Skip to main content

Performance Evaluation of an Adaptive Anti-Packet Recovery Method Considering UAVs and Vehicles in an Urban Scenario

  • Conference paper
  • First Online:
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 2022)

Abstract

This paper focuses on message ferrying mechanisms to improve delivery ratio using Unmanned Aerial Vehicles (UAVs) and vehicles in urban environment. We analyze the proposed Adaptive Anti-Packet Recovery (AAR) technique, which is based on delay-tolerant networking protocols. From the simulation results, we found that the AAR method with UAVs and vehicles improves the delivery ratio compared with the conventional recovery method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rec. ITU-R P.1411-7: Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz. ITU (2013)

    Google Scholar 

  2. Arafat, M.Y., Moh, S.: Location-aided delay tolerant routing protocol in UAV networks for post-disaster operation. IEEE Access 6, 59891–59906 (2018)

    Article  Google Scholar 

  3. Azuma, M., Uchimura, S., Tada, Y., Ikeda, M., Barolli, L.: An adaptive anti-packet recovery method for vehicular DTN: performance evaluation considering shuttle buses and roadside units scenario. In: Proceedings of the 16th International Conference on Broad-Band Wireless Computing, Communication and Applications (BWCCA-2021), pp. 234–241, October 2021

    Google Scholar 

  4. Cao, Y., Jiang, T., Kaiwartya, O., Sun, H., Zhou, H., Wang, R.: Toward pre-empted EV charging recommendation through V2V-based reservation system. IEEE Trans. Syst. Man Cybern. Syst. 51(5), 3026–3039 (2021)

    Article  Google Scholar 

  5. Cerf, V., et al.: Delay-tolerant networking architecture. IETF RFC 4838 (Informational), April 2007

    Google Scholar 

  6. Cui, J., Cao, S., Chang, Y., Wu, L., Liu, D., Yang, Y.: An adaptive spray and wait routing algorithm based on quality of node in delay tolerant network. IEEE Access 7, 35274–35286 (2019)

    Article  Google Scholar 

  7. Fall, K.: A delay-tolerant network architecture for challenged Internets. In: Proceedings of the International Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 27–34. SIGCOMM ’03 (2003)

    Google Scholar 

  8. Henmi, K., Koyama, A.: Hybrid type DTN routing protocol considering storage capacity. In: Barolli, L., Okada, Y., Amato, F. (eds.) EIDWT 2020. LNDECT, vol. 47, pp. 491–502. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39746-3_50

    Chapter  Google Scholar 

  9. Iranmanesh, S., Raad, R., Raheel, M.S., Tubbal, F., Jan, T.: Novel DTN mobility-driven routing in autonomous drone logistics networks. IEEE Access 8, 13661–13673 (2020)

    Article  Google Scholar 

  10. Ito, M., Nishiyama, H., Kato, N.: A novel routing method for improving message delivery delay in hybrid DTN-MANET networks. In: Proceedings of the IEEE Global Communications Conference (GLOBECOM-2013), pp. 72–77 (2013)

    Google Scholar 

  11. Kawabata, N., Yamasaki, Y., Ohsaki, H.: Hybrid cellular-DTN for vehicle volume data collection in rural areas. In: Proceedings of the IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC-2019), vol. 2, pp. 276–284 (Jul 2019)

    Google Scholar 

  12. Marchese, M., Patrone, F., Cello, M.: DTN-based nanosatellite architecture and hot spot selection algorithm for remote areas connection. IEEE Trans. Veh. Technol. 67(1), 689–702 (2018)

    Article  Google Scholar 

  13. Nakasaki, S., Ikeda, M., Barolli, L.: A message relaying method with a dynamic timer considering non-signal duration from neighboring nodes for vehicular DTN. In: Barolli, L., Nishino, H., Miwa, H. (eds.) INCoS 2019. AISC, vol. 1035, pp. 133–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29035-1_13

    Chapter  Google Scholar 

  14. Ramanathan, R., Hansen, R., Basu, P., Hain, R.R., Krishnan, R.: Prioritized epidemic routing for opportunistic networks. In: Proceedings of the 1st International MobiSys Workshop on Mobile Opportunistic Networking (MobiOpp 2007), pp. 62–66 (2007)

    Google Scholar 

  15. Rüsch, S., Schürmann, D., Kapitza, R., Wolf, L.: Forward secure delay-tolerant networking. In: Proceedings of the 12th Workshop on Challenged Networks (CHANTS-2017), pp. 7–12, October 2017

    Google Scholar 

  16. Sato, F., Kikuchi, R.: Hybrid routing scheme combining with geo-routing and DTN in VANET. In: Proceedings of the 10th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-2016), pp. 250–255, July 2016

    Google Scholar 

  17. Scenargie: Space-time engineering, LLC. http://www.spacetime-eng.com/

  18. Solpico, D., et al.: Application of the V-HUB standard using LoRa beacons, mobile cloud, UAVs, and DTN for disaster-resilient communications. In: Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC-2019), pp. 1–8, October 2019

    Google Scholar 

  19. Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In: Proceedings of the ACM SIGCOMM workshop on Delay-tolerant networking 2005 (WDTN 2005), pp. 252–259 (2005)

    Google Scholar 

  20. Sugihara, K., Hayashibara, N.: Message delivery of nomadic lévy walk based message ferry routing in delay tolerant networks. In: Proceedings of the 36th International Conference on Advanced Information Networking and Applications (AINA-2022). Lecture Notes in Networks and Systems, vol. 449, pp. 259–270, April 2022

    Google Scholar 

  21. Tornell, S.M., Calafate, C.T., Cano, J.C., Manzoni, P.: DTN protocols for vehicular networks: an application oriented overview. IEEE Commun. Surv. Tutorials 17(2), 868–887 (2015)

    Article  Google Scholar 

  22. Uchimura, S., Azuma, M., Tada, Y., Ikeda, M., Barolli, L.: An adaptive anti-packet recovery method for vehicular DTN considering message possession rate. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021. LNNS, vol. 225, pp. 92–101. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75100-5_9

    Chapter  Google Scholar 

  23. Vahdat, A., Becker, D.: Epidemic routing for partially-connected ad hoc networks. Duke University, Technical report (2000)

    Google Scholar 

  24. Wyatt, J., Burleigh, S., Jones, R., Torgerson, L., Wissler, S.: Disruption tolerant networking flight validation experiment on NASA’s EPOXI mission. In: Proceedings of the 1st International Conference on Advances in Satellite and Space Communications (SPACOMM-2009), pp. 187–196, July 2009

    Google Scholar 

  25. Zhao, W., Ammar, M., Zegura, E.: Controlling the mobility of multiple data transport ferries in a delay-tolerant network. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1407–1418, March 2005

    Google Scholar 

  26. Zhao, W., Ammar, M.: Message ferrying: proactive routing in highly-partitioned wireless ad hoc networks. In: The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems, 2003, FTDCS 2003. Proceedings, pp. 308–314, May 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azuma, M., Uchimura, S., Sako, S., Ikeda, M., Barolli, L. (2022). Performance Evaluation of an Adaptive Anti-Packet Recovery Method Considering UAVs and Vehicles in an Urban Scenario. In: Barolli, L. (eds) Innovative Mobile and Internet Services in Ubiquitous Computing. IMIS 2022. Lecture Notes in Networks and Systems, vol 496. Springer, Cham. https://doi.org/10.1007/978-3-031-08819-3_23

Download citation

Publish with us

Policies and ethics