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Abstract. Multi-label classification is a supervised learning task where
each data item can be associated with multiple labels simultaneously.
Although multi-label classification models seem powerful in terms of
prediction accuracy, they have however like mono-label classifiers cer-
tain limitations mainly related to their opacity. We propose in this pre-
liminary work a novel approach for explaining multi-label classification
models based on formal concept analysis (FCA). The proposed approach
makes it possible to answer certain questions that a user may ask such as:
What are the minimum attribute sets allowing the classifier f to make
a prediction ? and What are the attributes that contribute to a given
prediction?
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1 Introduction

Until recently, machine learning (ML) models mainly focused on making accurate
predictions. ML is indeed widely used in several areas but regularly comes up
against a major issue, its black-box side especially due to the complexity of
the models used (eg. models based on deep learning can have several million
parameters). Explainable AI and interpretable ML attempt to address these
issues. They aim at equipping ML models with the ability to explain or present
their behavior in understandable terms [1]. Most of explainable ML approaches
try to assess the influence of attributes in the predictions made by classifiers.

We are interested in this preliminary work in the explanation of the predic-
tions made by multi-label classifiers. To do this, we rely on a powerful mathe-
matical framework, not yet used in explaining multi-label classifiers, that is the
one of formal concept analysis (FCA) to answer questions such as:
- What are the attributes that contributed to the prediction of the class set y
predicted by the multi-label classifier f?
- What is the minimum set allowing the classifier f to make this prediction ?
- At what extent does an attribute influence the prediction of a given class be-
longing to the set y of classes predicted by the classifiers f?
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It should be noted that the majority of existing approaches in explainable
ML are interested in the single-label case. This is the first novelty of our work.
Moreover, the proposed approach is original insofar as it is based on formal
concept analysis which has, to the best of our knowledge, never been used to
explain the predictions of a multi-label classifier. Our approach aims to provide
some forms of useful symbolic explanations. The other important advantage of
our approach is that it is agnostic and can be applied to explain the predictions
of any multi-label classifier.

2 Preliminaries

2.1 Multi-label classification

Multi-label classification is an extension of single-label classification, where classes
are not mutually exclusive, and each instance can be assigned to several classes
simultaneously. It is encountered in various modern applications such as text
categorization [6], scene classification [5], video annotation and bio-informatics
[14]. Let x∈X be a data instance denoted x=(a1, a2, .., an) where ai is a binary
attribute (feature). Let C={c1, c2, .., cm} be a finite set of labels. A multi-label
classifier f allows to predict for each instance x∈X a subset of labels y∈2|C|.

2.2 Explainable AI

The existing methods in explainable ML mainly focus on how an explanation
can be obtained and how the explanation itself can be constructed (for a survey,
see [15]). Examples of common methods are : ordering the attributes contribu-
tions to a prediction [7], selection, construction and presentation of prototypes
[13], summaries with decision trees [17] and decision rules [10]. The two most
used methods are LIME (Local interpretable model agnostic explanation) [8]
and SHAP (The Shapley Concept of Value) [4]. LIME is an explanatory tech-
nique that explains the predictions of any classifier through learning a locally
interpretable model around the prediction. SHAP is based on game theory and
assesses on average the contribution of each feature to the prediction. In this
paper, we rather focus on an alternative and complementary category of ex-
planations that are symbolic and may be very useful to the end-users. More
precisely, we focus on some forms of sufficient reason explanations. These latter
justify what is enough or necessary to trigger the prediction.

2.3 Formal concept analysis

Formal concepts analysis (FCA) [3] consists in learning pairs of subsets (objects,
properties) called formal concepts, from a binary relation, called formal context,
between a set of objects and a set of properties. LetO and P be sets of objects and
properties respectively, and R be a binary relation between O and P verifying
R ⊆ O × P. A pair (x, a)∈R (also denoted xRa) means that the object x ∈ O
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has the property a ∈ P. The triplet K:=(O,P,R) is called a formal context.
Let K := (O,P,R) be a formal context. For all X⊆O and A⊆P, the Galois
derivation set operator, denoted (.)∆, is defined as follows: X∆ = {p ∈ P |
X ⊆ R(p), A∆ = {x ∈ O | A ⊆ R(x)}. Intuitively, X∆ is the set of properties
common to all the objects of X and A∆ is the set of objects having all the
properties of A.
A formal concept is a pair (X,A) such that X ⊆ O, A ⊆ P, X∆ = A and
A∆ = X. X and A are respectively called extent and intent of the formal concept
(X,A). In this case, we have also (A∆)∆ = A and (X∆)∆ = X.

Example 1. Table 1 provides an example of a formal context K where the set
of items O={x1, x2, x3, x4, x5} and the set of attributes P={a1, a2, a3, a4}. An

R a1 a2 a3 a4

x1 × ×
x2 × ×
x3 × × ×
x4 ×
x5 ×

Table 1. Example of a formal context

example of a formal concept in Table 1 is ⟨X1, A1 ⟩ = ⟨{x2, x3}, {a2, a3}⟩ where
X1 = {x2, x3} is the extent of the formal concept and A1 = {a2, a3} is its intent.

The set B(K) of all formal concepts of K is partially ordered by :
(X1, A1)⪯ (X2, A2)⇒X1⊆X2(A2⊆A1). The subsumption relation ⪯ organizes
the formal concepts in a concepts lattice (Galois lattice) denoted by B(O,P,R)
or B(K). FCA has several advantages for data analysis. In particular, thanks
to the visual representation of the lattice of concepts, it is possible to visually
analyze and explore the data and its structure. Another frequent use is the
generation of association rules, which also allows data analysis and knowledge
extraction. In [16], an overview of classification methods based on formal con-
cepts analysis is provided. In [2], the authors propose a learning classifier system
(LCS) based on FCA to generate and exploit multi-label association rules which
highlight the different relationships between labels. In [9], a neural network ar-
chitecture based on concept lattices is used to improve the model explainability.

3 From multi-label predictions to FCA representation

This section briefly presents our FCA-based approach for explaining the pre-
dictions of a multi-label classifier f . We first need to associate a local or global
formal context to the classifier.
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– Local explanations : If one needs to explain locally a prediction f(x), then we
need to build a local formal context representing the predictions of the clas-
sifier in the neighborhood of data instance x. In case we are given a dataset
D, the neighborhood of x, denoted N (x) is simply obtained by selecting m
data instances from D that are close to x. More precisely, we associate a local
formal context composed of data instances x′∈N (x) and their predictions
f(x′). Otherwise, one can obtain N (x) by applying local perturbations to
instance x as it is done in most explainability approaches such as LIME [8].

– Global explanations : This case corresponds to the use of all the predictions
of f over a dataset D to explain the prediction at hand. Global explanations
can also be used in order to explain the global functioning of a classifier in
the general case.

Recall that a multi-label classifier f associates with each data instance x de-
scribed by its feature vector (a1, a2, .., an) a subset of classes y from C={c1, c2, ..., ck}.
Therefore, this relation implies three dimensions: a set of objects X (namely, data
instances), a set of attributes P and a set of classes C. Thus R⊆O×P×C. The
transformation of multi-label data into a formal context consists in transform-
ing this three-dimensional relation into a two-dimensional one to obtain a formal
context with only two dimensions. This is the first contribution of this paper.

3.1 Building a formal context for the classifier predictions

Let MLD=(O,P, C,R) be a multi label dataset where O is a set of instances,
C be the set of classes, P be the set of features and R a ternary relationship
R⊆O×P×C. Transforming this multi-label data into a formal context consists in
transforming the ternary relation R⊆O×P×C into a binary relation R′⊆O×M
where M=(C×P) similar to what was done in [12]. Hence, in our approach, a
formal context is a triplet K′

=(O,M,R′
) where O represents the set of objects,

M=(C×P) is a set of pairs (ck, aj) with aj ∈ P, ck ∈ C, and R′⊆O×M a binary
relation between the two sets O and M. In other words, the transformation of a
the multi-label data into a context formal K′

is done by flattening (projecting)
of the set of classes on all the attributes of the objects, as follows :
- xi ∈ O the i-th instance of the set of objects O, i = 1,m
- aj ∈ P the j-th property of the set of properties P, j = 1, n
- ck ∈ P the k-th class of the set of classes C, k = 1, p
-fk(x) the prediction for the class ck for the instance x by the classifier f

fk(xi) =

{
0 if R(xi, aj , ck) = 0
1 if R(xi, aj , ck) = 1

Example 2. Table 2 illustrates the use of Algorithm 1,given below, to represent
multi-label data in the form of a formal context. The triplet (x1,a1a2, c1c3)
means that the object x1 where the attributes a1 and a2 are present is predicted
in classes c1 and c3. In other words, object x1 is predicted in classes c1 and c3
under the conditions a1 and a2.
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Algorithm 1 Flattening multi-label data into a formal context

Require: Multi-label data D
Ensure: Formal context K

′

1: for i← 1,m do
2: for j ← 1, n do
3: for k ← 1, p do
4: if R(xi, aj , ck)=1 then

5: R
′
(xi, (aj × ck))← 1

6: else
7: R

′
(xi, (aj × ck))← 0

P C
O a1 a2 a3 c1 c2 c3
x1 1 1 0 1 0 1

x2 1 0 0 1 0 0

x3 1 0 1 1 0 0

x4 0 0 1 0 1 0

x5 1 1 1 1 0 1

x6 1 1 0 1 0 1

M=C×P
O c1-a1 c1-a2 c1-a3 c2-a1 c2-a2 c2-a3 c3-a1 c3-a2 c3-a3

x1 1 1 0 0 0 0 1 1 0

x2 1 0 0 0 0 0 0 0 0

x3 1 0 1 0 0 0 0 0 0

x4 0 0 0 0 0 1 0 0 0

x5 1 1 1 0 0 0 1 1 1

x6 1 1 0 0 0 0 1 1 0

Table 2. Example of flattening a 3D multi-label data (left side table) into a 2D formal
context (right side table).

Clearly, flattening the 3D formal context ensures that in the new 2D formal
context, any formal concept includes a set of objects that are all predicted in
the same classes under the same conditions (features values). This allows using
existing algorithms and implementations to generate formal concepts directly
for explanation purposes. Once the flattened formal context built, one can use
it to provide different forms of explanations.

3.2 Computing explanations as formal concepts

In order to compute explanations, let us first adapt the derivation operator to
our formal context. Assume we are given a 2D formal context and that our
objective is to provide local or global explanations. Let K′

=(O,M,R′) a formal
context, O a set of instances, M = (C ×P) is a set of pairs (ci, aj) with aj ∈ P,

ck ∈ C. The triplet (xi, ck, aj)∈R
′
means that the instance xi∈O has the class

ck∈ C when the attribute aj ∈ P is present.
For all X ⊆ O and Y ⊆ M with Y = {(ck, aj)/aj ∈ P, ck ∈ C} we define
the Galois derivation set operator (.)∆, seen in the previous section, as follows:
X∆ = {(ck, aj) ∈ M | X ⊆ R′(ck, aj)}

= {(ck, aj) ∈ M | ∀x ∈ Ox ∈ X ⇒ (x, (ck, aj)) ∈ R′}
Y∆ = {x∈ O | Y ⊆ R′

(x)}
= {x∈ O | ∀(c, a) ∈ M((c, a) ∈ Y ⇒ (x, (ck, aj)) ∈ R′

)}.
X∆ is the set of pairs (ck, aj) common to all the objects of X and Y ∆ is the

set of objects having all the pairs (ck, aj) of Y . The obtained set of all formal
concepts is named L(K ′)
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Example 3. Following the new definition of the Galois operator to the formal
context of Table 2, we obtain the set L(K ′) of the following formal concepts:
fc1 : ⟨{x1, x2, x3, x4, x5, x6}, {}⟩
fc2 : ⟨{x4}, {(c2, a3)}⟩
fc3 : ⟨{x1, x2, x3, x5, x6}, {(c1, a1)}⟩
fc4 : ⟨{x1, x5, x6}, {(c1, a1), (c1, a2), (c3, a1), (c3, a2)}⟩
fc5 : ⟨{x3, x5}, {(c1, a1), (c1, a3)}⟩
fc6 : ⟨{x5}, {(c1, a1), (c1, a2), (c1, a3), (c3, a1), (c3, a2), (c3, a3)}⟩
fc7 : ⟨{}, {(c1, a1), (c1, a2), (c1, a3), (c2, a1), (c2, a2), (c2, a3), (c3, a1), (c3, a2), (c3, a3)}⟩

The formal concept fc4 can be rewritten as follows fc4:⟨{x1, x5, x6}, {c1, c3},
{a1, a2}⟩meaning that the classes {c1, c3} are predicted for the instances {x1, x5, x6}
when attributes {a1, a2} are present. In this example, {x1, x5, x6}, {c1, c3},
{a1, a2} represent respectively, the extension, the intention and the condition
of the formal concept fc4.

Reducing the number of formal concepts The number of formal concepts
can be very large, then a question arises regarding the relevance of some formal
concepts for explanation purposes and whether one can not reduce their number.
The particularity of our formal concepts reduction algorithm (Algorithm 2) lies
in the fact that it does not only rely on attributes and instances but also on
classes, as a third parameter, in the reduction process. For instance, in Example
3, the intention {c1} appears in several formal concepts:
- In fc3: the class c1 is predicted for the objects x1, x2, x3, x4, x5 and x6 when
the attribute a1 is present.
- In fc5: the class c1 is predicted for the object x3 and x5 when the attributes
a1 and a3 are present.
Clearly the attribute a1 is sufficient to predict the object x3 and x5 in the class
c1 since {x3,x5}⊆{x1,x2,x3,x5,x6,x7} and {a1}⊆ {a1, a3}. Hence, the attribute
a3 is not a necessary condition to predict c1 for objects {x1,x5}. Then from an
explanation point of view, a3 is not relevant and it suffices to keep only the
formal concept fc3. Based on this observation, Algorithm 2 allows to reduce the
number of formal concepts: Let L(K ′)={fc1, fc2, ..., fcn} be the set of all formal
concepts, Int(fci) be the intention of the formal concept fci, Ext(fci) be the
extension of the formal concept fci, and Cond(fci) be it condition.

Example 4. Applying Algorithm 2 to the set L(K ′
) of formal concepts obtained

above (Example 3), we obtain the following reduced set of formal concepts
L′(K

′)={fc2, fc3, fc4}.

Up to now, we showed how to build a formal context for explanation purposes
and how to reduce the number of the formal concepts. The following section
presents explanation generation from the obtained formal concepts.



Towards an FCA-based approach for explaining multi-label classification 7

Algorithm 2 Formal concepts reduction

Require: L(K′)={fc1, fc2, ..., fcn}
Ensure: L′(K′) ▷ Reduced set of formal concepts
1: for i← 1, n− 1 do
2: for j ← i+ 1, n do
3: if Int(fci) = Int(fcj) then
4: if Ext(fci) ⊆ Ext(fcj) then
5: if Cond(fci) ⊇ Cond(fcj) then
6: L′(K′)=L(K′) \ fci

4 Multi-label prediction explanations

Recall that our approach for explaining multi-label classification is agnostic and
it allows to provide both symbolic and numerical of explanations. For lack of
space, the presentation is limited to some forms of symbolic explanations.

Example 5. In this section, we will illustrate through a real example from the medical
field. This example deals with diagnosing some respiratory deceases (labels) given some
symptoms of patients (attributes). For the sake of simplicity, we consider only four
deceases that are: Asthma (d1), Bronchiolitis (d2), COPD (d3), Covid (d4). It has
been found that the manifestation of these diseases is generally made by the following
symptoms: Dry cough (s1), loose cough (s2), shortness of breath (s3), wheezing (s4),
fever(s5), headaches (s6), loss of taste (s7), curvatures (s8) and Dyspnoea (s9). Table
3 presents the predictions of a black-box model f .

Symptoms Diseases
O s1 s2 s3 s4 s5 s6 s7 s8 s9 d1 d2 d3 d4
1 1 0 1 1 1 0 0 0 0 1 1 0 0

2 0 1 0 1 1 0 0 1 1 1 0 1 0

3 1 0 1 0 1 1 1 1 0 1 0 0 1

4 1 0 0 0 1 1 1 1 0 0 0 0 1

5 0 1 1 0 0 0 0 1 1 0 0 1 0

6 1 0 1 0 1 1 1 1 0 1 1 0 1

7 0 0 0 0 1 1 1 1 0 0 0 0 1

8 1 0 1 1 1 1 0 1 0 1 1 0 1

9 1 0 1 0 0 0 0 1 0 0 1 0 0

10 1 0 1 0 1 1 1 1 0 0 1 0 1

11 0 1 1 1 1 0 0 0 1 1 1 1 0

12 0 1 0 0 1 0 0 0 1 0 0 1 0

13 1 0 1 0 1 1 1 1 0 0 0 0 1

14 1 0 1 1 0 0 0 0 0 1 0 0 0

Table 3. Multi-label data from medical field

Table 3 contains data for 14 patients (instances). Each patient is described by a

set of symptoms and the model f diagnosed him with a few diseases (compatible and
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probable for the observed symptoms). After transforming these multi-label data into

a formal context, as shown in the previous section, we obtain the following reduced

formal concept set L′(K
′
):

-fc1:⟨{11}, {′Asthma′, ′Bronchiolitis′, ′COPD′}, {′fever′, ′Dyspnoa′, ′Shortnessofbreath′,
′Wheezing′, ′Loosecough′}⟩
-fc2:⟨{2, 11}, {′′Asthma′,′ COPD′}, {′Fever′,′ Loosecough′,′ Dyspnoa′,′ Wheezing′}⟩
-fc3 : ⟨{8, 6}, {′Asthma′, ′Bronchiolitis′, ′Covid′}, {′Fever′, ′Headache′, ′Shortnessofbreath′,
′Drycough′, ′Curvature′}⟩
-fc4:⟨{8, 3, 6},{’Asthma’, ′Covid′}, {′Fever′, ′Headache′, ′Shortnessofbreath′, ′Drycough′,
′Curvature′}⟩
-fc5 :⟨{8, 10, 6}, {′Bronchiolitis′, ′Covid′}, {′fever′, ′Headache′, ′Shortnessofbreath′,
′Drycough′, ′Curvature′}⟩
-fc6 : ⟨{8, 1, 11, }, {′Asthma′,′ Bronchiolitis′′}, {′Fever′,′ Shortnessofbreath′}⟩
-fc7 : ⟨{2, 11, 12, 5}, {′COPD′′}, {′Loosecough′,′ Dyspnoa′}⟩
-fc8 : ⟨{1, 2, 8, 11, 14}, {′Asthma′′}, {′wheezing′}⟩
-fc9 : ⟨{1, 2, 3, 6, 8, 11}, {′Asthma′}, {′Fever′}⟩
-fc10 : ⟨{1, 3, 6, 8, 11, 14}, {′Asthma′}, {′Shortnessofbreath′}⟩
-fc11 : ⟨{1, 6, 8, 9, 10, 11}, {′Bronchiolitis′}, {′Shortnessofbreath′}⟩
-fc12 : ⟨{3, 4, 6, 7, 8, 10, 13}, {′Covid}, {′Fever′,′ Headache′,′ Curvature′}⟩.

Given a data instance x and the prediction f(x), we are first interested in
symbolic explanations that are sufficient reasons. Broadly speaking, they refer
to the subset of features in x that are sufficient to predict y=f(x).

4.1 Sufficient reason explanations

In FCA terms, a sufficient reason corresponds to the concept of a decisive at-
tribute set (Das). A Das is the smallest subset of features aj∈P that allows a
model f to predict y⊆C. This subset is said to be decisive in the sense that this
decision remains valid regardless of the values of the other attributes.
Let x=(a1, a2, ..., an) be the instance to classify and ck∈y⊆C be a class predicted
among the labels composing the multi-label prediction y=f(x) where f is the
multi label classifier to explain. First, we will define the set B(ck) of all the for-
mal concepts having in their intentions the class ck. Let L′

(K′
)={fc1, fc2, ...}

be the set of all formal concepts obtained after reduction. Namely, B(ck)=
{fci∈L

′
(K′

)|ck∈Int(fci)}. The Das that allows the model f to predict the
classes ck is defined as follows: Let B(ck) be the set of all formal concepts having
in their intentions the class ck, Ext(fci)={xi ∈ O|fci ∈ B(ck)} be the extension
of the formal concept whose intention contains the class ck, Cond(fci)={ai ∈
P|fci ∈ B(ck)} be the condition of the formal concept whose intention contains
the class ck, and Diff(ck)=

⋃
i=1,n Ext(fci) \

⋂
i=1,n Ext(fci) is the set differ-

ence between the union and the intersection of extensions having the class ck in
intention. The decisive Attribute Set (Das) for the class ck is given as follows :

Dasj(ck)={
⋃
Cond(fci)|xj ∈ Ext(fci) and xj ∈ Diff(ck)}

The following algorithm summarizes this procedure :
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Algorithm 3 Compute Das(ck)

Require: B(ck)
Ensure: Das(ck)
1: Das(ck) = ∅
2: if |B(ck)|=1 then
3: Das(ck) = Cond(fck)
4: else
5: for i← 1, n do
6: Diff(ck)=

⋃
Ext(fci)\

⋂
Ext(fci)

7: for each x ∈ Diff(ck) do
8: for i = 1← 1, n do
9: if x ∈ Ext(fci) then
10: Dasx(ck)=

⋃
Cond(fci)

11: if Dasx(ck) /∈ Das(ck) then
12: Das(ck) = Das(ck) ∪ Dasx(ck) ▷ Add a subset to Das(ck))

It should be noted that a decisive attribute set (Das), which allows to predict
a class ck, is not necessarily unique and that it is possible to find several decisive
attribute sets which allow the same class to be predicted. The set Das(ck) is
made up of subsets Dasx(ck) such that x ∈ Diff(ck).

Example 6. Let us continue our running example. Assume we want to compute
the set of all decisive attribute sets that allow f to predict the class ck={Covid}
(label Covid is also denoted (d4)). First, select the formal concepts having in their
intention the class ck= {Covid}: B({Covid(d4)})={fc3, fc4, fc5, fc12}. Then,
we compute the setDiff(Covid)=

⋃
Ext(fci)\

⋂
Ext(fci) with fci ∈ B({Covid(d4)}):

Diff(Covid)={3, 4, 7, 10, 13}. For each instance x∈Diff(Covid), we compute
the set Dasx(Covid). For objects {10, 3}, Das10(Covid) =Das3(Covid) we write:
Das10,3(Covid)={′Fever′,′ Headache′,′ Shortnessofbreath′,′ Drycough′,′ Curvature′}.
For objects {4, 13, 7}, Das4,13,7(Covid)={′Fever′,′ Headache′,′ Curvature′}.
Hence the set of all decisive attribute sets allowing the model f to predict the
class y={ Covid} is : Das(Covid)={Das4,13,7(Covid),Das10,3(Covid)}

4.2 Significant attributes set

A significant attributes set for a class ck (denoted Ssa(ck)) is the set of attributes
that appear in at least in one decisive attribute set. Namely, Ssa(ck) is equivalent
to the set of attributes appearing in the union of all decisive attributes sets for
this class (Das(ck)). The significant attributes set for a set of classes y is the
union of all significant attributes set of the set of classes:

Ssa(Y )=
⋃

ck∈y Ssa(ck)

Example 7. The significant attributes set for y={Covid} is the union of all de-
cisive attributes sets of the class Covid. Thus,
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Ssa(Covid)={′Fever′,′ Headache′,′ Shortnessofbreath′,′ Drycough′,′ Curvature′},
same for the class COPD Ssa(COPD)={′Wheezing′, ′fever′, ′Dyspnoa′, ′Loosecough′},
and Ssa(covid, COPD)=Ssa(covid) ∪ Ssa(COPD)= {′Fever′, ′Headache′,
′Shortnessofbreath′, ′Drycough′, ′Curvature′, ′Wheezing′, ′Dyspnoa′, ′Loosecough′}

4.3 Beyond Das and Ssa explanations

For lack of space, we have limited our presentation to Das and Ssa explanations.
However, our approach can go further to give other types of explanations. For
instance, it can directly provide scoped rules commonly known in explainable AI
as Anchors [11] (rules are in the form IF feature1=1 AND feature2=1.. THEN
the prediction is y). The necessary features to trigger a prediction are simply
the intersection of Das. Moreover, in addition to symbolic explanations, our
FCA-based approach can also provide numerical explanations such as feature
importance which can be assessed through the frequency of features in sufficient
reasons for instance.

5 Case study

We present in this section a case study on the well-known Stack Overflow collec-
tion of coding questions and answers. It features questions and answers on a wide
range of topics in computer programming. Based on the type of tags assigned
to questions, the most discussed topics on the site are: Java, PHP, Android,
Python, HTML, etc. A question in Stack Overflow contains three segments: Ti-
tle, Description and Tags as illustrated in Fig. 2. We consider a prediction task

Fig. 1. Illustration from Stack Overflow collection

consisting in predicting the tags (labels) from the title and description of the
question. We selected five hundred questions that were preprocessed into 100
binary features and 5 labels (C={Asp.net.1, java.1,mysql.1, php.1, python.1}.
In our study, we considered three well-known multi-label techniques that are
Label powerset (LPS), MLkNN and RAKEL classifiers which represent the three
multi-label classification methods, namely, the problem transformation method,
the problem adaptation method and that combines both methods, respectively
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(note that in our approach a classifier is considered as a black box). For each of
them, we computed the decisive attributes sets (Dfs) as well as the percentage
of significant attributes (PF ) for each class.

Table 4. Number of decisive feature sets per class (nbDfs) and percent of significant
attributes per class(Psf)

nbDfs Asp.Net.1 java.1 Mysql.1 Php.1 Python.1

MLKNN 1 1 78 37 29

LPS 1 1 76 33 26

RAKEL 1 1 76 51 40

Psf Asp.Net.1 java.1 Mysql.1 Php.1 Python.1

MLKNN 1% 1% 53% 29% 18%

LPS 1% 1% 51% 25% 19

RAKEL 1% 1% 50% 33% 21%

From these results, we notice that the number of decisive feature sets (nbDfs)
as well as the percentage of significant features for each class differs from one
classifier to another. This means that each of the Rakel and MLkNN classifiers
(considered as black-boxes) rely on different attributes for their predictions con-
cerning a given class or a set of given classes. For example, for the php.1 class the
MLkNN classifier used 29% of the features with 37 decisive feature sets, RaKel
classifier used 33% of the features with 51 decisive feature sets, while the LPS
classifier only used 25% of the features with 33 decisive feature sets.

Fig. 2. Average decisive attribute set number per class (left side) and average signifi-
cant attributes number per class (right side). On the X axis the size (# of instances)
of the neighborhood considered (experiments are done of 10,20,...,100 neighbors).

5.1 Concluding remarks

In this preliminary work, we proposed an approach based on formal concept
analysis to explain multi-label classification, and this by defining the minimal
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attribute subsets allowing a multi-label classifier to make a given prediction. We
have also defined the set of all significant attributes that influence the model
predictions concerning a class or a set of classes. As a perspective, we intend to
measure the importance of each attribute in the prediction of a set of classes. This
work, can also be extended to counterfactual explanations to define, for example,
the smallest perturbation (modification) of attribute values that modifies the
predictions into a predefined output.

References

1. M Berrada. A Adadi. Peeking inside the black-box: a survey on explainable arti-
ficial intelligence (XAI). IEEE access, 2018 - ieeexplore.ieee.org., 2018.

2. Tzima F. Mitkas P. Allamanis, M. Effective rule-based multi-label classification
with learning classifier systems. In Adaptive and natural computing algorithms.
11th international conference, ICANNGA (pp. 466–476), ., 2013.

3. R. Wille. B. Ganter. Formal Concept Analysis. Springer-Verlag, 1999.

4. Jurgen Bajorath. Interpretation of machine learning models using shapley val-
ues:application to compound potency and multi-target activity predictions. Jour-
nal of Computer-Aided Molecular Design (2020) 34:1013–1026, 2 May 2020.

5. Luo J. Shen X. Boutell, M. R. and C. M. Brown. Learning multi-label scene
classification. Learning multi-label scene classification., 2004.

6. Yan J. Zhang B. Chen Z. Chen, W. and Q. Yang. Document Trans-formation for
Multi-label Feature Selection in Text Categorization. In Seventh IEEE Interna-
tional Conference on Data Mining, IEEE, pp. 451–456., 2007.

7. Sen S. Datta, A. and Y. Zick. Algorithmic Transparency via Quantitative Input
Influence: Theory and Experiments with Learning Systems. In Proc. 2016 IEEE
Symp. Secur. Priv. (SP 2016), pp. 598–617. IEEE, 2016.

8. Dominique Guegan. A Note on the Interpretability of Machine Learning Algo-
rithms ,. July 6, 2020.

9. Makhazhanov N. Ushakov M. Kuznetsov, S.O. On neural network architecture
based on concept lattices.

10. Varshney K. R. Emad A. Malioutov, D. M. and S. Dash. Learning Interpretable
Classification Rules with Boolean Compressed Sensing. Transparent Data Min. Big
Small Data. Stud. Big Data, 32, 2017. doi: 10.1007/ 978-3-319-54024-5. .

11. Carlos Guestrin. Marco Tulio Ribeiro., Sameer. S. “Anchors: high-precision model-
agnostic explanations”. AAAI Conference on Artificial Intelligence (AAAI), 2018.

12. Emamirad K. Missaoui, R. Lattice Miner 2.0 : A Formal Concept Analysis Tool.
In Supplementary Proc. of ICFCA, Rennes, France, 2017 (2017), pp. 91–94., 2017.

13. Dosovitskiy A. Yosinski J. Brox T. Nguyen, A. and J. Clune. Synthesizing the
Preferred Inputs for Neurons in Neural Networks via Deep Generator Networks.
Adv. Neural Inf. Process. Syst., 29. 2016.

14. Hua X.-S. Rui Y. Tang J. Mei T. Qi, G.-J. and H.-J. Zhang. Correlative multi-
label video annotation. In Proceedings of the 15th international con-ference on
Multimedia - MULTIMEDIA ’07, ACM Press, p. 17., 2007.

15. S. Ruggieri F. Turini D. Pedreschi R. Guidotti, A. Monreale and F. Giannotti.
A survey of methods for explaining black box models.arXiv preprint. arXiv:
1802.01933., 2018.



Towards an FCA-based approach for explaining multi-label classification 13

16. Meddouri N. Maddouri M.. Trabelsi, M. New taxonomy of classification meth-
ods based on Formal Concepts Analysis. What can FCA do for Artificial
intelligence,113-120, 2016.

17. Y. Zhou and G. Hooker. Interpreting Models via Single Tree Approximation.
arXiv preprint arXiv:1610.09036. 2016.


