Skip to main content

Disparity Autoencoders for Multi-class Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Abstract

Multi-class brain tumor segmentation is important for predicting the aggressiveness and treatment response of gliomas. It has various applications including diagnosis, monitoring, and treatment planning of gliomas. The purpose of this work was to develop a fully automated deep learning framework for multi-class brain tumor segmentation. Brain tumor cases with multi-parametric MR Images from the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2021 were used. Six Disparity Autoencoders (DAE) were developed including 2 DAEs to segment the whole-tumor (WT), 2 DAEs to segment the tumor-core (TC) and 2 DAEs to segment the enhancing-tumor (ET). The output segmentations of a particular label from their respective DAEs were ensembled and post-processed. The DAEs were tested on the BraTS2021 validation dataset. The networks achieved average dice-scores of 0.90, 0.80 and 0.79 for WT, TC and ET respectively on the validation dataset and 0.89, 0.82, 0.81 for WT, TC and ET respectively on the test dataset. This framework could be implemented as a robust tool to assist clinicians in primary brain tumor management and follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Meir, E.G., Hadjipanayis, C.G., Norden, A.D., Shu, H.K., Wen, P.Y., Olson, J.J.: Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J. Clin. 60(3), 166–193 (2010). https://doi.org/10.3322/caac.20069

    Article  Google Scholar 

  2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 1–13 (2017)

    Article  Google Scholar 

  3. Khosravanian, A., et al.: Fast level set method for glioma brain tumor segmentation based on superpixel fuzzy clustering and lattice boltzmann method. Comput. Methods Programs Biomed. 198, 105809 (2021)

    Article  Google Scholar 

  4. Tang, Z., et al.: Multi-atlas segmentation of MR tumor brain images using low-rank based image recovery. IEEE Trans. Med. Imaging 37, 2224–2235 (2018)

    Article  Google Scholar 

  5. Pei, L., et al.: Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI. Proc. SPIE Int. Soc. Opt. Eng. 10134 (2017)

    Google Scholar 

  6. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. BrainLes 2017, LNCS 10670, pp 450–462. https://doi.org/10.1007/978-3-319-75238-9_38 (2018)

  7. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  8. Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). pp. 565–571. IEEE (2016)

    Google Scholar 

  9. Pereira, S., et al.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251 (2016)

    Article  Google Scholar 

  10. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  11. Zhuge, Y., et al.: Brain tumor segmentation using holistically nested neural networks in MRI images. Med. Phys. 44, 5234–5243 (2017)

    Article  Google Scholar 

  12. Zikic, D., et al.: Segmentation of brain tumor tissues with convolutional neural networks. Proc. MICCAI-BRATS 36, 36–39 (2014)

    Google Scholar 

  13. Dvořák, P., Menze, B.: Local structure prediction with convolutional neural networks for multimodal brain tumor segmentation. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Zhang, S., Cai, W., Metaxas, D. (eds.) MCV 2015. LNCS, vol. 9601, pp. 59–71. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42016-5_6

    Chapter  Google Scholar 

  14. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:210702314 (2021)

  15. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2014)

    Article  Google Scholar 

  16. Lloyd, C.T., Sorichetta, A., Tatem, A.J.: High resolution global gridded data for use in population studies. Sci. data 4, 1–17 (2017)

    Article  Google Scholar 

  17. Bakas, S., Akbari, H., Sotiras, A.: Segmentation labels for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017)

    Google Scholar 

  18. Bakas, S., et al.: Segmentation labels for the pre-operative scans of the TCGA-GBM collection (2017)

    Google Scholar 

  19. Tustison, N.J., et al.: Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 99, 166–179 (2014)

    Article  Google Scholar 

  20. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  21. Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded u-net: 1st place solution to brats challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22

    Chapter  Google Scholar 

  22. Wegmayr, V.A.S., Buhmann, J., Nicholas, P.: Classification of brain MRI with big data and deep 3D convolutional neural networks. In: Mori, K. (Ed) Published in SPIE Proceedings, Medical Imaging 2018: Computer-Aided Diagnosis, pp. 1057501 (2018)

    Google Scholar 

  23. Feng, X., Yang, J., Lipton, Z.C., Small, S.A., Provenzano, F.A.: Deep learning on MRI affirms the prominence of the hippocampal formation in Alzheimer’s disease classification. bioRxiv 2018, 456277 (2018)

    Google Scholar 

  24. ea Chollet, F., Keras, C.P.: GitHub repository (2015)

    Google Scholar 

  25. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16), pp. 265–283 (2016)

    Google Scholar 

  26. Kingma, D.P., Adam, B.J.: A method for stochastic optimization. arXiv preprint arXiv:14126980 (2014)

  27. Jégou, S., et al.: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition workshops, pp. 11–19 (2017)

    Google Scholar 

  28. McKinley, R., Meier, R., Wiest, R.: Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 456–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_40

    Chapter  Google Scholar 

  29. Bangalore Yogananda, C.G., et al.: A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. Neuro Oncol 22, 402–411 (2020)

    Google Scholar 

  30. Menze, B.H., et al.: The Multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015)

    Article  Google Scholar 

  31. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16

    Chapter  Google Scholar 

Download references

Acknowledgement

Support for this research was provided by NCI U01CA207091 (AJM, JAM) and NCI R01CA260705 (JAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Ganesh Bangalore Yogananda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bangalore Yogananda, C.G. et al. (2022). Disparity Autoencoders for Multi-class Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics