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Abstract. Literature contains a large variety of content-aware smooth-
ing methods. As opposed to classical smoothing methods, content-aware
ones intend to regularize the image while avoiding the loss of relevant
visual information. In this work, we propose a novel approach to content-
aware image smoothing based on fuzzy clustering, specifically the Spatial
Fuzzy c-Means (SFCM) algorithm. We develop the proposal and put it
to the test in the context of automatic analysis of immunohistochemistry
imagery for neural tissue analysis.

Keywords: Image smoothing · Fuzzy clustering · Progressive supranu-
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1 Introduction

Image regularisation is one of the most basic tasks in computer vision. Initially,
its goal was to produce a regularised, a.k.a. smooth, version of the original signal,
hence preventing problems due to noise or contamination in the signal. Despite
large improvements in understanding image smoothing, e.g. the use of Gaussian
filters and the creation of the Gaussian Scale Space [16, 17], it was soon evi-
dent that smoothing brought undesired distortions to images. Specifically, such
distortions included the removal of small objects, as well as the blurring of cer-
tain image artefacts, mainly object boundaries. It then became evident that it
was necessary to have smoothing techniques that, while regularising the image
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content, would not entail any of the drawbacks. In this context, two main fami-
lies of smoothing techniques can be discriminated: content-unaware (CUS) and
content-aware smoothing (CAS) techniques. The former apply the same smooth-
ing operation across the image, while the latter adapt the smoothing operation
locally to avoid object removal and boundary blurring.

Content-unaware techniques have historically been based on Gaussian smooth-
ing, especially since the theoretical results by Babaud et al. [1]. Large efforts were
devoted to understand Gaussian smoothing, develop theories as the anisotropic
Gaussian filters or the Gaussian Scale-Space [13, 17]. However, the panorama
in content-aware smoothing is significantly richer. Early attempts are due to
Saint-Marc [24], who presented a Gaussian-based smoothing technique in which
the standard deviation of the Gaussian kernel applied at each pixel is depen-
dent upon local characteristics. A more elaborate proposal was that by Perona
and Malik, who presented a discrete schema for the so-called Anisotropic Diffu-
sion model [23]. These pioneering efforts were continued to produce continuous
schemas, as well as to customise the smoothing behaviour [26,28]. For example,
Weickert presented Coherence-Enhancing Anisotropic Diffusion [18, 27], which
not only aimed at preserving structurally strong objects, but also at improving
the visibility of visual structures. Other authors elaborated on theories differ-
ent from anisotropic diffusion. Examples are bilateral filtering [25], aimed at
content-aware smoothing using principles from spatio-tonal filtering, and Mean
Shift [8], which incorporates notions from clustering and multivariate analysis.
Despite the variability in both inspirations and specific implementations, many
of the proposals for content-aware smoothing can be studied under the prism of
unifying theories [3, 4].

Among the inspirations for content-aware smoothing, a very promising trend
is that based on pixel clustering. The underlying idea behind this trend is as
simple as powerful: the pixels in an image can be seen as n-dimensional feature
vectors comprising (a) their position and (b) their (possibly multivalued) tone.
Hence, an image becomes a point cloud in either 3D (for grayscale images), 5D
(for most colour images), or event larger spaces (for, e.g., multispectral images).
By performing clustering in such point cloud, pixels will be grouped according
to spatial and tonal similarity. Otherwise said, the tone at each pixel will be
influenced by the tones in pixels that are both spatially and tonally close. This
shall achieve intra-object regularisation (since tones within an object will be
grouped to a single tone) while avoiding object boundary blurring (since nearby
pixels will have low influence on each other if they are tonally different). The
main representative for clustering-based content-aware smoothing is Mean Shift,
as presented by Comaniciu and Meer [8]. However, other clustering techniques
are equally valid, e.g. gravitational clustering [20,31]. Literature contains, to the
best of our knowledge, no proposals for content-aware smoothing using fuzzy
clustering. This is relatively surprising, given the significant impact of fuzzy
clustering techniques in both fuzzy set theory and machine learning.

In this work, we propose a novel method for content-aware smoothing using
Spatial Fuzzy c-Means (SFCM). Our proposal is put to the test in the context
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of medical image processing, a field of particular interest for image smoothing
given the proneness of such images to noise and external contamination.

The remainder of this work is organised as follows. Section 2 presents the
general notions of clustering-based content-aware smoothing. Then, Section 3
depicts our proposal for image smoothing using Spatial Fuzzy c-Means. Our
proposal is experimentally tested in Section 4. Finally, Section 5 lists some gen-
eral conclusions and future work.

2 Clustering-based content-aware smoothing

Among the inspirations for content-aware smoothing, a relevant trend is that
inspired by multidimensional clustering. This trend is based on the interpretation
of images as datasets to be analysed from a spatio-tonal perspective. Let I :
Ω 7→ T be an image, with Ω = {1, ..., N} × {1, ...,M} representing the set of
positions and T representing the tonal palette. The image I can be understood as
a dataset in which each pixel becomes an instance p ∈ {1, ..., N}×{1, ...,M}×T.
Consider a pixel I(i, j) = t ∈ T with t = (t1, . . . , tk) a given tone; the instance
corresponding to this pixel would be (i, j, t1, . . . , tk).

The idea behind clustering-based content-aware smoothing is that clustering
pixels in the spatio-tonal space will group pixels that are both similar in tone
and similar in position. In this manner, pixels that are both spatially and tonally
similar will be grouped to similar tones. This shall produce inter-object regu-
larisation. Also, pixels that are spatially similar, but tonally different, shall not
be grouped together, preventing inter-object blurring. Hence, the evolution of
instances in the clustering process is meant to produce content-aware smoothing.

Nevertheless, the underlying inspiration of these smoothing techniques needs
to render into functional algorithms, and such algorithms are dependent upon
the specific clustering method. There are two main technical issues to be faced
in clustering-based smoothing techniques. Firstly, we need to build an image
from the dataset, at each stage of the clustering process, since the result of the
process at each stage should be an image. Secondly, since clustering methods
are normally based on comparison measures (often, on metrics), it is necessary
to design comparison measures able to produce meaningful results in the spatio-
tonal universe.

The generation of images at each stage of the clustering process is heavily
dependent upon the specific body of knowledge generated in the process itself.
In clustering methods that properly evolve the instances in the dataset (e.g.,
mean shift or gravitational clustering), each instance p in the image will be
modified iteratively. This shall affect the tonal information in p, but also the
spatial information in it. Otherwise said, the positions shall no longer fit the
original pixel grid in Ω. Hence, when using such clustering methods, positional
information is normally reset back to the original values after each iteration in the
clustering process. The situation is different for clustering methods that evolve
a set of centroids, leaving the instances unaltered. In such cases, it is necessary
to work with the membership of each pixel to each of the centroids, regardless of
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whether such membership is expressed as probability, a fuzzy membership degree
or any other numerical representation. Since each centroid is an element in R+×
R+×T, it does represent a tone. Hence, at each iteration of the clustering process,
an image can be reconstructed through linear combination of the tones at each
centroid, using as weighting coefficients the memberships to such centroids. More
image-creating strategies could be designed for clustering methods that shall not
fit in any of the previous two descriptions. Still, it is evident that the use of
clustering methods for content-aware smoothing requires not only the creation
of a dataset incorporating spatio-tonal information. Also, it requires the design
of a strategy to create an image from the body of knowledge generated in the
clustering itself.

As for the design of comparison operators for the spatio-temporal universe,
there is no predefined solution. This is mainly because it is extremely dependent
upon the tonal palette T, which can vary from grayscale tones (scalar values in
R+ or N+) to hyperspectral signatures (vectors in (R+)256 or (R+)512). However,
it is typical to produce a metric from the convex combination of two metrics: one
in the spatial universe (R+ ×R+), to account for spatial similarity, and another
one in the tonal universe (T), to account for the tonal one. Still, the weights
in the convex combination must be adjusted to ensure the representativeness of
both spatial and tonal information in the spatio-tonal metric. It is remarkable
that the design of comparison measures able to work on a spatio-tonal universe
is recurrent in image processing literature. For example, it was a key in the
evolution of Baddeley’s delta metric [2] from binary images to gray-scale ones [9].

It is relevant to mention that clustering, at final stages, can also be used for
both segmentation and hierarchical segmentation. Literature contains different
successful examples, such as the graph-based hierarchical clustering method by
Felzebschwalb and Huttenlocher [11] and the FCM-based segmentation based by
Yang et al. [30]. In these segmentation procedures there is no need to produce
intermediate images as the clustering evolves, since the only required result is the
distribution of pixels in the final partition. However, they do require spatio-tonal
comparison measures for the clustering.

An example of the performance of CUS and clustering-based CAS can be
seen in Fig. 1. In this figure we display a colour image, together with the result
of a Gaussian smoothing with σ = 2. We can also observe the image at its
initial state, together with its state after the 10th and 100th iterations of the
gravitational clustering procedure in [20].

3 Content-aware Smoothing based on Spatial Fuzzy
c-Means

The goal of a content-aware smoothing algorithm is to homogenize image regions
while maximally preserving the information on regions of interest, which in this
case are mainly edges [19]. However, edges are (a) some of the most sensitive
areas when performing image smoothing and (b) a naturally color-wise imprecise
zone [5]. In order to preserve information about objects on a image, and given
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(a) Original image (b) Gaussian smoothing (c) Gravitational smoothing (10th, 100th its.)

Fig. 1. Example of image smoothing performed with content-aware and content-
unaware techniques. (a) The original image; (b) the result with content-unaware
smoothing (Gaussian smoothing, σ = 2); (c) the smoothing output from the 10th

and 100th iteration of gravitational (content-aware) smoothing, respectively. For CUS,
(b) shows the blurring of the edges and loss of information. For CAS, (c) shows the
progressive blending of tones within objects, while preserving their boundaries.

their border properties, fuzzy set theory comes as a natural alternative. We
have hence focused on an existing fuzzy clustering algorithm which embodies
the expected needs in our approach: the Spatial Fuzzy c-Means (SFCM) [7].

The SFCM is an unsupervised n-dimensional clustering algorithm primarily
designed for data clustering [7]. Through the image-to-dataset conversion, any
image can be seen as a dataset on which clustering can be applied. The SFCM
will receive and image I as input and will output a set of N cluster centroids
C = (C1, C2, C3, ..., CN ), with Ci ∈ Ω × T. However, the result of a smoothing
procedure is an image, which means that the information produced at each
iteration needs to be used to produce a progressively smoother version of the
image. Multiple approaches can be taken to map the clusters back to image,
but the process mainly comprises of two phases: pixel-to-cluster assignment and
pixel colour definition.

The first phase consists of assigning the pixels to each of the clusters, so as to
determine which cluster or clusters (that is, which class centroids) will be used
in the determination of the colour at each pixel. A list of alternatives is available.
In a simplistic approach, each pixel can be assigned to the cluster to which it has
the highest membership degree. Also, a combination of the membership degrees
to the clusters can be used to perform the cluster assignment, in a procedure
similar to Generalized Mixture Functions [10]. A third alternative is to keep the
partial membership to each of the clusters, so as to represent that the pixel is
not completely assigned to any of them.

At the second phase, the cluster information at each pixel is used to produce
a tonal value for each pixel p ∈ Ω. Surely, this phase depends on the decision
made in the former phase. If each pixel is uniquely associated to one cluster, its
tone in the smooth image will be that represented in the tonal part of the cluster
it is assigned to. If the pixels are considered to have multiple partial membership
degrees to all clusters, the tone value can be obtained from the weighted com-
bination of the membership degrees and the tonal information of the clusters.
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Although membership degrees shall not be understood as weights to be oper-
ated with, we can use the membership functions for each cluster to materialise
such weighted combination. Let I be an image and let Ci = {Ci,1, . . . , Ci,N} be
the set of class centroids at some iteration of the clustering. From each centroid
Ci,j , we can compute a membership function µi : Ω 7→ [0, 1] representing the
membership degree of each pixel to the i-th cluster. The tone of a pixel p ∈ Ω
in the i-th smooth image I ′i can be computed as

I ′i(p) =

N∑
j=1

µj(p) · Ci,j , (1)

where Ci,j represents the tonal information of j-th cluster at the i-th iteration.

The overall workflow of the proposal is shown in Fig. 2. From now onward,
this algorithm will be referred to as CAS-SFCM.
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Fig. 2. Schematic representation of content-aware smoothing based on Spatial Fuzzy
c-Means (SFCM). After converting an image I into a dataset, the clustering procedure
iteratively produces cluster centers Ci. In order for those centers to be converted into
a progressively smoother image, the information from the centers is combined with the
data in the original image, as covered in Section 3.

The result of the CAS-SFCM is expected to be an edge-preserving, smoothen
version of the image, since the pixels will take colors progressively evolving to-
ward clustering centroids. As such centroids are influenced by groups of (spatio-
tonally) similar pixels, they shall evolve to represent highly populated regions
in the spatio-tonal space. By applying Eq. (1) in the reconstruction of the im-
ages from the clustering data, pixels shall evolve towards the colors represented
by such centroids, hence producing a context-aware smoothing behaviour. This
shall be put to the test in the upcoming section.
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4 Experimental results

In order to test the applicability of our proposal to realistic scenarios, we put it
to the test in a dataset of electronic microscopy for neural tissue analysis. Specif-
ically, we use a dataset of neural biopsies from patients affected by Progressive
Supranuclear Palsy (PSP). These images are used to determine how the presence
of free protein (in this case, Tau protein) at different areas of the brain affects
the degeneration of the brain functionality. The dataset is composed of 188 high
resolution images of all brain regions from 14 PSP-affected patients. For better
visualisation, patches of the original images will analysed on this paper. From
now onward, the PSP image dataset will be referred to as PSP dataset.

4.1 Progressive Supranuclear Palsy

Neurosciences, as well as neurology, is heavily hampered by the fact that few
invasive studies can be used to audit the state of a diseased organ. Invasive
study methods can permanently damage neural tissues and, are unsuitable for
the study of many processes related to neurodegeneration [29]. In this context,
scientists have developed strategies for neural tissue analysis that do not involve
invasive techniques. For Progressive Supranuclear Palsy, for instance, mislocal-
ized Tau protein is the main study object to understand the condition [14].

The Tau protein is present in all humans in a natural manner. It has the
essential function of structurally stabilising the neuron’s microtubes and to reg-
ulate some biological processes [22]. For patients with PSP, an anomaly causes
the Tau protein to detach from its original place, which in time will cause neural
death [12]. The detached Tau protein also act as a catalyst for the degeneration
process. Thus, Tau protein is a key biomarker for PSP and several studies have
been performed to relate the quantity, location and form of the free Tau protein
to the impact of the disease in a patient [22]. Most of these studies use imaging
techniques to either manually or automatically segment the Tau protein and
identify its form [6, 15]. However, segmenting, identifying and quantifying the
Tau protein are all challenging tasks, as the imaging conditions vary greatly in
the few data that exist. One of these conditions is the visual aspect of the Tau
protein after immunohistochemistry processing. After tinting the neural tissue,
Tau protein tends to take a characteristic colour. Figure 3 contains examples
of Tau protein deposits, which are identifiable by the brownish-tone it takes in
comparison to other artefacts.

Considering the existing challenges in defining the edges of Tau protein areas
due to the tonality variation, a smoother version of the images, in which the
tonality change issue is addressed, would greatly improve efficiency and results of
future studies, both for automated and non-automated approaches. In addition,
given that Tau protein is analysed by experts as regions and not by pixel, the
spatio-tonal clustering comes as a natural approach, following the hypothesis
that a pixel that belongs to a Tau region is usually near other pixels that belong
to the same Tau region.
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(a) Frontal Cortex (b) Substantia Nigra (c) Cerebellar Cortex (d) Hippocampus

Fig. 3. Patches of biopsies after being tinted to highlight Tau protein, which is identi-
fiable by its brownish tone. Patches are taken from different brain regions, as indicated
individually for each column.

4.2 Experimental configuration

This section intends to illustrate the specific configuration of our proposal for
its application to a realistic dataset. The PSP dataset is used for illustration
purposes.

The first relevant decision is related to the tonal palette of the images, which
needs to be coordinated with the decision on the metrics to be used in the SFCM.
In this case study, we select the CIELab colour space. The main reason is that
distances yielded by the Euclidean metric on CIELab tones are consistent with
tonal dissimilarities in human perception. Thus, the PSP dataset will contain
5-dimensional instances comprising L, a and b colour space components, as well
as the pixel coordinates.

A second decision of interest is related to the construction of the smooth
images from the centroids. In this case, we use the strategy in Eq. (1) so as to
combine as much information as possible from all clusters. Figure 4 contains a
visual representation of the clusters in an image from the PSP dataset. Specif-
ically, we observe the three clusters generated from the 100th iteration of the
clustering process. Such visual representations can be used to inspect the actual
fitting of the clusters to the different regions or artefacts in the image.

4.3 Result evaluation

Ideally, content-aware smoothing should be evaluated in a quantitative way.
Certain quantitative measure or strategy should evaluate the results in terms
of intra-region smoothing and inter-region contrast enhancement. However, such
measures or strategies are absent from the literature. On the one hand, there is
no possibility to generate ground truth, since it is unclear which is the optimal
final state of a content-aware smoothing procedure. Hence, comparison-based
strategies are discarded. On the other hand, standalone image quality strategies
(such as BRISQUE [21]) attempt to measure how good an image looks to the
Human Visual System, which is not really the goal of content-aware smoothing.
Alternative options can be built around the intelligent use of contrast, homo-
geneity and luminance quantifications. However, the use of multiple metrics or
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(a) Original image (b) Membership clusters generated for the original image

Fig. 4. Visual representation of the membership functions modelled after configuring
the clustering process with three clusters. (a) The original image on which the smooth-
ing will be performed; (b) the visual representation of the three clusters generated by
the clustering for (a). We can observe that each cluster in (b) mainly contains one
object area from (a), specifically the tau protein (leftmost cluster), the blueish nuclei
(middle cluster) and the background (rightmost cluster).

quantifiers would generate a complex measurement strategy and, as long as all
individual strategies are weak by themselves, we might reach a questionable
result evaluation.

The indirect evaluation of the CAS-SFCM would be the more natural ap-
proach to take, as content-aware smoothing is normally performed to improve
the image quality for object segmentation. However, the use of a method or
segmentation schema would add another layer of parameters to the CAS-SFCM
evaluation. Also, if this indirect strategy is applied, the evaluation would be per-
formed on the output of the method with the smoother images applied and not
on the images themselves.

Considering the above-mentioned factors, the direct and indirect evaluations
of the CAS-SFCM in our view are unsuitable in the current state of literature.
We have hence opted for a visual evaluation of the results. In this manner, we
do not intend to identify the best performing set of parameters, or to compare
the results of our proposal to that by other proposals in literature. Instead, we
intend to illustrate how our proposal actually leads to interesting results in the
context of applications.

The first question relates to the ability of our algorithm to perform both
intra-region regularisation and inter-region contrast enhancement. In order to
illustrate this fact, we present in Fig. 5 the line-based analysis of the evolution
of an image path from the PSP dataset. The figure contains the state of the
image patch in its original state, after the 1st, 10th and 100th iterations, together
with the plot-based representation of one of its rows (highlighted in orange). This
plot-based representation displays the red, green and blue channel of the selected
row. Although the variation in the image patch itself is subtle, we can observe
how the signal evolves in all channels. This evolution is seen in two different
aspects. Firstly, we observe a reduction in the rugosity of the quasi-flat areas of
the image. Secondly, we see how the contrast at the transition points (between
the background and the Tau protein deposit) are sharpened progressively.
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(a) Original image (b) 1st Iteration

(c) 10th Iteration (d) 100th Iteration

Fig. 5. Visual representation of the state of one row in an image patch at different
iterations of the smoothing procedure. The figure displays the state of the image patch
in its original form, and after the 1st, 10th and 100th iterations, as well as the state
of the row marked in orange (individually for each RGB component). We can observe
both the intra-region regularisation (reduction of the rugosity inside the objects) and
the inter-region contrast enhancement (sharper tonal changes at object boundaries).
The vertical grey lines are for better visualisation.

A detailed view of this fact can be seen in Fig. 6. In this figure we present a
detailed patch of the image to observe how the regularisation of the image is not
only noticeable for individual components, as seen in Fig. 5, but also for multi-
valued tones. Fig. 6 displays the original patch (Fig. 6(a)) and the state of the
patch after 1st, 10th and 100th iterations (Fig. 6(b)-(c)). We observe in Fig. 6(a)
how deposits normally feature smooth and gradual boundaries. However, with
content-aware smoothing (as in Fig. 6(b)) the boundary is sharpened. .

5 Conclusions

In this paper, we proposed a content-aware image smoothing approach for neural
tissue images based on fuzzy clustering. Our proposal is inspired by the prob-
lems and limitations that experts have when segmenting regions of interest from
neural tissue imagery to perform studies on neurodegenerative diseases. Specif-
ically, the approach is divided in three phases, being: (1) turning images into
clusterable data; (2) clustering the data; and (3) generating a smooth version
of the input image from the clustering output. For the experimentation and re-
sults obtained, our proposal is analysed by the prism of tonality stability, colour
distribution and expert feedback, as a direct or indirect analysis is unsuitable
for the context. The three analyses yielded positive feedback, showing meaning-
ful and useful improvements through the use of the CAS-SFCM. Nevertheless,
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(a) Original image (b) 10th Iteration (c) 100th Iteration

Fig. 6. Zoomed-in analysis of the preservation of boundaries and the smoothing be-
haviour for an image from the PSP dataset. The patch is displayed in both its original
state and its state after the 10th and 100th iterations.

a natural possibility for future work is to delve into means to quantify the re-
sults attained by the CAS-SFCM. The comparison of our proposal with other
smoothing procedures is another possibility of future work.
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