constraint:

xT1 ≤ (1 + ε)
⌈n

2

⌉
. (3)

When k > 2, we introduce binary variables xi,j ∈ {0, 1} for each vertex i ∈ V and part j, where xi,j = 1 if
vertex i is assigned to part j, and 0 otherwise. Let xj denote the column vector xj = (x1,j , x2,j , · · · , xn,j)T for
1 ≤ j ≤ k. The quadratic programming formulation is then given by

min
x

1

2

k∑
j=1

xT
j Lxj

s.t.

k∑
j=1

xi,j = 1, ∀i ∈ V,

xi,j ∈ {0, 1}, ∀i ∈ V, 1 ≤ j ≤ k.

Again, for perfect balance GP, we have another set of equality constraints:

xT
j 1 =

⌈n
k

⌉
, 1 ≤ j ≤ k.

For the imbalance case, we have the following inequality constraints:

(1− ε)
⌈n
k

⌉
≤ xT

j 1 ≤ (1 + ε)
⌈n
k

⌉
, 1 ≤ j ≤ k.

QUBO Formulation To convert the problem into QUBO model, we will need to remove the constraints and add
them as penalty terms to the objective function [28]. For example, in the quadratic programming (1) with the
equality constraint (2), we obtain the QUBO model as follows:

min
x

xTLx + P
(
xT1−

⌈n
2

⌉)2
s.t. xi ∈ {0, 1}, ∀i ∈ V,

where P > 0 is a postive parameter to penalize the violation of constraint (2). For inequality constraints, we
will introduce additional slack variables to first convert the inequality to equality constraints, and then add
them as penalty terms to the objective function.

3 Computational Experiments

The goal of the experiments was to identify the class of instances that is more suitable to be solved using the
QUBO framework and the current hardware. We compare the performance of DA with exact solver Gurobi [9],
and the state-of-the-art multilevel graph partitioning solver KaHIP [33]. We set the time limit for DA and
Gurobi to be 15 minutes. For KaHIP, we use KaFFPaE, a combination of distributed evolutionary algorithm
and multilevel algorithm for GP. KaFFPaE computes partitions of very high quality when the imbalance factor
ε > 0, but does not perform very well for the perfectly balanced case when ε = 0. Therefore we also enable
KaBaPE, which is recommended by the developers. We run KaFFPaE with 24 processes in parallel, and set the
time limit to be 30 minutes.

To evaluate the quality of the solution, we compare the approximation ratio, which is computed using the GP
cut found by each solver divided by the best-known value. For some graphs, we have the best-known provided
from the benchmark [41], otherwise we use the best results found by the three solvers as the best known. Since
this is a minimization problem, the minimum possible value of the approximation ratio is 1, the smaller the
better. For each graph and each solver used, we also provide the objective function value, i.e., the number of
cut edges.

Graph Partitioning on Sparse Graphs We first test the three solvers on instances from the Walshaw graph
partitioning archive [41]. The information of the graphs is given in Table 1, where |V | is the number of nodes of
the graph, and davg = |E|/|V | describes the density of the graph. We present the summary of the results with
box plots in Fig. 1 (a), (d), (g) and (j). We also provide the objective function value of each graph obtained
by the three solvers in Table 1. We observe that in Figure 1 (g) and (j), where we compare DA and Gurobi,
DA can find the best-known partition for most instances, and perform better compared to Gurobi. However,
for several sparse graphs, i.e., davg < 3, for example, uk, add32 and 4elt, DA can not find the best-known
solutions. For these sparse graphs, multilevel graph partitioning solvers such as KaHIP can usually perform

4 X. Liu et al.

an effective coarsening and uncoarsening procedure based on local structures of the graph and therefore find
good solutions quickly. As shown in Fig. 1 (a), (d) and Table 1, KaHIP performs better than DA. Based on the
numerical results, we conclude that for the sparse graphs, generic and hardware QUBO solvers do not lead to
many practical advantages. However, graphs with more complex structures, that bring practical challenges to
the current solvers might benefit from using the QUBO and hardware accelerators.

0 1 3 5
1.0

1.2

1.4

1.6

1.8

2.0

2.2 Solver
DA
KaHIP

(a) Walshaw k = 2

0 1 3 5

2

4

6

8

10

12

14

16 Solver
DA
KaHIP

(b) Suite Sparse k = 2

0 1 3 5
1.0

1.1

1.2

1.3

1.4
Solver

DA
KaHIP

(c) exdata k = 2

0 1 3 5
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6 Solver
DA
KaHIP

(d) Walshaw k = 3

0 1 3 5
1

2

3

4

5

6
Solver

DA
KaHIP

(e) Suite Sparse k = 3

0 1 3 5
1.00

1.05

1.10

1.15

1.20
Solver

DA
KaHIP

(f) exdata k = 3

0 1 3 5

2

4

6

8

Solver
DA
Gurobi

(g) Walshaw k = 2

0 1 3 5

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Solver

DA
Gurobi

(h) Suite Sparse k = 2

0 1 3 5
0

10

20

30

40
Solver

DA
Gurobi

(i) exdata k = 2

0 1 3 5
0

20

40

60

80
Solver

DA
Gurobi

(j) Walshaw k = 3

0 1 3 5
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 Solver
DA
Gurobi

(k) Suite Sparse k = 3

0 1 3 5

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Solver

DA
Gurobi

(l) exdata k = 3

Fig. 1: Comparison of DA with KaHIP (dedicated GP solver), and Gurobi (general-purpose solver) for sparse
and dense graphs respectively. The y-axis represents the approximation ratio (solution to best-solution ratio),
the minimum possible value of the approximation ratio is 1, the smaller the better. The x-axis represents the
imbalance factor as percentage

Graph Partitioning on Dense Graphs To validate our conjecture, in the next set of experiments, we examine
dense graphs from the SuiteSparse Matrix Collection [7] (see details in Table 2). The experimental results are
presented in Fig. 1 (b), (e), (h) and (k), and the objective function values of each graph obtained by the three
solvers are provided in Table 2. We observe that for these dense graphs, in general, DA is able to find solutions
that are usually at least as good as those produced by KaHIP and Gurobi. In particular, we find that for one

Partitioning Dense Graphs with Hardware Accelerators 5

Table 1: Objective value (number of cut edges) of graphs from Walshaw graph partition archive, k = 2, 3.
k = 2 |V | davg

0% imbalance

graph Best known DA KaHIP Gurobi

add20 2395 3.12 596 596 613 596

data 2851 5.29 189 189 189 212

3elt 4720 2.91 90 90 90 91

uk 4824 1.42 19 19 19 19

add32 4960 1.91 11 11 11 11

bcsstk33 8738 33.37 10171 10171 10171 11674

whitaker3 9800 2.96 127 127 127 640

crack 10240 2.97 184 184 184 331

wing nodal 10937 6.90 1707 1707 1707 13739

fe 4elt2 11143 2.95 130 266 130 746

vibrobox 12328 13.40 10343 10343 10343 31029

bcsstk29 13992 21.64 2843 2843 2843 26144

4elt 15606 2.94 139 256 139 592

fe sphere 16386 3.00 386 386 386 1082

cti 16840 2.86 334 334 334 2443

memplus 17758 3.05 5499 7286 5550 14030

1% imbalance

Best known DA KaHIP Gurobi

585 586 591 585

188 188 188 193

89 89 89 90

19 43 19 19

10 41 10 10

10097 10097 10097 53045

126 126 126 669

183 195 183 336

1695 1695 1695 10274

130 330 130 629

10310 10310 10310 31598

2818 2826 2818 25966

138 278 138 564

386 386 386 1128

318 318 318 2471

5452 7293 5476 11249

k = 2 |V | davg
3% imbalance

graph Best known DA KaHIP Gurobi

add20 2395 3.12 560 560 568 560

data 2851 5.29 185 185 185 212

3elt 4720 2.91 87 87 87 87

uk 4824 1.42 18 36 18 18

add32 4960 1.91 10 70 10 10

bcsstk33 8738 33.37 10064 10064 10064 43173

whitaker3 9800 2.96 126 126 126 195

crack 10240 2.97 182 195 182 571

wing nodal 10937 6.90 1678 1678 1678 11392

fe 4elt2 11143 2.95 130 261 130 132

vibrobox 12328 13.40 10310 10310 10310 34490

bcsstk29 13992 21.64 2818 3273 2818 25601

4elt 15606 2.94 137 293 137 482

fe sphere 16386 3.00 384 384 384 1120

cti 16840 2.86 318 343 318 1424

memplus 17758 3.05 5352 7137 5362 11676

5% imbalance

Best known DA KaHIP Gurobi

536 536 540 536

181 188 181 190

87 87 87 87

18 38 18 18

10 49 10 10

9914 9914 10010 11105

126 126 126 176

182 201 182 254

1668 1668 1668 9379

130 287 137 130

10310 10310 10310 31173

2818 2823 2818 25084

137 360 137 507

384 384 384 762

318 324 318 1455

5253 7001 5274 10923

k = 3 0% imbalance

graph DA KaHIP Gurobi

add20 936 949 1148

data 261 261 5129

3elt 168 162 5023

uk 175 32 50

add32 133 28 28

bcsstk33 16247 16247 189894

whitaker3 253 253 12842

crack 492 288 20263

wing nodal 2864 2850 50296

fe 4elt2 515 248 21800

1% imbalance

DA KaHIP Gurobi

941 937 1093

259 259 4539

185 162 4292

210 31 154

135 25 25

16155 16059 27722

412 253 12160

570 287 20304

3187 2844 50370

618 248 21865

3% imbalance

DA KaHIP Gurobi

924 923 1067

265 255 6528

177 162 4855

233 31 144

184 22 22

15960 15819 178712

422 253 12198

459 281 20304

2978 2828 50370

636 248 21865

5% imbalance

DA KaHIP Gurobi

950 894 1029

253 250 6348

162 159 4449

202 29 33

172 19 19

15679 15552 47890

258 252 19294

573 281 20304

3228 2813 50370

643 248 21865

6 X. Liu et al.

Table 2: Objective value (number of cut edges) of graphs from SuiteSparse Matrix Collection, k = 2, 3.
k = 2 |V | davg

0% imbalance 1% imbalance

graph DA KaHIP Gurobi DA KaHIP Gurobi

exdata 1 6001 188.59 2000 28646 2000 1980 33004 1980

TSC OPF 1047 8140 123.39 1188 1187 1763 1381 1170 1586

nd3k 9000 181.71 149880 149880 817727 149829 149829 818433

nemeth26 9506 79.02 3298 3298 4842 3284 3284 3297

mycielskian14 12287 150.38 553735 553735 924567 545355 545355 923991

human gene2 14340 629.50 544938 546204 4514331 542850 543834 4514154

opt1 15449 61.98 24725 24725 479054 24030 24030 448245

gupta3 16783 277.26 1143782 1143782 2325983 1137072 1137072 2323035

ramage02 16830 84.66 80940 80940 712906 80912 80912 707102

pkustk07 16860 71.23 66852 66852 600140 66834 66834 588200

k = 2 |V | davg
3% imbalance 5% imbalance

graph DA KaHIP Gurobi DA KaHIP Gurobi

exdata 1 6001 188.59 1940 19776 1940 1900 19736 1900

TSC OPF 1047 8140 123.39 1339 1146 1647 1185 1140 1591

nd3k 9000 181.71 148935 148935 803125 148403 148403 727512

nemeth26 9506 79.02 3284 3284 3290 3284 3284 -1

mycielskian14 12287 150.38 527882 527883 923991 509891 509891 923991

human gene2 14340 629.50 538979 540182 4514154 533825 535779 4514154

opt1 15449 61.98 22682 22682 59808 21685 21685 314167

gupta3 16783 277.26 1122713 1122713 2293610 1107794 1107794 2284264

ramage02 16830 84.66 80909 80909 698100 80419 80419 689912

pkustk07 16860 71.23 66699 66699 583500 66182 66182 514741

k = 3 0% imbalance 1% imbalance
graph DA KaHIP Gurobi DA KaHIP Gurobi

exdata 1 2668 17550 2840 2654 14576 2664

TSC OPF 1047 78608 78369 668861 72610 72066 669320

nd3k 230329 230329 1088853 230099 230042 1053084

nemeth26 6748 6748 141759 6736 6736 122437

3% imbalance 5% imbalance

DA KaHIP Gurobi DA KaHIP Gurobi

2628 13066 2628 2600 16004 2678

72055 71688 669320 71243 70727 669320

229898 229652 1035165 229417 229309 1077240

6736 6736 41057 6736 6736 20107

instance, exdata 1, KaHIP fails significantly. We therefore use a graph generator MUSKETEER [10] to generate
similar instances3. The details of the parameters used to generate the graphs can be found in the appendix. In
short, MUSKETEER applies perturbation to the original graph with a multilevel approach, the local editing
preserves many network properties including different centralities measures, modularity, and clustering. The
information about generated instances is given in Table 3. The experiment results are presented in Fig. 1 (c),
(f), (i) and (l), and the objective function value of each graph obtained by the three solvers are provided in
Table 3. We find that in most instances, DA outperforms KaHIP and Gurobi, demonstrating that in this class
of problems, specialized hardware such as DA is having an advantage.

Currently, to tackle GP on dense graphs, the main practical solution is to first sparsify the graphs [13, 18,
24, 37] (hoping that the sparsified graph still preserves the structure of the original dense graph), solve GP on
the sparsified graph, and finally project the obtained solution back to the original graph. We have applied the
Forest Fire sparsification [13] available in Networkit [38]. This sparsification is based on random walks. The
vertices are burned starting from a random vertex, and fire may spread to the neighbors of a burning vertex.
The intuition is that the edges that are visited more often during the random walk are more important in the
graph. In our experiments, we eliminate 30% of the edges. Then we solve GP using KaHIP (KaffpaE version)
and project the obtained solution back to the original dense graph. We repeat the entire procedure 10 times for
each graph, and compare the best results obtained with DA and KaHIP. As shown in Fig. 2, for dense graphs
with complex structures, KaHIP does not outperform DA, and graph sparsification does not help to achieve
this goal. In this case, we advocate the use of the QUBO framework and specialized hardware.

4 Conclusion and Discussion

As novel technologies for solving computational combinatorial optimization problems emerge, it is important
to identify areas in which these technologies outperform both existing state-of-the-art general-purpose and also

3 The exdata graph files are available here: https://github.com/JoeyXLiu/dense-graph-exdata

https://github.com/JoeyXLiu/dense-graph-exdata

Partitioning Dense Graphs with Hardware Accelerators 7

Table 3: Objective value (number of cut edges) of graphs generated from exdata 1, k = 2, 3.
k = 2 |V | davg

0% imbalance 1% imbalance 3% imbalance 5% imbalance

graph DA KaHIP Gurobi DA KaHIP Gurobi DA KaHIP Gurobi DA KaHIP Gurobi

exdata 2 6016 184.22 31769 32716 554144 31319 32373 554060 30421 31536 554060 29554 30462 554060

exdata 3 6225 187.60 32002 32841 583986 31573 32527 584154 30736 31790 583975 29913 30746 583975

exdata 4 6026 172.27 25446 26142 519131 25128 26015 518990 24504 25338 518990 23904 24708 518990

exdata 5 6052 183.74 28422 29466 556394 28051 29104 556311 27325 28333 556311 26593 27648 556311

exdata 6 6056 183.22 658 668 555451 552 564 5374 310 320 555398 169 169 555398

exdata 7 6028 186.86 30612 31520 563061 30192 31118 562987 29355 30285 562987 28545 29511 562987

exdata 8 6074 185.45 30682 31071 563758 30242 30996 563668 29425 30112 563657 28641 29353 563657

exdata 9 6046 184.24 627 655 27805 492 511 557185 256 268 1268 117 117 7910

exdata 10 6139 192.34 29434 30298 588719 29059 29897 588986 28296 29162 588729 27561 28591 588729

exdata 11 6091 130.47 1052 1364 1054 1033 1282 1736 990 1215 990 954 1197 950

exdata 12 6390 169.91 1290 1585 2087 1270 1509 541868 1250 1395 541810 1206 1330 541810

exdata 13 6026 108.19 813 1160 820 843 1118 841 799 983 781 733 921 713

exdata 14 5827 99.43 610 766 608 616 732 598 584 668 582 582 646 560

exdata 15 6380 153.01 1295 1496 1295 1277 1468 1275 1235 1368 1232 1189 1340 1189

exdata 16 6686 176.23 838 5816 838 826 5806 816 796 1710 828 752 1081 728

exdata 17 5813 118.20 1044 1220 1043 1038 1238 1024 996 1094 985 956 1117 946

exdata 18 5769 136.95 1058 1288 1090 1050 1317 1048 1002 1164 1000 979 1135 962

exdata 19 6062 108.49 950 1041 329090 932 1003 2651 890 951 3973 853 925 851

exdata 20 5990 159.65 1070 1474 1093 1051 1382 1051 1015 1620 1025 977 1688 978

k = 3 |V | davg
0% imbalance 1% imbalance 3% imbalance 5% imbalance

graph DA KaHIP Gurobi DA KaHIP Gurobi DA KaHIP Gurobi DA KaHIP Gurobi

exdata 2 6016 184.22 47529 48008 738783 47215 47519 738784 46579 47179 738784 46005 46460 738784

exdata 3 6225 187.60 46893 47433 778088 46649 47234 778091 45911 46556 778091 45289 45844 778091

exdata 4 6026 172.27 37468 38530 692385 37258 38365 692383 36692 37649 692383 36186 37186 692383

exdata 5 6052 183.74 42031 42749 741759 41806 42451 741761 41202 41916 741761 40552 41232 741761

exdata 6 6056 183.22 14306 15219 740057 14193 14814 740056 13794 13974 740056 13109 13217 740056

exdata 7 6028 186.86 45890 46420 749893 45573 46123 749886 45140 45530 749886 44471 44947 749886

exdata 8 6074 185.45 44025 44489 751243 43738 44243 751254 43133 43662 751254 42560 42920 751254

exdata 9 6046 184.24 14627 15582 742520 14752 15176 742522 14032 14305 742522 13278 13635 742522

exdata 10 6139 192.34 43057 43983 787039 42858 43600 787032 42182 43010 787032 41596 42404 787032

exdata 11 6091 130.47 1866 2214 529928 1838 2046 529927 1795 2078 529927 1745 1985 529927

exdata 12 6390 169.91 2723 3232 724215 2742 2971 724224 2534 2789 724224 2485 2801 724224

exdata 13 6026 108.19 1499 1606 1993 1505 1605 3272 1579 1561 2421 1474 1504 2470

exdata 14 5827 99.43 1191 1369 2666 1194 1314 1872 1163 1286 2784 1133 1277 1287

exdata 15 6380 153.01 2571 3113 18380 2520 3045 5906 2416 2873 3727 2317 2816 4651

exdata 16 6686 176.23 1585 3323 1882 1814 1825 2110 1644 3237 1909 1606 1683 2268

exdata 17 5813 118.20 1970 1993 3925 1981 1958 4096 1982 1943 3619 1915 1923 3342

exdata 18 5769 136.95 1908 2198 2878 1976 2103 2887 1842 2059 3622 1833 1920 2772

exdata 19 6062 108.49 2125 2402 3485 2095 2371 9231 2011 2347 3008 1908 2176 2502

exdata 20 5990 159.65 1844 2097 2598 1822 2075 2559 1810 1934 2888 1691 1885 2876

0 1 3 5
1.0

1.5

2.0

2.5

3.0

3.5
Solver
DA
KaHIP
sp+KaHIP

(a) exdata k = 2

0 1 3 5
0

5

10

15

20

25

30

35

40
Solver
DA
KaHIP
sp+KaHIP

(b) exdata k = 3

Fig. 2: Comparison of DA, KaHIP and KaHIP with sparsification. The y-axis represents the approximation
ratio, the x-axis represents the imbalance factor as percentage

8 X. Liu et al.

problem dedicated solvers. In this work, we have focused on demonstrating practical advantage of software and
hardware approaches for the Graph Partitioning problem. We found that dense graphs exhibit limitations of
the existing algorithms. By experimenting with the Fujitsu Digital Annealer (DA), a quantum-inspired device,
we show graphs on which the DA significantly outperforms current state-of-the-art solvers that are run for
identical or longer time. In particular, we run experiments on instances from three datasets, namely the Walshaw
graph partitioning dataset, which represents well-known sparse graphs, graphs from the Sparse-Suite Matrix
collection, and lastly synthetically generated graphs. We observe that on sparse graphs (from the Walshaw
benchmark) partitioned into two parts with 0% imbalance, the DA returns results identical to the state-of-art
graph partitioning solver KaHIP. However, as we increase the imbalance factor and number of parts, we notice
that KaHIP outperforms the DA for this dataset. In the Sparse-Suite dataset, we however observe that DA and
KaHIP return similar results with a few cases where the DA significantly outperforms KaHIP. Lastly, in our
last dataset of synthetically generated graphs, we observe that the DA outperforms KaHIP in almost all cases.
With regards to the general-purpose solver, we observe that KaHIP and the DA outperform Gurobi in almost
all cases. Our results demonstrate instances where both the DA and KaHIP perform well individually which
suggests an opportunity to hybridize state-of-the-art algorithms and emerging technologies to achieve the best
quality/time trade-off.

Appendix

In this appendix we give the parameters we used with MUSKETEER4 [10] to generate the exdata instances in
Table 4:

Table 4: Parameters used with MUSKETEER
exdata node growth rate edge edit rate node edit rate

2-4 [0.01, 0.001] [0.05, 0.04, 0.03] [0.07, 0.06, 0.05]

5-7 [0.009, 0.001] [0.05, 0.04, 0.03] [0.07, 0.06, 0.05]

8-10 [0.01, 0.001] [0.05, 0.04, 0.03] [0.07, 0.06, 0.05]

11-15 [0, 0, 0, 0, 0, 0, 0.01, 0.001] [0, 0, 0, 0, 0, 0.05, 0.04, 0.03] [0, 0, 0, 0, 0, 0.07, 0.06, 0.05]

16-20 [0, 0, 0, 0, 0, 0, 0, 0.02, 0.002] [0, 0, 0, 0, 0, 0, 0, 0.06, 0.05, 0.04, 0.03] [0, 0, 0, 0, 0, 0, 0, 0.08, 0.07, 0.06, 0.05]

References

1. Aramon, M., Rosenberg, G., Valiante, E., Miyazawa, T., Tamura, H., Katzgrabeer, H.: Physics-inspired optimization
for quadratic unconstrained problems using a digital annealer. Frontiers in Physics 7, 48 (2019)

2. Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D.: 10th dimacs implementation challenge-graph partitioning
and graph clustering (2011), https://www.cc.gatech.edu/dimacs10/

3. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Algorithm
Engineering: Selected Results and Surveys. LNCS 9220, Springer-Verlag, pp. 117–158. Springer (2016)

4. Cohen, E., Mandal, A., Ushijima-Mwesigwa, H., Roy, A.: Ising-based consensus clustering on specialized hardware.
In: International Symposium on Intelligent Data Analysis. pp. 106–118. Springer (2020)

5. Cohen, E., Ushijima-Mwesigwa, H., Mandal, A., Roy, A.: Unified clustering and outlier detection on specialized hard-
ware. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
pp. 3770–3774. IEEE (2021)

6. Crawford, D., Levit, A., Ghadermarzy, N., Oberoi, J.S., Ronagh, P.: Reinforcement learning using quantum boltz-
mann machines. arXiv preprint arXiv:1612.05695 (2016)

7. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Transactions on Mathematical Software
(TOMS) 38(1), 1–25 (2011), https://sparse.tamu.edu/

8. Fujitsu: Fujitsu Digital Annealer (2022), https://www.fujitsu.com/global/services/business-services/

digital-annealer/

9. Gurobi Optimization, I.: Gurobi optimizer reference manual (2018), https://www.gurobi.com/

10. Gutfraind, A., Safro, I., Meyers, L.A.: Multiscale network generation. In: 2015 18th international conference on
information fusion. pp. 158–165. IEEE (2015)

11. Hager, W.W., Hungerford, J.T., Safro, I.: A multilevel bilinear programming algorithm for the vertex separator
problem. Computational Optimization and Applications 69(1), 189–223 (2018)

12. Hager, W.W., Krylyuk, Y.: Graph partitioning and continuous quadratic programming. SIAM Journal on Discrete
Mathematics 12(4), 500–523 (1999)

4 https://github.com/sashagutfraind/musketeer

https://doi.org/10.3389/fphy.2019.00048
https://www.cc.gatech.edu/dimacs10/
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4
https://sparse.tamu.edu/
https://www.fujitsu.com/global/services/business-services/digital-annealer/
https://www.fujitsu.com/global/services/business-services/digital-annealer/
https://www.fujitsu.com/global/services/business-services/digital-annealer/
https://www.gurobi.com/
https://ieeexplore.ieee.org/document/7266557
https://ieeexplore.ieee.org/document/7266557
https://doi.org/10.1007/s10589-017-9945-2
https://doi.org/10.1137/S0895480199335829
https://doi.org/10.1137/S0895480199335829
https://github.com/sashagutfraind/musketeer

Partitioning Dense Graphs with Hardware Accelerators 9

13. Hamann, M., Lindner, G., Meyerhenke, H., Staudt, C.L., Wagner, D.: Structure-preserving sparsification methods
for social networks. Social Network Analysis and Mining 6(1), 22 (2016)

14. Henderson, M., Novak, J., Cook, T.: Leveraging adiabatic quantum computation for election forecasting. arXiv
preprint arXiv:1802.00069 (2018)

15. Hernandez, M., Aramon, M.: Enhancing quantum annealing performance for the molecular similarity problem.
Quantum Information Processing 16(5), 133 (2017)

16. Hernandez, M., Zaribafiyan, A., Aramon, M., Naghibi, M.: A novel graph-based approach for determining molecular
similarity. arXiv preprint arXiv:1601.06693 (2016)

17. Inagaki, T., Haribara, Y., Igarashi, K., Sonobe, T., Tamate, S., Honjo, T., Marandi, A., McMahon, P.L., Umeki,
T., Enbutsu, K., et al.: A coherent ising machine for 2000-node optimization problems. Science 354(6312), 603–606
(2016)

18. John, E., Safro, I.: Single-and multi-level network sparsification by algebraic distance. Journal of Complex Networks
5(3), 352–388 (2016)

19. Johnson, M.W., Amin, M.H., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson,
J., Bunyk, P., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194 (2011)

20. Kalehbasti, P.R., Ushijima-Mwesigwa, H., Mandal, A., Ghosh, I.: Ising-based louvain method: clustering large graphs
with specialized hardware. In: International Symposium on Intelligent Data Analysis. pp. 350–361. Springer (2021)

21. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal
on Scientific Computing 20(1) (1999)

22. Karypis, G., Kumar, V.: Multilevel algorithms for multi-constraint graph partitioning. In: SC’98: Proceedings of the
1998 ACM/IEEE Conference on Supercomputing. pp. 28–28. IEEE (1998)

23. Khoshaman, A., Vinci, W., Denis, B., Andriyash, E., Amin, M.H.: Quantum variational autoencoder. Quantum
Science and Technology 4(1), 014001 (2018)

24. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 631–636 (2006)

25. Levit, A., Crawford, D., Ghadermarzy, N., Oberoi, J.S., Zahedinejad, E., Ronagh, P.: Free energy-based reinforcement
learning using a quantum processor. arXiv preprint arXiv:1706.00074 (2017)

26. Liu, X., Angone, A., Shaydulin, R., Safro, I., Alexeev, Y., Cincio, L.: Layer vqe: A variational approach for combi-
natorial optimization on noisy quantum computers. IEEE Transactions on Quantum Engineering pp. 1–1 (2022)

27. Liu, X., Ushijima-Mwesigwa, H., Mandal, A., Upadhyay, S., Safro, I., Roy, A.: Leveraging special-purpose hardware
for local search heuristics. Computational Optimization and Applications, to appear (2022)

28. Lucas, A.: Ising formulations of many np problems. Frontiers in Physics 2, 5 (2014)
29. Negre, C.F., Ushijima-Mwesigwa, H., Mniszewski, S.M.: Detecting multiple communities using quantum annealing

on the d-wave system. Plos one 15(2), e0227538 (2020)
30. Rosenberg, G., Haghnegahdar, P., Goddard, P., Carr, P., Wu, K., De Prado, M.L.: Solving the optimal trading

trajectory problem using a quantum annealer. IEEE Journal of Selected Topics in Signal Processing 10(6), 1053–
1060 (2016)

31. Safro, I., Ron, D., Brandt, A.: Graph minimum linear arrangement by multilevel weighted edge contractions. Journal
of Algorithms 60(1), 24–41 (2006)

32. Safro, I., Sanders, P., Schulz, C.: Advanced coarsening schemes for graph partitioning. ACM Journal of Experimental
Algorithmics (JEA) 19, 2–2 (2015)

33. Sanders, P., Schulz, C.: Think locally, act globally: Highly balanced graph partitioning. In: Experimental Algorithms,
12th International Symposium, SEA 2013, Rome, Italy, June 5-7, 2013. Proceedings. vol. 7933, pp. 164–175. Springer
(2013)

34. Shaydulin, R., Chen, J., Safro, I.: Relaxation-based coarsening for multilevel hypergraph partitioning. SIAM Multi-
scale Modeling and Simulation 17, 482–506 (2019)

35. Shaydulin, R., Ushijima-Mwesigwa, H., Safro, I., Mniszewski, S., Alexeev, Y.: Community detection across emerging
quantum architectures. arXiv preprint arXiv:1810.07765 (2018)

36. Shaydulin, R., Ushijima-Mwesigwa, H., Safro, I., Mniszewski, S., Alexeev, Y.: Network community detection on small
quantum computers. Advanced Quantum Technologies 2(9), 1900029 (2019)

37. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. SIAM Journal on Computing 40(6),
1913–1926 (2011)

38. Staudt, C.L., Sazonovs, A., Meyerhenke, H.: Networkit: A tool suite for large-scale complex network analysis. Network
Science 4(4), 508–530 (2016)

39. Terry, J.P., Akrobotu, P.D., Negre, C.F., Mniszewski, S.M.: Quantum isomer search. arXiv preprint arXiv:1908.00542
(2019)

40. Ushijima-Mwesigwa, H., Negre, C.F., Mniszewski, S.M.: Graph partitioning using quantum annealing on the D-Wave
system. In: Proceedings of the Second International Workshop on Post Moores Era Supercomputing. pp. 22–29 (2017)

41. Walshaw, C.: The graph partitioning archive. https://chriswalshaw.co.uk/partition/ (2009)

https://doi.org/10.1145/2808797.2809313
https://www.science.org/doi/10.1126/science.aah4243
https://doi.org/10.1093/comnet/cnw025
https://doi.org/10.1038/nature10012
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
http://doi.org/10.1109/SC.1998.10018
http://doi.org/10.1109/SC.1998.10018
https://doi.org/10.1145/1150402.1150479
https://doi.org/10.1145/1150402.1150479
https://doi.org/10.1109/TQE.2021.3140190
https://arxiv.org/abs/1911.09810
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1016/j.jalgor.2004.10.004
https://doi.org/10.1016/j.jalgor.2004.10.004
https://doi.org/10.1145/2670338
https://doi.org/10.1145/2670338
https://doi.org/10.1007/978-3-642-38527-8_16
https://doi.org/10.1007/978-3-642-38527-8_16
https://doi.org/10.1137/17M1152735
https://doi.org/10.1137/17M1152735
https://doi.org/10.1137/080734029
https://doi.org/10.1017/nws.2016.20
https://doi.org/10.1017/nws.2016.20
https://doi.org/10.1145/3149526.3149531
https://chriswalshaw.co.uk/partition/

	Partitioning Dense Graphs with Hardware Accelerators

