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Abstract. We propose Echo State Networks (ESNs) to predict the statis-
tics of extreme events in a turbulent flow. We train the ESNs on small

datasets that lack information about the extreme events. We asses whether
the networks are able to extrapolate from the small imperfect datasets

and predict the heavy-tail statistics that describe the events. We find

that the networks correctly predict the events and improve the statis-

tics of the system with respect to the training data in almost all cases

analysed. This opens up new possibilities for the statistical prediction of

extreme events in turbulence.
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1 Introduction

Extreme events arise in multiple natural systems, such as oceanic rogue waves,
weather events and earthquakes [I]. A way to tackle extreme events is by comput-
ing their statistics to predict the probability of their occurrence. Because extreme
events are typically rare, information about the heavy tail of the distribution
that describes the events is seldom available. This hinders the performance of
data-driven methods, which struggle to predict the events when extrapolating
from imperfect datasets [8]. In this work, we assess the capability of a form of
reservoir computing, the Echo State Network [0], to predict the statistics of ex-
treme events in a turbulent flow [6]. In particular, we analyse the ability of the
networks to improve the prediction of the statistics of the system with respect
to the available training data. The paper is organised as follow. Section [2] in-
troduces the turbulent flow model. Section Bl describes the Echo State Network.
Section [4] analyses the statistical prediction of extreme events. We summarize
the work and present future developments in section [5}
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Fig. 1. One time series of the kinetic energy, (a), and Probability Density Function
of the kinetic energy computed from the entire dataset, (b). The time in panel (a)
is normalized by the Lyapunov time. Vorticity isosurfaces, w = V X v, and velocity
flowfield before, (c), and after, (d), an extreme event. The laminar structure, (c), breaks
down into vortices, (d).

2 A low-dimensional model for turbulent shear flow

We study a nine-equation model of a shear flow between infinite plates subjected
to sinusoidal body forcing [6]. The incompressible Navier-Stokes equations are

dv 1
i —(v-V)v—-Vp+ §Av+F(y), (1)

where v = (u, v, w) is the velocity, p is the pressure, Re is the Reynolds number,
F(y) = v27%/(4Re) sin(ry/2)e, is the body forcing along z, y is the direction of
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the shear between the plates and z is the spanwise direction. We solve the flow in
the domain L, x L, x L, where the boundary conditions are free slip at y£L,,/2,
and periodic at « = [0; L] and z = [0; L,|. Here, we set L, =4n,L, =2,L, =
27 and Re = 400 [9]. We project (1) on compositions of Fourier modes, ¥;(x),
so that the velocity is v(x,t) = >_._; a;(¢)¥;(x) . The projection generates nine
nonlinear ordinary differential equations for the amplitudes, a;(t), which are the
state of the system [6]. The system displays a chaotic transient that converges
to the laminar solution ay = 1,as = -+ = ag = 0. In the turbulent transient,
the kinetic energy,

k=0.5za§, (2)

shows intermittent large bursts, i.e. extreme events, panel (a) in Fig. {1} which
generate the heavy tail of the distribution [8], panel (b). In the figure, time is
expressed in Lyapunov Times (LT), where a LT is the inverse of the Lyapunov
exponent, A ~ 0.0163. The Lyapunov exponent is the average exponential rate
at which arbitrarily close trajectories diverge, which is computed with the QR
algorithm [2/3]. Each extreme event is an attempt of the system to reach the
laminar solution. During an extreme event, the flow slowly laminarizes, panel
(c), but the laminar structure violently breaks down into vortices, panel (d).
To study only the transient, we (i) generate 2000 time series series of length of
4000 time units through a 4th order Runge-Kutta scheme with dt = 0.25, (ii)
discard all the time series that laminarized, i.e. the ones with k& > 0.48, and (iii)
use the remaining time series as data. The different time series are obtained by
randomly perturbing a fixed initial condition [9].

Reservoir r

Input uin ) Output u,

Fig. 2. Schematic representation of the Echo State Network.

3 Echo State Networks

As shown in Fig. [2| in an Echo State Network [5], at the i-th time step the high-
dimensional reservoir state, r(t;) € R, is a function of its previous value and
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the current input, wi,(¢;) € RY«. The output, u,(t;41), which is the predicted
state at the next time step, is a linear combination of r(t;):

I‘(ti) = tanh (Win [ﬁin(ti); bin] + Wr(ti,l)) y up(ti+1) = Wout [I‘(ti); 1] (3)
where () indicates normalization by the range component-wise, W € RN *¥r jg
the state matrix, Wi, € RN-*NVut1) is the input matrix, Wy, € RN«*(Nrt1) jg
the output matrix, b, is the input bias and [ ; ] indicates vertical concatenation.
Wi, and W are sparse, randomly generated and fixed. These are constructed in
order for the network to satisfy the echo state property [5]. The input matrix,
Wiy, has only one element different from zero per row, which is sampled from
a uniform distribution in [—oiy,, oin], where oy, is the input scaling. The state
matrix, W, is an Erdés-Renyi matrix with average connectivity (d). This means
that each neuron (each row of W) has on average only (d) connections (non-
zero elements). The value of the non-zero elements is obtained by sampling
from an uniform distribution in [—1,1]; the entire matrix is then scaled by a
multiplication factor to set its spectral radius, p. The only trainable weights are
those in the the output matrix, W,;. Thanks to the architecture of the ESN,
training the network by minimizing the Mean Square Error (MSE) on Ny + 1
points consists of solving the linear system

(RRT + p0)WL , = RU?Z, (4)

out —

where R € RIN»+DXNe and Uy € RV«*Ne are the horizontal concatenation of
the reservoir states with bias, [r; 1], and of the output data, respectively; I is the
identity matrix and $ is the Tikhonov regularization parameter [5].

The input scaling, oi,, spectral radius, p, and Tikhonov parameter, 3, are se-
lected using Recycle Validation [7] to minimize the MSE of the kinetic energy.
The Recycle Validation is a recent advance in hyperparameter selection in Re-
current Neural Networks, which is able to exploit the entire dataset while keep-
ing a small computation cost. To minimize the function provided by the val-
idation strategy, we use Bayesian Optimization for oy, and p in the interval
[0.1,10] x [0.1,1] seen in logarithmic scale and perform a grid search in each
[oin, p] point to select 3 from [1076,107% 10712]. We set by, = 0.1, d = 20 and
add gaussian noise with zero mean and standard deviation, o,, = 0.010,, where
o, is the standard deviation of the data, to the training data [10].

4 Statistical prediction of extreme events

We study the capability of the networks to predict the statistics of the system
through long-term predictions. Long-term predictions are closed-loop predic-
tions, i.e. predictions where we feed the output of the ESN as an input for the
next time step, which lasts several tens of Lyapunov Times. These predictions
diverge from the true trajectory due to the chaotic nature of the signal, but
remain in the region of phase space of the chaotic transient. In doing so, they
replicate the statistics of the true signal. The long-term predictions are gener-
ated in the following way: (i) from 500 different starting points in the training
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set, we generate 500 different time series by letting the ESN evolve each time
for 4000 time units (~ 65LTs); (ii) we discard the laminarized time series and
(iii) use the remaining ones to compute the statistics as done for the data, see
section [2] To quantitatively assess the prediction of the statistics, we use the
Kantorovich metric [4], K, also known as Earth mover’s distance, and the Mean
Logarithmic Error (MLE) with respect to the true Probability Density Function
of the kinetic energy, PDFryye(k),

K= / |CDF1yue(k) — CDF, (k)| dk, (5)
Np

MLE =Y " n, *[logy(PDFryuc(k); — logyo(PDF; (k);)], (6)
=1

where CDF is the Cumulative Distribution Function, j indicates the PDF we
are comparing with the true data and n; is the number of bins used in the
PDF. When a bin has a value equal to zero and the logarithm is undefined, we
saturate the logarithmic error in the bin to be equal to 1. On the one hand, we
use the Kantorovich metric to assess the overall prediction of the PDF of the
kinetic energy. On the other hand, we use the MLE to assess the prediction of
the extreme events, as the logarithm highlights the errors in the small values of
the tail.

In Fig. 3] we compare the statistics of the training data and an ensemble of
10 networks of 2000 neurons. We do so because the objective of predicting the
statistics is to improve our knowledge, by employing the networks, with respect
to the already available knowledge, the training data. Panel (a) shows the PDF of
the kinetic energy in the training set for different sizes of the training set, from
1 time series to the entire data (1440). The prediction of the PDF improves
with the size of the datasets, and values of the tail up to laminarization are
observed only after 100 time series. The unresolved tail due to lack of data is a
signature problem of data-driven analysis of extreme events [8]. Panels (b)-(c)
show the Kantorovich metric and the MLE of the training sets and networks as
a function of the training set size. The networks improve the prediction of the
PDF with respect to the available data in all figures of merits analyzed, except
for one outlier. The MLE of the training set improves more than the Kantorovich
metric as the dataset becomes larger. This happens because a small amount of
data is needed to accurately describe the peak of the PDF, which affects more
the Kantorovich metric, while many time series are needed to describe the tail,
which affects more the Mean Logarithmic Error. The results indicate that the
networks are able to extrapolate from an imperfect dataset and improve the
prediction of the overall dynamics of the system.

Fig. [4 shows the statistics of the square of the normal vorticity to the midplane,
Wy = % - %—i’. We plot the square of the vorticity, wg, because the symmetry of
the problem causes the time-average of the vorticity to be equal to zero. Panel
(a) shows the flowfield of the time-average, ( ), for the entire data, while panels
(b) and (c) show the error with respect to (a) for an Echo State Network and the
ten time series training set, respectively. All networks in the ensemble decrease
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the average error, up to values 7 times smaller than the training data (results
not shown). This means that the Echo State Networks are able to extrapolate
the statistics of the flowfield in addition to the statistics of the kinetic energy.
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Fig. 3. PDF of the kinetic energy for different number of time series up to the entire
data of 1440 time series, (a). For example, 3 means that the PDF is computed from
3 out of 1440 time series. 25th, 50th and 75th percentiles of Kantorovich Metric, (b),
and MLE, (c), for the training set (Train), and the networks (ESN) as a function of
the number of time series in the training set (N-timeseries). For example, N-timeseries
means that the training set consists of N out 1440 time series.
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Fig. 4. Time average of the square of the midplane vorticity, w}(z,0, z) for the entire
data, (a), error for a 2000 neurons network, (b), and training set, (c).
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5 Conclusions and future directions

We propose Echo State Networks to predict the statistics of a reduced-order
model of turbulent shear flow that exhibits extreme events. We train fully data-
driven ESNs on multiple small datasets and compare the statistics predicted
by the networks with the statistics available during training. We find that the
networks improve the prediction of the statistics of the kinetic energy and of the
vorticity flowfield, sometimes by up to one order of magnitude. This means that
the networks are able to extrapolate the statistics of the system when trained
on small imperfect datasets. Future work will consist of extending the present
results to higher-dimensional turbulent systems through the combination of Echo
State Networks and autoencoders.

The code is available on the github repository MagriLab/ESN-MFE.
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